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Abstract: This article proposes to solve the oversatu-
rated network traffic signal coordination problem us-
ing the Ant Colony Optimization (ACO) algorithm. The
traffic networks used are discrete time models which use
green times at all the intersections throughout the consid-
ered period of oversaturation as the decision variables.
The ACO algorithm finds intelligent timing plans which
take care of dissipation of queues and removal of block-
ages as opposed to the sole cost minimization usually per-
formed for undersaturation conditions. Two scenarios
are considered and results are rigorously compared with
solutions obtained using the genetic algorithm (GA), tra-
ditionally employed to solve oversaturated conditions.
ACO is shown to be consistently more effective for a
larger number of trials and to provide more reliable so-
lutions. Further, as a master-slave parallelism is possible
for the nature of ACO algorithm, its implementation is
suggested to reduce the overall execution time allowing
the opportunity to solve real-time signal control systems.

1 INTRODUCTION

Traffic congestion is a daily problem in nearly all ma-
jor cities in the world and continues to increase with
population and economic growth of urban areas. The
increasing traffic demand strains the existing transporta-
tion system, especially when the network is oversatu-
rated during peak hours. Oversaturation occurs when
the queues of vehicles on a receiving street interfere
with the performance of the respective adjacent up-
stream streets, and though these conditions may last for
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only a short time, the time to clear the network may be
significant. Costs of infrastructure renewal and expan-
sion may be cost prohibitive, and, under limited bud-
gets, strategies are needed that enhance the mobility
and efficiency of the existing traffic without investing in
new infrastructure.

To improve the efficiency of a transportation sys-
tem, signal coordination strategies can be designed to
maximize the number of vehicles processed by the net-
work and minimize the travel time of the vehicles in the
system. While significant research efforts have studied
signal coordination for uncongested systems to design
control policies for cost minimization, addressing the
management of oversaturated conditions using similar
approaches has yielded undesirable results. The dissi-
pation of queues and removal of blockages should be
prioritized over the minimization of travel costs (Roess
et al., 1998). Instead, the objective of signal coordina-
tion in oversaturated conditions is to generate a set of
green time durations to maximize the number of ve-
hicles that are released at every signal of the network
during congested phases (Abu-Lebdeh and Benekohal,
1997; Girianna and Benekohal, 2002a). The problem
formulation has been reported in existing literature, but
current algorithms used for problem solution are too
slow or require very high computational power to be
effective in real-time situations. The Ant Colony Op-
timization (ACO) algorithm is a fairly novel technique
for solving computational problems by mimicking the
natural behavior of ants as they generate and select
paths to a food source from a colony (Dorigo and Stuet-
zle, 2004). ACO has been proposed as a viable approach
for stochastic combinatorial optimization (Dorigo et al.,
1996), with successful application to the traveling
salesman problem, the asymmetric traveling salesman
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Comparing ant colony optimization and genetic algorithm approaches 15

problem, the quadratic assignment problem, and the
job–shop scheduling problem. In addition, ACO has
been applied successfully for transportation planning
problems (e.g., Yang et al., 2007; Vitins and Axhausen,
2009). This article describes the development and im-
plementation of an ACO-based approach to solve the
oversaturation traffic network problem and demon-
strates the application of ACO for identifying tim-
ing strategies for two example networks. The solution
performance of ACO is compared to a genetic algo-
rithm (GA) approach, which is the optimization tech-
nique used to solve the oversaturated signal coordina-
tion problem in the existing literature (Girianna and
Benekohal, 2004). The study finds that ACO is able
to outperform the GA for solution of the problem and
may provide a more efficient algorithm architecture for
taking advantage of additional computational resources
through parallel computing.

2 BACKGROUND

Planning signal timing for oversaturated networks
should minimize traffic delays, satisfy constraints on
maximum queue lengths, and allow for time-varying de-
mands. Gazis (1964) and Gazis and Potts (1965) were
the first to systematically address signal timing for over-
saturated conditions through the use of a semigraph-
ical approach, which identifies phase switching poli-
cies to manage queue dispersion and the total delay
in the network by minimizing green time loss during
the oversaturated period (Green, 1968). Michalopoulos
and Stephanopoulos (1977, 1978) developed a two-stage
timing method which identifies the optimal switch-over
point at which the timing strategies for undersaturated
and oversaturated conditions should be interchanged.
This work was extended to identify smoother switching
strategies through modeling the discrete nature of cycles
(Chang and Lin, 2000). The two-stage timing method
was then coupled with TRANSYT-7F in an integrated
approach, where TRANSYT-7F identifies signal tim-
ings for undersaturated intersections, and the two-stage
model, for oversaturated intersections (Chang and Sun,
2004). While these approaches focus on switching be-
tween under- and oversaturated timing strategies, a sec-
ond set of studies focuses on the identification of op-
timal cycle lengths and green times for oversaturated
conditions alone. Lieberman and Chang (2005) used
a mixed-integer linear programming approach for this
problem, and heuristic optimization methods have also
been successfully applied (Saito and Fan, 2000; Varia
and Dhingra, 2004; Sun et al., 2006; Teklu et al., 2007;
Maher, 2008). A GA approach was used to minimize
total delay through identifying phase sequences and

proportions of green times (Foy et al., 1992). GA is a
heuristic search algorithm belonging to a class of al-
gorithms known as evolutionary algorithms (Holland,
1975) that are based loosely on the process of natu-
ral evolution. GAs have been applied in various dis-
ciplines of civil engineering such as construction engi-
neering (Al-Bazi and Dawood, 2010; Cheng and Yan,
2009), transportation engineering (Vlahogianni et al.,
2007; Lee and Wei, 2010), highway engineering (Kang et
al., 2009), design optimization (Adeli and Cheng, 1994a,
1994b; Hung and Adeli, 1994; Adeli and Kumar, 1995a,
1995b; Sarma and Adeli, 2000a, 2000b, 2001, 2002; Kim
and Adeli, 2001; Mathakari et al., 2007), structural con-
trol (Jiang and Adeli, 2008), and environmental pollu-
tion (Martı́nez-Ballesteros et al., 2010). Hadi and Wal-
lace (1993) developed a hybrid approach that couples
a GA with the TRANSYT-7F program. The GA op-
timizes cycle length, phase sequence, and offsets, and
TRANSYT-7F is used to optimize green splits. Park et
al. (1999) developed a GA-based method to identify cy-
cle lengths, green splits, offsets, and phase sequences.
GA was also used in a study performed to capture the
critical operational issues at signalized intersections and
remove the blocking effects of different lane groups in
oversaturated conditions (Liu and Chang, 2011). An-
other signal control methodology is formulated as a
quadratic programming problem to minimize and bal-
ance the link queues, therefore minimizing the risk of
queue spillback (Aboudolas et al., 2010).

To better facilitate the use of a GA-based approach
to control oversaturated conditions, the signal timing
optimization model was reformulated to include in the
objective function the total number of vehicles pro-
cessed by the network during the oversaturated period
(Abu-Lebdeh and Benekohal, 1997, 2000). New models
for estimating the capacities of oversaturated arterials
were developed based on the capacities of individual in-
tersections, vehicle queue lengths, and offsets. The GA
was applied to coordinate signals to maximize through-
put, and results demonstrated a control strategy that
avoided queue spillback and de facto red. This strategy
was extended to coordinate oversaturated signals along
an arterial that crosses multiple, parallel coordinated ar-
terials (Girianna and Benekohal, 2002a, 2004). The re-
search presented here utilizes this new objective func-
tion and compares the use of ACO to the performance
of the previously reported GA-based approach.

3 PROBLEM FORMULATION

In managing oversaturated networks, traditional poli-
cies such as cost minimization are secondary to the
removal of queues and blockages and the number of
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16 Putha, Quadrifoglio & Zechman

vehicles processed by the network. The traffic signal
design problem for oversaturated conditions has been
effectively formulated as a constrained dynamic opti-
mization problem to maximize the number of vehicles
processed by a network by identifying values for the
green times (Girianna and Benekohal, 2004). In the
traffic model that follows, model input parameters in-
clude the network inflows, lengths of the streets of the
network, saturation flow rates, number of lanes, per-
centages of left and right turning traffic, vehicle accel-
eration/deceleration, starting and stopping shockwave
speeds, speed limits, the effective vehicle length, and
green times. The decision variables are the green times
throughout the traffic network. The model calculates
the departure rates, queue lengths, and arrival rates at
the intersections to calculate the value of the objective
function:

Max Y =
T∑
t

∑
(i, j)∈L

H∑
h

di, j

dmax
Dh

i, j (t)

−
K∑
k

∑
(i, j)∈Lp

δi, j (k) max

⎛
⎝ 0

qh∗
i, j (k) − qmax

i, j

⎞
⎠
(1)

φh∗
i, j (k) = di, j

vi, j
−

(
(vi, j + λ)lveh

vi, jλ

)
qh∗

i, j (k)

∀(i, j) ∈ Lp, k = 1, . . . , K (2)

gh∗
i (k) ≤ gh∗

j (k) + φh∗
i, j (k) + βi, j (k)

∀(i, j) ∈ Lp, k = 1, . . . , K (3)

∑
(i, j)∈F(r)

φi, j (k) −
∑

(i, j)∈R(r)

φi, j (k) +
∑

j∈N(r)

(g j,r (k) + �)

=
k+nk∑

m=k, j∈N(r)

Cj (m) ∀r ∈ R, k = 1, . . . , K (4)

qh
i, j (t) ≤ di, j

lveh
∀h ∈ H, ∀(i, j) ∈ Ls, t = 1, . . . , T

(5)

gmin ≤ gh
j (k) ≤ gmax ∀ j ∈ N,

∀h ∈ H, k = 1, . . . , K (6)

Ih
i, j (t) =

∑
p∈Uh,b∈Bi

θb,i Dp
b,i (t) ∀h ∈ H, t = 1, . . . , T

(7)

Ah
i, j (t) = Fθi, j Ih

i, j (t − τi, j ) + (1 − F)Ah
i, j (t − 1)

∀h ∈ H, ∀(i, j) ∈ L, t = 1, . . . , T (8)

Dh
i, j (t) = min

⎛
⎝ ch

j (t)�T

Ah
i, j (t)�T + qh

i, j (t − 1)

⎞
⎠

∀h ∈ H, ∀(i, j) ∈ L, t = 1, . . . , T
(9)

where

G = (N, L, P) denotes a traffic sig-
nal network

N = set of signals
L = set of directional streets
P = set of coordinated paths pij

starting form signal i to signal
j

Np = set of signals on the coordi-
nated paths

Lp = set of streets along coordi-
nated paths

K = period of oversaturation in a
cycle number

T = period of oversaturation in a
sample time

t = 1, 2, . . . , T is a discrete time in-
dex

�T = sample time interval (say 2, 3,
4, or 5 or more seconds)

H = total phase number
di, j = distance from signal i to j

dmax = the length of the longest street
in the network

gj,r(k) = the green time of signal j at
cycle k serving movements in
loop r

qh∗
i, j (k) = number of vehicles in queue

approaching signal j coming
from signal i at the beginning
of the downstream coordi-
nated green phase h∗ in cycle
k. The star (∗) indicates a co-
ordinated phase qmax

i, j =di, j/ lveh

qmax
i,j = maximum queue possible be-

tween signal i and j
δi, j (k) = non-negative disutility factor

for cycle k between signals i
and j whose values are de-
termined based on the queue
management strategy

φh∗
i, j (k) = offset between signal i and j

vi, j = speed of a released platoon
lveh = average length of vehicles

λ = starting shock wave speed
gh∗

i (k) = effective green time at signal i
gmax = maximum bound of the green

time
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Comparing ant colony optimization and genetic algorithm approaches 17

gmin = minimum bound of the green
time

βi, j (k) = time it takes for a stopping
shock wave to propagate up-
stream

Cj (m) = length of mth cycle
N(r) = set of nodes on loop r∈R

(number of loop in the net-
work)

F(r) = set of nodes where traffic
moves in the same direction as
the loop

R(r) = set of nodes where traffic
moves in a different direction
to that of the loop

� = lost green time
Ih
i, j (t), Ah

i, j (t), Dh
i, j (t) = inflow, arrival and depar-

ture flows of phase h over
[t�T, (t + 1)�T]

Uh = set of phases at the upstream
signal that feeds traffic for
phase h of the downstream sig-
nal

b ∈ Bi = set of upstream intersections
connected to intersection i

θb,i = percentage of the departed
traffic volume of upstream
streets (b, i) that enters road
section (i, j)

γ = platoon dispersion factor em-
pirically derived (0.5)

τi, j = cruise travel time of a released
platoon factored by 0.8

F = smoothing factor = 1
(1+(γ )(τi, j ))

ch
j (t) = capacity during effective green

interval

The objective function (Equation (1)) is composed of
two terms: the total number of vehicles processed by
the network throughout the oversaturation period and
a disutility function. The number of vehicles processed
at each cycle is weighted by the ratio of the length of
the road segment between an upstream and a down-
stream intersection to the length of the longest street
in the network, and the sum of these values over all sig-
nals in the network serves as the first term. The disutil-
ity function penalizes the occurrence of queues at the
end of the green time along coordinated arterials. Off-
set is defined as the time difference between the green
time initiations of two adjacent signals. The offsets need
to be coordinated taking into account the distance be-
tween the signals, released platoon speed, platoon dis-
persion, and time required for the queue to dissipate.
As it is not possible to coordinate all the phases, only

the phase which controls the coordinated movement in
both the signals is coordinated. Equation (2) enforces a
coordinated offset between signal i and j. De facto red
exists when the queue in the downstream is long enough
to stop traffic from the upstream from entering it even
though the signal is green. To avoid this, the effective
green time of the upstream signal should be less than
the sum of the effective green time for the coordinated
downstream signal, the offset between two signals, and
the time it takes for a stopping shock wave to move up-
stream. Equation (3) is introduced to avoid de facto red.
Equation (4) is needed to enforce that the sum of off-
sets and green times around any loop of the network is
equal to an integer multiple of the cycle time (Gartner,
1972). Equation (5) enforces that the queues in a non-
coordinated arterial should not block the traffic move-
ments of the upstream intersections. Equation (6) fixes
the range of the decision variables, which are the green
times, gh

j (k). The arrival flows in Equation (8) are calcu-
lated using the Robertson’s dispersion model (Robert-
son, 1969). Equations (7)–(9) are the necessary network
flow constraints.

The signal coordination model identifies optimal sig-
nal timings for the entire period of oversaturation. This
is a large combinatorial optimization problem and can-
not be efficiently solved using traditional calculus-based
optimization techniques; heuristic approaches can be ef-
fectively applied to find nearly global-optimal solutions.
The following sections describe two heuristics, ACO
and GA, as they are applied to solve the problem.

4 ANT COLONY OPTIMIZATION

ACO is an optimization technique inspired from the
natural behavior of ants (Colorni et al., 1991; Dorigo
and Thomas, 2004) and is one of the most successful
techniques of the field of swarm intelligence. ACO was
developed as a heuristic method to identify efficient
paths through a graph and has been successfully applied
to identify optimal solutions for discrete problem rep-
resentations. For solution of continuous problems, vari-
ables are divided into increments, based on the amount
of accuracy required, and nodes are represented at each
increment. A population of computational ants is initial-
ized, and each computational ant selects a “path” and
passes through one node for every variable. The length
of a path represents the value of the objective function,
and over a set of successive iterations or ant generations
respectively, highly fit paths emerge and the objective
function value is minimized.

The mechanism that natural ants use to find the short-
est path from a food source to the colony is to deposit
pheromone on path segments. Pheromone evaporates
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18 Putha, Quadrifoglio & Zechman

over time, so that the edges and emergent trails with
the highest concentration of pheromone will be iden-
tified by other ants and reinforced (Bonabeau et al.,
2000). The fitness function of any path is used to de-
termine the amount of artificial pheromone that will be
deposited at each edge of the ant’s tour. Ants are at-
tracted to edges with higher concentrations of the chem-
ical, and adding pheromone to the track is analogous to
increasing the probability that the next ant would se-
lect that edge for its path. Edges that result in better fit-
ness functions are reinforced in the same way that paths
from the ant colony to the food source are reinforced
in the natural system. There is a possibility, however,
that early in the search, some suboptimal paths may be
generated. The chances of these paths being reinforced
may be high because of their early creation and initial
deposit of pheromone. To avoid the survival of subopti-
mal paths, an evaporation function allows pheromones
to evaporate at a constant rate. Pheromone concentra-
tions decrease on edges that are selected infrequently,
and the paths will be lost over successive iterations of
the algorithm. This enables optimum edges to domi-
nate the set of edges that are chosen by different ants to
form paths through the network of potential nodes. Due
to the stochastic nature of the algorithm, however, the
search can continue to explore new sections of the deci-
sion space, avoiding local optima, as an edge with a low
pheromone concentration may be randomly selected on
occasion.

The variables used in the signal timing problem are
green times, and Equations (7)–(9) simulate the traffic
flows and queues for a given set of green times. The al-
gorithm chooses green times within the range of times
allowed (specified in Equation (6)). The minimum and
maximum values of the variables are specified by the
user, and the algorithm divides the range into a finite
number of nodes separated by intervals. ACO divides
the green times into a number of intervals using the in-
terval size (appearing in Equation (10) below) and ini-
tializes ants, which select one node per variable and
form a path. Ants choose nodes probabilistically, based
on the amount of pheromone at each node. Higher con-
centrations of the pheromone on a node result in a
higher probability that the node will be chosen as part
of the solution. Figure 1 represents graphically the se-
lection of nodes by one ant to calculate the value of the
corresponding objective function. The value of a deci-
sion variable is determined as

g = (gmin − interval size)

+ (node number ∗ interval size) (10)

where gmin is the minimum value for the green time,
and g is the value of the decision variable. For exam-
ple, if node 6 were selected, the value of the green

time at that intersection and cycle would be (20 −
5) + (6∗5) = 45 seconds, using an interval size of 5
seconds.

The Lagrangian relaxation technique is used to en-
sure that Equations (2)–(5) are not violated. A penalty
function approach transforms the constrained signal co-
ordination problem to an unconstrained problem by
adding a penalty to the objective function based on the
constraint violations. The ACO approach can solve an
unconstrained formulation. The fitness value of a solu-
tion is defined as follows (adapted from Girianna and
Benekohal, 2004):

fitness = Cmin −
⎛
⎝Z −

m∑
j−1

μ j Hj

⎞
⎠ (11)

where μj is a penalty coefficient for constraint j, m is the
number of implicit constraints, and Hj denotes j’s con-
straint function (inequality and equality). The fitness,
which is analogous to the length of the path to be trav-
eled by the ant, is minimized. Fitness values need always
be positive for ACO application, as the pheromone cal-
culation depends on the fitness values, and negative
amounts of pheromone cannot be placed on nodes. Cmin

is an input coefficient that is introduced to avoid the
negative values for the fitness, which may result when
the constraints are significantly violated and the vio-
lations are greater than the number of vehicles that
are processed in the network. The constraint in Equa-
tion (4) is not active if a coordinated signal is an open-
loop system, that is, when multiple coordinated arterials
cross a single coordinated arterial. The final objective
function is

Min Cmin −
⎡
⎣ K∑

k

∑
(i, j)∈L

H∑
h

di, j

dmax
Dh

i, j (k)

−
K∑
k

∑
(i, j)∈Lp

δi, j (k) max

⎛
⎝ 0

qh∗
i, j (k) − qmax

⎞
⎠

− μ1

K∑
k,(1, j)∈Lp

(
φh

i, j (k) −
(

di, j

vi, j
− (vi, j + λ)lveh

vi, jλ
qh∗

i, j (k)
))2

−μ2

K∑
k,(i, j)∈Lp

max

⎛
⎝ 0

gi (k) − (g j (k) + φi, j (k) + βi, j (k))

⎞
⎠

− μ3

K∑
k,(i, j)∈L

max

⎛
⎜⎜⎝

0

qh
i, j (k) − di, j

lveh

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (12)

The ACO algorithm can be stopped based on the per-
ceived goodness of the objective function value or on
the convergence of the mean of the current population
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Fig. 1. One-way traffic network with 20 signals.

of ants and the best fitness value. To facilitate compari-
son with the GA approach for this study, the maximum
number of trials was predetermined by the user.

5 GENETIC ALGORITHM

The GA is a search technique based on the mechanics
of natural selection and genetics (Goldberg, 1989). A
population of solutions is initialized and converges to
one nearly optimal solution over a set of generations,
or iterations, of the algorithm. For the binary GA that
is used here, decision variables take on values of zero
or one, and are represented as genes in an individual
solution. The fitness of the solution is calculated as the
objective function. At each generation, a selection op-
erator ensures that the highly fit solutions survive in the
population, and the less fit solutions are discarded. Op-
erators are applied to create new solutions based on the
surviving solutions. Crossover is applied to randomly se-
lect two individuals in the mating pool, bifurcating them
at randomly selected sites, swapping the string of deci-
sion variables, or genes, and creating new individuals. A
probability of pc is applied to the crossover operation so
that only a subset of the individuals participate in this
operation, and some fit individuals found in the previ-
ous population survive without modification. To escape
local optima, a mutation operation is applied. The muta-
tion operator goes through all the bits in all the genes of
the population and modifies a particular bit with a mu-
tation probability pm. In the binary GA, the mutation
operator changes a zero present in the binary string to
a one, or vice versa, with a mutation probability of pm.

In the next generation of the GA, the same processes of
selection, crossover, and mutation are repeated.

For applying the GA, the constrained signal coordi-
nation problem is transformed into an unconstrained
problem by associating a penalty with all constraint
violations (Dasgupta and Michalewich, 1997), iden-
tical to the ACO approach, and the fitness func-
tion is minimized. The number of green time val-
ues can be calculated as (gmax−gmin)/interval size.
This can be set equal to 2d and d can be computed
as log2((gmax−gmin)/interval size). In our case, each
solution is represented using a four-bit binary string,
which can take on a value between 0 and 15, inclusive.
Green time is calculated using Equation (13) (Girianna
and Benekohal, 2004).

g = gmin +
(

gmax − gmin

2d − 1

)
DV (13)

where DV is the decoded value of the four-bit string.
For example, for a binary string, 1101, the decoded

value of the string is (1)(23)+(1)(22)+(0)(21)+(1)(20) =
8 + 4 + 0 + 1 = 13. The corresponding green time is
20+(80 − 20/24−1)13 = 72 seconds. The fitness of a so-
lution is represented using Equation (12), and the total
number of generations is specified as the stopping crite-
ria for the GA.

6 MODEL DESCRIPTION

Two model networks have been used for testing ACO
versus GA performance. Model I is taken from Giri-
anna and Benekohal (2002a), and model II has been
chosen to be sufficiently complex to represent a real
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20 Putha, Quadrifoglio & Zechman

Fig. 2. One-way traffic network with 20 signals.

situation, but is small enough to allow thorough analysis
for several search configurations with limited computing
power available. Preliminary trials for parameter cali-
bration identified reasonable settings for the crossover
rate and the evaporation constant at 0.8 and 0.8, respec-
tively, and Gaussian mutation was used. The values of
μ1, μ2, μ3, which are the weights applied to the different
constraint violations in Equation (12), are set at 1,800,
1,800, and 1, respectively, as selected by Girianna and
Benekohal (2004).

6.1 Model I

Solution of model I was demonstrated by Girianna and
Benekohal (2002a). It is a one-way system, shown in
Figure 2. Each signal works on a two-phase plan, and
no turning movements are allowed. The traffic flows in
the system are an eastbound flow from 1 to 5 and 11 to
15; westbound from 10 to 6 and 20 to 16; northbound
from 16 to 1, 18 to 3 and 20 to 5; and southbound from
2 to 17 and 4 to 19. The signals on the northbound arte-
rial from 20 to 5 and the east–west running arterials are
coordinated. The thick lines in Figure 2 represent the
coordinated movements.

The northbound arterial from signal 20 to 5 and the
westbound arterial from signal 10 to signal 6 have flow
rates of 2,000 vehicles per hour per lane (vphpl). The
westbound arterial from 20 to 16 and the eastbound ar-
terials have flow rates of 1,800 vphpl. The northbound
arterials at signals 16 and 18 and the southbound ar-
terials at 2 and 4 have flow rates of 1,500 vphpl. The
maximum green time allowed for all the signals is 80
seconds, the minimum green time, 20 seconds, and the
lost green time is 5 seconds. The speed limit, or de-
sired speed, is 40 ft/s (43.89 km/h). The vehicle deceler-
ation/acceleration is 4 ft/s2. The saturation flow is 1,800

vphpl. Initial queues at all the approaches are 20 vehi-
cles per lane, and there are two arterial lanes. The ef-
fective vehicle length is 25 ft. The starting shock wave
speed is 16 ft/s (17.56 km/h). The stopping shock wave
speed is 14 ft/s (15.36 km/h). Flows and queues are eval-
uated at a sample time (�T) of 5 seconds. The total du-
ration of oversaturation is assumed to be 15 minutes. It
is assumed that δi,j (k) = 1 for (i, j) ∈ L p and k ∈ K. All
parameters are adopted from Girianna and Benekohal
(2004) to allow a direct comparison.

As the green time range is divided into intervals of 5
seconds, the number of intervals is (80 − 20)/5 = 12. The
number of nodes is 13. In a similar fashion, each green
time is divided into 13 nodes (in this case because all the
green times have the same ranges).

6.2 Model II

A model of the downtown traffic signal network of the
City of Fort Worth was used to demonstrate the al-
gorithm in planning for an actual traffic network. This
model is more complicated than model I due to the fol-
lowing reasons:

• The network includes left turning movements.
• Streets are of different lengths.
• Each arterial has a different number of lanes.

A 4 × 4 traffic signal network (shown in Figure 3)
was selected from the larger network to demonstrate
optimization of green times. Initial queue lengths were
assumed to be two vehicles per lane at the start of the
period of oversaturation. The volumes for the network
are as follows: 186 vehicles per hour on the eastbound
arterial from signal 1 to 4; 177 vehicles per hour on the
westbound arterial from signal 8 to 5; 103 vehicles per
hour on the eastbound arterial from signal 9 to 12; 242
vehicles per hour on the westbound arterial from signal
16 to 13; 11 vehicles per hour on the northbound arterial
from signal 1 to 13; 61 vehicles per hour on the south-
bound arterial from signal 2 to 14; 157 vehicles per hour
on the southbound arterial from signal 3 to 15; 416 vehi-
cles on the northbound arterial from signal 16 to 4. The
maximum green time allowed for all the signals is 80
seconds and the minimum is 20 seconds. The lost green
time is 5 seconds. The number of arterial lanes is based
on the data describing the network. The speed limit, or
desired speed, is 40 ft/s (43.89 km/h), and vehicle de-
celeration/acceleration is 4 ft/s2. The saturation flow is
1,800 vphpl. The effective vehicle length is 25 ft. The
starting shock wave speed is 16 ft/s (17.56 km/h), and
the stopping shock wave speed is 14 ft/s (15.36 km/h).
Flows and queues are evaluated at a sample time (�T)
of 5 seconds, and the total duration of oversaturation
is 15 minutes. Under the existing conditions, the actual
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Fig. 3. Downtown network of the City of Fort Worth, TX. Black lines indicate portion of network in oversaturated conditions
that is coordinated using the ACO approach.

data for peak hour volumes does not result in oversatu-
ration. The network was studied for analysis of future
conditions resulting from additional urbanization and
economic development in the downtown Fort Worth
area that would increase congestion. To approximate
and simulate future conditions of increased traffic con-
gestion, the current volumes were multiplied by a factor
of 10.

7 RESULTS

7.1 Model I

For model I, the ACO and GA were each executed
for 30 trials. A set of trials using random starting
seeds is used to test the robustness of the algorithms,
as both algorithms employ stochastic operators. The
box plots comparing the objective functions (Equation
(12)) of the best solutions found using ACO and GA
with different settings are shown in Figure 4. ACO is
able to identify solutions with lower objective functions
than the GA. In addition, the set of solutions identi-
fied by ACO show less variability in objective function
values.

As the objective function represents several differ-
ent terms to describe different characteristics of the

network performance, the terms are separated in the
following figures. Figure 5 plots the number of cars
processed in the network (first term of Equation (1));
Figure 6, the ideal offset (Equation (2)) associated with
the solutions; and Figure 7, the de facto red time (Equa-
tion (3)). For all solutions identified by both algorithms,
the queue storage capacity constraint (Equation (5))
is satisfied; the penalty is equal to zero. These fig-
ures demonstrate that the number of vehicles that pass
through the network does not significantly improve as
more fit solutions are identified through higher levels of
computing (Figure 5). Instead, the ideal offset is more
dramatically decreased (Figure 6). The ideal offset is
shown in units of seconds∗seconds, representing the de-
viation from the ideal offset over all intersections in the
network. The average ideal offset can be calculated to
roughly represent the deviation from the ideal offset at
each intersection and at each cycle, as shown in Fig-
ure 8. By allowing more computational time for the al-
gorithm to converge through increasing the trials and
number of ants for the ACO and the number of genera-
tions and population size for the GA, the average ideal
offset is decreased from approximately 3 to 2 seconds
for the ACO, and the GA is not able to minimize the
offset to the same degree. The results demonstrate that
the GA identifies solutions that process a larger number
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Fig. 4. Box plots of objective function values (Equation (12)) found using (a) ACO and (b) GA for model I.
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Fig. 5. Box plots of total weighted departure flows (first term of Equation (1)) using (a) ACO and (b) GA for model I.

of vehicles than solutions identified using ACO, but the
congestion of the GA solutions is higher, demonstrated
by larger de facto red times and offset values. The GA
has identified local optima, or solutions that have de-
cision variables leading to good fitness values, but with
decision variables that are significantly different from
the solutions with the optimal fitness value. In addition,
the GA returns solutions with significantly more vari-
ability in fitness values. Many solutions identified by the
GA have high values for de facto red times, while the
solutions identified by ACO have de facto red times of
zero (Figure 7).

7.2 Model II

The results for model II demonstrate a slightly different
comparison between GA and ACO approaches (Fig-
ures 8–12). The box plots comparing the objective func-
tions (Equation (12)) of the best solutions found us-
ing ACO and GA with different settings are shown in
Figure 9. For this network, the GA identifies more fit
solutions for a lower number of solution evaluations.
For the highest settings, however, of 500 ants/500 trials
for ACO and 500 population size/500 generations for
the GA, ACO identifies better solutions than the GA.
Similar to model I, the total departure flows do not
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Fig. 6. Box plots of ideal offset constraints (Equation (2)) using (a) ACO and (b) GA for model I.
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Fig. 7. Box plots of de facto red constraints processed (Equation (4)) using (a) ACO and (b) GA for model I.

improve with improved fitness values (Figure 9), but for
ACO, the ideal offset improves dramatically when more
computational power is allowed for the ACO algorithm
(Figure 10). The average ideal offset is decreased from
2 seconds to 1 second as the number of ants and trials
is increased for the ACO methodology; for the GA, the
average ideal offset is improved only when the settings
are changed to a population of 500 and 500 generations.
GA identifies solutions that show considerable variabil-
ity in the ideal offset and some variability in the total
departure flows, but routinely identifies solutions with
minimal de facto red time (Figure 11) and queue stor-

age time (Figure 12). ACO, on the other hand, identifies
solutions with variability in the queues storage time and
de facto red time, but minimal values for the ideal offset
and less variability in the total departure flows.

7.3 Pairwise comparison

To provide a second statistical comparison between
ACO and GA, a set of hypothesis tests are con-
ducted (Milton and Arnold, 1995). The performance
measures that are compared are the best objective
function from a GA trial, specified as Yi, and the best
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Fig. 8. Box plots of objective function values found using (a) ACO and (b) GA for model II.
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Fig. 9. Box plots of total weighted departure flows (first term of Equation (1)) using (a) ACO and (b) GA for model II.

objective function from an ACO trial, labeled Yi′ where
i = 1 to n, and n is the number of trials, equal to
30. Let the performance difference, Zi = Yi – Yi′ .
The following equations which represent the mean and
the quasi-variance respectively are used to conduct the
analysis:

Z(n) =

∑
i

Zi

n
(14)

S2(n) =

∑
i

[Zi − Z(n)]2

n − 1
(15)

The 1−α confidence interval of the true mean of Z is
contained in the interval

Z(n) ± tn−1,1−α/2

√
S2(n)

n
(16)
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Fig. 10. Box plots of ideal offset constraints (Equation (2)) using (a) ACO and (b) GA for model II.
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Fig. 11. Box plots of de facto red constraints using (a) ACO and (b) GA for model II.

One of the systems is statistically better than the other
with 1−α confidence only if the interval in Equation
(16) does not contain zero.

The population size in GA is analogous to the number
of ants in ACO, and, similarly, the number of genera-
tions is analogous to the number of trials. The two algo-
rithms are tested for 30 trials for each case of the same
population size/number of ants and number of genera-
tions/number of trials. The cases considered are listed in
Table 1 for model I and Table 2 for model II. The ob-
jective function values are compared using Equations
(14)–(16), which are used to compute the upper and
lower limits of Zi. For settings that result in positive up-

per and lower limits of Zi, the fitness function of ACO
is greater than the fitness function of GA with a confi-
dence interval of 95% (α = 0.1), indicating that the GA
approach performs better for the minimization prob-
lem. Similarly, if the upper and lower limits are nega-
tive, then the objective function value of the best solu-
tion identified using the GA is greater than the fitness
function identified using ACO with a confidence inter-
val of 95%; in this case, ACO outperforms the GA.

From Table 1, it is observed that the fitness function
improves (decreases) with more executions, and using
500 ants and 500 trials produces the best results. GA
performs better than ACO for the settings with the least
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Fig. 12. Box plots of queue storage capacity constraints using (a) ACO and (b) GA for model II.

Table 1
Comparison of ACO and GA for model I

Population/ants Generations/trials Z(n) n S2(n) LL UL Conclusion

400 50 3.3 × 109 30 9.6 × 1018 2.3 × 109 4.2 × 109 GA is better
150 150 −1.9 × 109 30 3.1 × 1019 −3.6 × 109 −1.7 × 108 ACO is better
200 200 −1.7 × 109 30 8.5 × 1018 −2.7 × 109 −8.4 × 108 ACO is better
300 300 −1.5 × 109 30 1.1 × 1019 −2.5 × 109 −4.6 × 108 ACO is better
500 500 −4.3 × 109 30 1.9 × 1019 −5.6 × 109 −2.9 × 109 ACO is better

Table 2
Comparison of ACO and GA for model II

Population/ants Generations/trials Z(n) n S2(n) LL UL Conclusion

150 150 2.7 × 109 30 5.5 × 1017 2.5 × 109 3.0 × 109 GA is better
200 200 1.7 × 109 30 4.2 × 1017 1.5 × 109 1.9 × 109 GA is better
300 300 4.8 × 108 30 4.8 × 1017 2.6 × 108 6.9 × 108 GA is better
500 500 −8 × 108 30 5.7 × 1018 −1.6 × 109 −7.9 × 107 ACO is better

number of executions (ants/population = 400, genera-
tions/trials = 50), and ACO performs better for all other
settings and returns significantly fitter solutions than
GA for the settings which require the highest number of
executions (ants/population = 500, generations/trials =
500). ACO was able to identify increasingly more fit so-
lutions as the number of executions was increased, while
the GA identified similarly good solutions for all set-
tings (also shown in Figure 5). This suggests that ACO
may better handle more complicated real world traffic
situations that would require large numbers of simula-
tions to reach convergence.

Table 2 tabulates the same analysis for the
simulation–optimization trials executed for model
II. GA performs better than ACO for all the cases, ex-

cept the settings that employ the highest number of ants
and trials (ants/population = 500, generations/trials =
500). Similar to the results for model I, ACO identifies
consistently better results with increasing number of
executions, as compared to the GA.

8 PARALLEL COMPUTING

Both the GA and ACO approaches require a large
number of simulations, and to employ these approaches
in a real-time manner would require that the solutions
could be executed in a more practical run-time. Giri-
anna and Benekohal (2002b) implemented a parallel
computing approach to reduce the computation time
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for executing the GA to solve the signal timing prob-
lem. In execution of a typical generational GA, all the
individuals in a population should be evaluated before
the next generation of individuals is created using the
crossover and selection operators. For executing the
ACO approach, the ants in each trial and their paths
are independently created based on pheromone levels.
Therefore, the ants can be distributed over to the slave
processors to save time. Future research should investi-
gate a parallel-computing approach for the problem us-
ing the ACO algorithm.

9 CONCLUSION

Major traffic congestion problems occur during oversat-
urated network conditions, when the queues of vehicles
on a receiving street interfere with the performance of
the respective adjacent upstream streets. The need to
solve the problem of signal coordination for oversatu-
rated traffic networks is increasingly significant with in-
creasing urban development. This research tested the
performance of the ACO algorithm to calculate the best
signal timing for a traffic signal network set under over-
saturated conditions, and compared the performance
with the GA approach. The results generated by ACO
show significantly less variance among a set of random
trials that use a larger number of model evaluations.
Statistical analysis showed that ACO yielded better re-
sults when compared to GA for cases that utilized a
higher number of model executions. This indicates that
better solutions for the same computational power are
identified, especially when the computational time can
be afforded to search for the best possible solution,
and that ACO may be a good alternative for solving
very complicated networks. Finally, the ACO approach
demonstrates the potential for implementation in a par-
allel computing configuration, which could significantly
reduce the processing time to find solutions when com-
pared to the present processing time. Further research
will investigate the implementation of the ACO in a
parallel computing environment to facilitate real-time
management of traffic networks in oversaturated condi-
tions.
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