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Abstract: This article proposes to solve the oversatu-
rated network traffic signal coordination problem us-
ing the Ant Colony Optimization (ACO) algorithm. The
traffic networks used are discrete time models which use
green times at all the intersections throughout the consid-
ered period of oversaturation as the decision variables.
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agement of oversaturated conditions using similar
approaches has yielded undesirable results. The dissi-
pation of queues and removal of blockages should be
prioritized over the minimization of travel costs (Roess
et al., 1998). Instead, the objective of signal coordina-
tion in oversaturated conditions is to generate a set of
green time durations to maximize the number of ve-
hicles that are released at every signal of the network
during congested phases (Abu-Lebdeh and Benekohal,
1997; Girianna and Benekohal, 2002a). The problem
formulation has been reported in existing literature, but
current algorithms used for problem solution are too
slow or require very high computational power to be
effective in real-time situations. The Ant Colony Op-
timization (ACO) algorithm is a fairly novel technique
for solving computational problems by mimicking the
natural behavior of ants as they generate and select
paths to a food source from a colony (Dorigo and Stuet-
zle,2004). ACO has been proposed as a viable approach
for stochastic combinatorial optimization (Dorigo et al.,
1996), with successful application to the traveling
salesman problem, the asymmetric traveling salesman
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problem, the quadratic assignment problem, and the
job—shop scheduling problem. In addition, ACO has
been applied successfully for transportation planning
problems (e.g., Yang et al., 2007; Vitins and Axhausen,
2009). This article describes the development and im-
plementation of an ACO-based approach to solve the
oversaturation traffic network problem and demon-
strates the application of ACO for identifying tim-
ing strategies for two example networks. The solution
performance of ACO is compared to a genetic algo-
rithm (GA) approach, which is the optimization tech-
nique used to solve the oversaturated signal coordina-
tion problem in the existing literature (Girianna and
Benekohal, 2004). The study finds that ACO is able
to outperform the GA for solution of the problem and
may provide a more efficient algorithm architecture for
taking advantage of additional computational resources
through parallel computing.

2 BACKGROUND
Planning signal timing for oversaturated networks
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proportions of green times (Foy et al., 1992). GA is a
heuristic search algorithm belonging to a class of al-
gorithms known as evolutionary algorithms (Holland,
1975) that are based loosely on the process of natu-
ral evolution. GAs have been applied in various dis-
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neering (Al-Bazi and Dawood, 2010; Cheng and Yan,
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0 idies focuses on the identification of op-
gths and green times for oversaturated
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been successfully applied (Saito and Fan, 2000; Varia
and Dhingra, 2004; Sun et al., 2006; Teklu et al., 2007;
Mabher, 2008). A GA approach was used to minimize
total delay through identifying phase sequences and

objective function the total number of vehicles pro-
cessed by the network during the oversaturated period
(Abu-Lebdeh and Benekohal, 1997, 2000). New models
for estimating the capacities of oversaturated arterials
were developed based on the capacities of individual in-
tersections, vehicle queue lengths, and offsets. The GA
was applied to coordinate signals to maximize through-
put, and results demonstrated a control strategy that
avoided queue spillback and de facto red. This strategy
was extended to coordinate oversaturated signals along
an arterial that crosses multiple, parallel coordinated ar-
terials (Girianna and Benekohal, 2002a, 2004). The re-
search presented here utilizes this new objective func-
tion and compares the use of ACO to the performance
of the previously reported GA-based approach.

3 PROBLEM FORMULATION

In managing oversaturated networks, traditional poli-
cies such as cost minimization are secondary to the
removal of queues and blockages and the number of
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vehicles processed by the network. The traffic signal
design problem for oversaturated conditions has been
effectively formulated as a constrained dynamic opti-
mization problem to maximize the number of vehicles
processed by a network by identifying values for the
green times (Girianna and Benekohal, 2004). In the
traffic model that follows, model input parameters in-
clude the network inflows, lengths of the streets of the
network, saturation flow rates, number of lanes, per-
centages of left and right turning traffic, vehicle accel-
eration/deceleration, starting and stopping shockwave
speeds, speed limits, the effective vehicle length, and
green times. The decision variables are the green times
throughout the traffic network. The model calculates
the departure rates, queue lengths, and arrival rates at
the intersections to calculate the value of the objective
function:
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G = (N, L, P) denotes a traffic sig-
nal network

N = set of signals

L = set of diredgional streets
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@' = sample time interval (say 2, 3,

4, or 5 or more seconds)
H = total phase number
d; j = distance from signal i to j
dmax = the length of the longest street
in the network
gjr(k) = the green time of signal j at
cycle k serving movements in
loop r
qlhj(k) = number of vehicles in queue
approaching signal j coming
from signal i at the beginning
of the downstream coordi-
nated green phase /x in cycle
k. The star (x) indicates a co-
ordinated phase qma"_ i i/ Loen
q"";; = maximum queue p0551ble be-
tween signal i and j
8i,j(k) = non-negative disutility factor
for cycle k between signals i
and j whose values are de-
termined based on the queue
management strategy
¢>lh’]‘ (k) = offset between signal i and j
v;,; = speed of a released platoon
l,en = average length of vehicles
A = starting shock wave speed
g (k) = effective green time at signal i
8gmax = Mmaximum bound of the green
time
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8min = minimum bound of the green

time

Bi.j(k) = time it takes for a stopping
shock wave to propagate up-
stream

C;(m) = length of mth cycle

N(r) =set of nodes on loop reR
(number of loop in the net-
work)

F(r) =set of nodes where traffic
moves in the same direction as
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R(r) =set of nodes where traffic
moves in a different direction
to that of the loop

= lost green time
D};(t) =inflow, arrival and depar-
ture flows of phase /& over
[tAT, (t + 1)AT)]
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oordinated taking into account the distance be-
tween the signals, released platoon speed, platoon dis-
persion, and time required for the queue to dissipate.
As it is not possible to coordinate all the phases, only

the phase which controls the coordinated movement in
both the signals is coordinated. Equation (2) enforces a
coordinated offset between signal i and j. De facto red
exists when the queue in the downstream is long enough
to stop traffic from the upstream from entering it even
though the signal is green. To avoid this, the effective
green time of the upstream signal should be less than
the sum of the effective green time for the coordinate
downstream signal, the offset between two signals,

the time it takes for a stopping shock wave to mo
stream. Equation (3) is 1ntr0§ced to aV01d de c

Equation (4) is needed to ce that
sets and green times a u i any)loop of
equal to an 1nteger of the cycle'
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isa large

ordination model identifies optimal sig-

e entire period of oversaturation. This
inatorial optimization problem and can-
tly solved using traditional calculus-based

notb
t10n techniques; heuristic approaches can be ef-
& applied to find nearly global-optimal solutions.

ersio®factor em- @
wed (0.5) o
eof are k

ollowing sections describe two heuristics, ACO
GA, as they are applied to solve the problem.

4 ANT COLONY OPTIMIZATION

ACO is an optimization technique inspired from the
natural behavior of ants (Colorni et al., 1991; Dorigo
and Thomas, 2004) and is one of the most successful
techniques of the field of swarm intelligence. ACO was
developed as a heuristic method to identify efficient
paths through a graph and has been successfully applied
to identify optimal solutions for discrete problem rep-
resentations. For solution of continuous problems, vari-
ables are divided into increments, based on the amount
of accuracy required, and nodes are represented at each
increment. A population of computational ants is initial-
ized, and each computational ant selects a “path” and
passes through one node for every variable. The length
of a path represents the value of the objective function,
and over a set of successive iterations or ant generations
respectively, highly fit paths emerge and the objective
function value is minimized.

The mechanism that natural ants use to find the short-
est path from a food source to the colony is to deposit
pheromone on path segments. Pheromone evaporates
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over time, so that the edges and emergent trails with time at that intersection and cycle would be (20 —
the highest concentration of pheromone will be iden- 5) + (6%5) = 45 seconds, using an interval size of 5
tified by other ants and reinforced (Bonabeau et al, seconds.

2000). The fitness function of any path is used to de- The Lagrangian relaxation technique is used to en-
termine the amount of artificial pheromone that will be sure that Equations (2)—(5) are not violated. A penalty
deposited at each edge of the ant’s tour. Ants are at- function approach transforms the constrained signal co-
tracted to edges with higher concentrations of the chem- ordination problem to an unconstrained problem by
ical, and adding pheromone to the track is analogous to adding a penalty to the objective function based on the
increasing the probability that the next ant would se- constraint violations. The ACO approach can solve an @
lect that edge for its path. Edges that result in better fit- unconstrained formulation. The fitness value of a solu,
ness functions are reinforced in the same way that paths tion is defined as follows (adapted¥rom Girianna CO
from the ant colony to the food source are reinforced Benekohal, 2004):

in the natural system. There is a possibility, however,

that early in the search, some suboptimal paths may be o~

generated. The chances of these paths being reinforced fitness = Coi M’ 11)
may be high because of their early creation and initial

deposit of pheromone. To avoid the survival of subopti- where p; is a penalty coefticient for 1nt], m is the
mal paths, an evaporation function allows pheromones number of ifiglicit cOfiStraints, an enotes j’s con-
to evaporate at a constant rate. Pheromone concentra- straint fun, nequahty angf 3 y). The fitness,
tions decrease on edges that are selected infrequently, which is a S to thes® & hepath to be trav-
and the paths will be lost over successive iterations of eledb IS mini # itpess values need always
the algorithm. This enables optimum edges to domi- be " r ACO appligation, as the pheromone cal-
nate the set of edges that are chosen by different ants to epends the ness values, and negative
form paths through the network of potential nodes. Due

s of phergm cannot be placed on nodes. Cpin
to the stochastic nature of the algorithm, however, theK S dn input coe that is introduced to avoid the

search can continue to explore new sections of the degi negative values I e fitness, which may result when

sion space, avoiding local optima, as an edge with a% the consifaytts are significantly violated and the vio-

pheromone concentration may be randomly latlon ater than the number of vehicles that

occasion. d in the network. The constraint in Equa-
The variables used in the signal timing_problé& Q& not active if a coordinated signal is an open-

green times, and Equations (7)- (9) he trafﬁc, stem, that is, when multiple coordinated arterials

flows and queues for a given set of s. The a s a single coordinated arterial. The final objective

gorithm chooses green times wit range of t unctlon is

allowed (specified in Equatlon @' minimu

maximum values of the e spemﬁed% Min Cpin — |:Z Z Z di.j Dh (k)

user, and the algorith ¢ te k GjeL h

number of nodes sepangt ides « 0
the green times into@ the in- 33 6k max
- i, j hise
terval size (ap i ini ! 4iv; (k) = Gmax

) and ini- % Gielp

tializes ants, w select one no er variable and <
form a path. Antsfghoose ngles MobabBilistically, based dij (Vi + Mlen o
: e Y (el - R 2Tk e (k)
on the amount of pheromonRg ach node. Higher con- k(bpeLy Vi Vi jA
centrations of the pherowgo a node result in a
higher probability t de will be chosen as part 0
of the solution. Figure Wrepresents graphically the se- k(:%L Max o (k) — (g; (k) + ¢ j (k) + B, (k)
lection of nod¢S byene ant to calculate the value of the pew
correspondin dlive function. The value of a deci- P 0
sion var, et n.nned as ' — s Z max| . dy (12)
lgmin — interval size) kG el i, Loon
+ (node number * interval size) (10)
where gunin is the minimum value for the green time, The ACO algorithm can be stopped based on the per-
and g is the value of the decision variable. For exam- ceived goodness of the objective function value or on

ple, if node 6 were selected, the value of the green the convergence of the mean of the current population
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of ants and the best fitness value. To facilitate compari-
son with the GA approach for this study, the maximum
number of trials was predetermined by the user.

5 GENETIC ALGORITH

The GA is a search technique based onWie mechamcs

of gener

one nearly optimal solution

or iterations, of the algori t m For the bina

is used here, decision va ke on V%
|

of natural selection and genetlcs oldbete, 1989
population of solutions is 1n1t d converge

or one, and are re ¢ genesﬁ 1V1dual
solution. The fitn %oluﬂo 0 d as the
objective functi h genef@ s€lection op-
erator ensures at hlghly t solt g survive in the
populati less fi

erators ar
SUI'VlVlllg S

lect two 1nd1v1dua

that onld

operat d) some fit individuals found in the previ-
§ survive without modification. To escape

DOPR O
% ma, a mutation operation is applied. The muta-
iomgperator goes through all the bits in all the genes of

the population and modifies a particular bit with a mu-
tation probability p,,. In the binary GA, the mutation
operator changes a zero present in the binary string to
a one, or vice versa, with a mutation probability of p,,.

pplied to randomly se-
ing pool, bifurcating them
wapping the string of deci-
and creating new individuals. A
plied to the crossover operation so

C) p
Fig. 1. One-way traffic networ @ ignals. @
€

xt gener e GA, the same processes of

d mutation are repeated.

ction, crossgver,
0 For apply1 the GA, the constrained signal coordi-

nation p transformed into an unconstrained
problem @‘somatmg a penalty with all constraint
asgupta and Michalewich, 1997), iden-
A@the ACO approach, and the fitness func-
minimized. The number of green time val-
can be calculated as (gmax—gmin)/interval size.
s can be set equal to 2¢ and d can be computed

as 1ogr((gmax—gmin)/interval size). In our case, each
solution is represented using a four-bit binary string,
which can take on a value between 0 and 15, inclusive.

Green time is calculated using Equation (13) (Girianna
and Benekohal, 2004).

8§ = gmin + (—gm;’;__gl‘“i“) DV (13)

where DV is the decoded value of the four-bit string.

For example, for a binary string, 1101, the decoded
value of the string is (1)(2*)+(1)(22)+(0)(21)+(1)(2°) =
8 + 4 + 0 + 1 = 13. The corresponding green time is
20+(80 — 20/24—~1)13 = 72 seconds. The fitness of a so-
lution is represented using Equation (12), and the total
number of generations is specified as the stopping crite-
ria for the GA.

6 MODEL DESCRIPTION

Two model networks have been used for testing ACO
versus GA performance. Model I is taken from Giri-
anna and Benekohal (2002a), and model II has been
chosen to be sufficiently complex to represent a real
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Fig. 2. One-way traffic network with 20 signals.

situation, but is small enough to allow thorough analysis
for several search configurations with limited computing
power available. Preliminary trials for parameter cali-
bration identified reasonable settings for the crossover
rate and the evaporation constant at 0.8 and 0.8, respec-
tively, and Gaussian mutation was used. The values of

mo

1 sons:
W1, 2, 43, Which are the weights applied to the different ¢ network j
constraint violations in Equation (12), are set at 1,800,& treets are of

1,800, and 1, respectively, as selected by Girianna
Benekohal (2004).
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6.1 Model I

Solution of model I was demonstrate@

15; westbound from 1
from 16 to 1, 18 to
2to17and 4 t

rial from 20 to 5 tite east—west r@aning arterials are

coordinated. The§hick lin joure’ 2 represent the
coordinated movements,
The northbound arter1 ignal 20 to 5 and the

westbound arterial 110 to signal 6 have flow
rates of 2,000 vehicles Pgr hour per lane (vphpl). The
westbound arg€ om 20 to 16 and the eastbound ar-
terials have f s of 1,800 vphpl. The northbound
6 and 18 and the southbound ar-

seconds, the minimum green time, 20 seconds, and the
lost green time is 5 seconds. The speed limit, or de-
sired speed, is 40 ft/s (43.89 km/h). The vehicle deceler-
ation/acceleration is 4 ft/s2. The saturation flow is 1,800
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vphpl. Initial queues at all the approaches are 20 vehi-
cles per lane, and there are two arterial lanes. The ef-
fective vehicle length is 25 ft. The starting shock wave
speed is 16 ft/s (17.56 km/h). The stopping shock wave
speed is 14 ft/s (15.36 km/h). Flows and queues are eval-
uated at a sample time (AT) of 5 seconds. The total du-
ration of oversaturation is assumed to be 15 minutes. It
is assumed that §;; (k) = 1for (i, j)) e L , and k € K. All
parameters are adopted from Girianna and Benekohal
(2004) to allow a direct comparison.
As the green time range is divid
seconds, the number of interval
number of nodes is 13. In a
time is divided into 13 nod

green times have t @ 2eS).
network of the

6.2 Model I
A model o owntown tra i
City of F th wa !I £ monstrate the al-

gl traffic network. This

into intervals 0
—20)/5 Th
fa$hion, cagiigr

¢l

©

left turning movements.
ent lengths.
agemial has a different number of lanes.
@fﬁc signal network (shown in Figure 3)
d from the larger network to demonstrate
ion of green times. Initial queue lengths were

e Fach

A
was
QD

i
L N % * % ymed to be two vehicles per lane at the start of the
by @ifianna an efiod of oversaturation. The volumes for the network

re as follows: 186 vehicles per hour on the eastbound
arterial from signal 1 to 4; 177 vehicles per hour on the
westbound arterial from signal 8 to 5; 103 vehicles per
hour on the eastbound arterial from signal 9 to 12; 242
vehicles per hour on the westbound arterial from signal
16 to 13; 11 vehicles per hour on the northbound arterial
from signal 1 to 13; 61 vehicles per hour on the south-
bound arterial from signal 2 to 14; 157 vehicles per hour
on the southbound arterial from signal 3 to 15; 416 vehi-
cles on the northbound arterial from signal 16 to 4. The
maximum green time allowed for all the signals is 80
seconds and the minimum is 20 seconds. The lost green
time is 5 seconds. The number of arterial lanes is based
on the data describing the network. The speed limit, or
desired speed, is 40 ft/s (43.89 km/h), and vehicle de-
celeration/acceleration is 4 ft/s?. The saturation flow is
1,800 vphpl. The effective vehicle length is 25 ft. The
starting shock wave speed is 16 ft/s (17.56 km/h), and
the stopping shock wave speed is 14 ft/s (15.36 km/h).
Flows and queues are evaluated at a sample time (AT)
of 5 seconds, and the total duration of oversaturation
is 15 minutes. Under the existing conditions, the actual
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data for peak hour volumes does not restf in oversatu-

economic development in thgpdo n Fort
area that would increase cQ tion. To a i

a
and simulate future cond increase % n-
gestion, the curren °re multipli actor

of 10. \
07 RESMLTS 3
71 Modeli

For model I, the @ GA were each executed
for 30 trials. A s8§ O als using random starting
seeds is used robustness of the algorithms,
as both al employ stochastic operators. The

fied by ACO show less variability in objective function
values.

As the objective function represents several differ-
ent terms to describe different characteristics of the

Black lines indicagion of network in oversaturated conditions

Fig. 3. Downtown network of the City of Fort Wor &d
thatis c ted using the @approach.
e
owing figures. Figure 5 plots the number of cars

ration. The network was studied for analy8is of future
conditions resulting from add@o%anizatioa a Q
W. 1

rk performance, the terms are separated in the

processed in the network (first term of Equation (1));
Figure 6, the ideal offset (Equation (2)) associated with
the solutions; and Figure 7, the de facto red time (Equa-
tion (3)). For all solutions identified by both algorithms,
the queue storage capacity constraint (Equation (5))
is satisfied; the penalty is equal to zero. These fig-
ures demonstrate that the number of vehicles that pass
through the network does not significantly improve as
more fit solutions are identified through higher levels of
computing (Figure 5). Instead, the ideal offset is more
dramatically decreased (Figure 6). The ideal offset is
shown in units of seconds+seconds, representing the de-
viation from the ideal offset over all intersections in the
network. The average ideal offset can be calculated to
roughly represent the deviation from the ideal offset at
each intersection and at each cycle, as shown in Fig-
ure 8. By allowing more computational time for the al-
gorithm to converge through increasing the trials and
number of ants for the ACO and the number of genera-
tions and population size for the GA, the average ideal
offset is decreased from approximately 3 to 2 seconds
for the ACO, and the GA is not able to minimize the
offset to the same degree. The results demonstrate that
the GA identifies solutions that process a larger number
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GA have high values for de facto red times, while the
solutions identified by ACO have de facto red times of
zero (Figure 7).
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7.2 Model IT

The results for model II demonstrate a slightly different
comparison between GA and ACO approaches (Fig-
ures 8-12). The box plots comparing the objective func-
tions (Equation (12)) of the best solutions found us-
ing ACO and GA with different settings are shown in
Figure 9. For this network, the GA identifies more fit
solutions for a lower number of solution evaluations.
For the highest settings, however, of 500 ants/500 trials
for ACO and 500 population size/500 generations for
the GA, ACO identifies better solutions than the GA.
Similar to model I, the total departure flows do not
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improve with impr ss values (Figure 9), but for
ACO, the idea proves dramatically when more
computational poWger is allowed for the ACO algorithm

0 e average ideal offset is decreased from
@l second as the number of ants and trials
is aSedsf6r the ACO methodology; for the GA, the

deal offset is improved only when the settings
are'Qhafiged to a population of 500 and 500 generations.
GA identifies solutions that show considerable variabil-
ity in the ideal offset and some variability in the total
departure flows, but routinely identifies solutions with
minimal de facto red time (Figure 11) and queue stor-
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& red constraints processed (Equation (4)) using (a) ACO and (b) GA for model I.

age time (Figure 12). ACO, on the other hand, identifies
solutions with variability in the queues storage time and
de facto red time, but minimal values for the ideal offset
and less variability in the total departure flows.

7.3 Pairwise comparison

To provide a second statistical comparison between
ACO and GA, a set of hypothesis tests are con-
ducted (Milton and Arnold, 1995). The performance
measures that are compared are the best objective
function from a GA trial, specified as Y;, and the best
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objective function fr O trial, labeled Y; where 2
i =1t n, and n e number of trials, equal to Z [2 = Z(n)]
30. Let the p@®mmance difference, Z; = Y; — Y. $?(n) = 1—1 (15)
The followin @ ons which represent the mean and -
the quasgi Mgesfespectively are used to conduct the
analys The 1—« confidence interval of the true mean of Z is
contained in the interval
>4 ()

Zn) = ~—— (14) Z(n) % ty_1.1-ap2 (16)



Comparing ant colony optimization and genetic algorithm approaches 25

x10

. [N w »
o M e w o s~ o

Ideal Offset constraint (sec*sec)

-

%%%

150/150 200/200 300/300 500/500
Ants/Trials

(a)

o
&)

Fig. 10. Box plots of ideal offset constraints (Equation (2

6000

5000(

N
o
o
o

De Facto Red (sec)
1]
8

n
o
o
o

O, ad, similarly, the number of genera-
us to the number of trials. The two algo-

of ants |
3 O
@ ed for 30 trials for each case of the same

tions is

ber of trials. The cases considered are listed in
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per and lower limits of Z;, the fitness function of ACO
is greater than the fitness function of GA with a confi-
dence interval of 95% (« = 0.1), indicating that the GA
approach performs better for the minimization prob-
lem. Similarly, if the upper and lower limits are nega-
tive, then the objective function value of the best solu-
tion identified using the GA is greater than the fitness
function identified using ACO with a confidence inter-
val of 95%; in this case, ACO outperforms the GA.
From Table 1, it is observed that the fitness function
improves (decreases) with more executions, and using
500 ants and 500 trials produces the best results. GA
performs better than ACO for the settings with the least
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Table 1

Comparison of ACO and GA@ 1
LL UL

Population/ants Generations/trials Z(n) n Conclusion
400 50 33 x 10° 30 18 42 x 10° GA is better
150 150 —1.9 x 10° 3 10Y - ) -1.7 x 108 ACO is better
200 200 —1.7 x 10° 8.5 x 108 —2. 10° —8.4 x 108 ACO is better
300 300 -1.5 x 1 1.1 x 10" 2.5 x 10° —4.6 x 108 ACO is better
500 500 —43 @ 1.9 x 5.6 x 10° -2.9 x 10° ACO is better
v
« for model 11
Population/ants Generations/trials Z(n) 2(n) LL UL Conclusion
150 150 2.7 x 10° 5.5 x 107 2.5 x 10° 3.0 x 10° GA is better
200 1.7 x% 9%0 4.2 x 10V 1.5 x 10° 1.9 x 10° GA is better
0 4.8 x 1077 2.6 x 108 6.9 x 108 GA is better
30 5.7 x 108 —1.6 x 10° -7.9 x 107 ACO is better

300 %
500

number of execliti®n
tions/trials = 50), and ACO g
settings and returns signif!

e highest number of
500, generations/trials =
ntify increasingly more fit so-

imdle more complicated real world traffic
would require large numbers of simula-
tions to reach convergence.

Table 2 tabulates the same analysis for the
simulation—optimization trials executed for model
II. GA performs better than ACO for all the cases, ex-

cept the settings that employ the highest number of ants
and trials (ants/population = 500, generations/trials =
500). Similar to the results for model I, ACO identifies
consistently better results with increasing number of
executions, as compared to the GA.

8 PARALLEL COMPUTING

Both the GA and ACO approaches require a large
number of simulations, and to employ these approaches
in a real-time manner would require that the solutions
could be executed in a more practical run-time. Giri-
anna and Benekohal (2002b) implemented a parallel
computing approach to reduce the computation time
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for executing the GA to solve the signal timing prob-
lem. In execution of a typical generational GA, all the
individuals in a population should be evaluated before
the next generation of individuals is created using the
crossover and selection operators. For executing the
ACO approach, the ants in each trial and their paths
are independently created based on pheromone levels.
Therefore, the ants can be distributed over to the slave
processors to save time. Future research should investi-
gate a parallel-computing approach for the problem us-
ing the ACO algorithm.

9 CONCLUSION

Major traffic congestion problems occur during oversat-
urated network conditions, when the queues of vehicles
on a receiving street interfere with the performance of
the respective adjacent upstream streets. The need to
solve the problem of signal coordination for oversatu-
rated traffic networks is increasingly significant with in-
creasing urban development. This research tested the
performance of the ACO algorithm to calculate the best

signal timing for a traffic signal network set under o %

saturated conditions, and compared the perfor
with the GA approach. The results generate ‘%
show significantly less variance among a %
trials that use a larger number of mgfel |
Statistical analysis showed that ACO y18
sults when compared to GA for cases th

higher number of model exec
better solutions for the same

d better re-

identified, especially when putatlon

be afforded to search f st poss1b n
and that ACO m altern&tl solving
very complicated proach

demonstrates th
allel computi
reduce t
pared to t
will investi
parallel computin
management of tra
tions.
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