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Congestion toll pricing is an inexpensive management way to mitigate the traffic congestion and reduce
the delay in the network. One of the models that were proposed for toll pricing is the minimum toll rev-
enue (MinRev) problem. The objective of this model is to find link-tolls that simultaneously cause users to
efficiently use the network and to minimize the total toll revenues to be collected. Although it can be
written as a linear model, when applied to road networks in practice, this model is difficult to be solved
optimally in a reasonable time, due to its large size. This paper proposes a method to approximately esti-
mate the minimal revenue tolls in large-scale roadway networks. The method was implemented for four
real network ranged from medium to large, and two large random networks. Implementation of this
method indicated that this technique can find an approximate toll vector that is within 0.5% of the opti-
mal solution after just a few seconds. Furthermore, this method allows to perform sensitivity or trade-off
analysis between the total collected tolls, the number of tolled links and the desired network improve-
ment, which could suggest implementing more practically efficient solutions with substantially fewer
tolled links and even quicker solution time at a negligible additional network cost.

� 2017 Elsevier Ltd. All rights reserved.on
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1. Introduction

Nowadays, network congestion has become a crucial problem in
many populous cities. Constructing new roads not only needs a sig-
nificant investment, but also may induce more demand. Therefore,
transportation planners are looking for inexpensive management
ways to mitigate the traffic congestion. As such, toll pricing has
become a subject of interest in many populous cities as a method
to reduce the traffic congestion. The toll pricing problem is origi-
nated from the Wardrop equilibrium principles (Wardrop, 1952)
in traffic assignment: user equilibrium (UE) and system optimum
(SO). Based on the UE principle, network users try to minimize
their own travel time without considering the impact of their deci-
sions on the network. Therefore, their decisions are not necessarily
the best for the network, and the total travel time in user equilib-
rium is more than the one in system optimum. Toll pricing policies
manage to impact the travel cost function in order to change the
equilibrium and improve the network condition.

The minimum toll revenue (MinRev) problem is one of the mod-
els that were proposed for toll pricing (Bergendorff, Hearn, &
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 Ramana, 1997; Hearn & Ramana, 1998). The focus of this paper is

on the application of the MinRev problem in large-scale roadway
networks; however, this model can be applied to other large-
scale networks such as internet and telecommunication as well
(Bai, Hearn, & Lawphongpanich, 2004). The objective of this model
is to find link-tolls that simultaneously cause users to efficiently
use the network and to minimize the total toll revenues to be col-
lected. MinRev tolls are desirable due to their greater stability, sim-
plicity, and perceived equity as well as their lower out-of-pocket
costs (Penchina, 2009). Since its introduction, several researchers
have tried to write different linear formulations for this model,
such as: variational inequality (VI) formulation (Hearn, Yildirim,
Ramana, & Bai, 2001), node-link formulation (Bai et al., 2004)
and path-link formulation (Shirazi & Aashtiani, 2015). However,
regardless of what formulation is used, when applied to road net-
works in practice (i.e.: applied to large-scale roadway networks),
this model is challenging to solve optimally due to its large size.
Therefore, several studies have tried to find an efficient method
to solve this problem in large-scale networks. Below we review a
few of them.

Dial (1999) proposed a fast algorithm to find the minimal tolls
in single-origin networks. Next, in another paper, Dial (2000)
generalized his method to find an approximate solution in
multiple-origin networks. However, this paper did not provide

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.03.008&domain=pdf
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any convergence analysis or large-scale implementations to evalu-
ate the performance of the method in real networks. Later,
Penchina (2004) illustrated that the single-origin algorithm that
was proposed by Dial (1999) can be modified to be used in
single-destination networks as well.

Hearn et al. (2001) used the variational inequality notation of
the MinRev model and a cutting plane method to propose an algo-
rithm to solve the MinRev problem optimally. This method divides
the MinRev problem into a master problem and a subproblem. The
master problem is a linear program (LP) that in each iteration,
based on the subproblem results, some constraints are added to
the model. The subproblem of the method includes solving an
all-or-nothing assignment for each origin-destination (OD) pair of
the network. Implementation of this method to large-scale net-
works can face numerical difficulties (Bai et al., 2004).

Bai et al. (2004) used the node-link notation of the MinRev
model, and the Dantzig-Wolfe (DW) decomposition method to
solve the problem in large-scale networks. Similar to the cutting
plane algorithm, this algorithm also divides the MinRev problem
into two problems, a master problem and a subproblem. However,
in this algorithm, based on subproblem results, some variables are
generated and added to the master problem. The subproblem of
this algorithm includes solving a minimum-cost-network-flow
problem for each origin of the network. It was reported that the
DW decomposition method is an effective method to employ when
it is applied to large-scale networks, when the MinRev model can-
not be solved directly using commercial software, such as CPLEX,
or too much time is required.

Shirazi and Aashtiani (2015) used the path-link notation of the
MinRev model, and a path generation (PG) method to propose an
algorithm for solving the problem optimally in real and large-
scale networks. The PG method has an important advantage over
the link-based methods. In fact, its convergence is significantly
facilitated by using the path information derived from solving
the SO problem, as initial paths for the PGmethod. Implementation
of the PG method to several large-scale networks indicated that
this algorithm has a better performance over the DW decomposi-
tion method and can find the optimal solution of the MinRev prob-
lem after a few iterations and an appropriate CPU time. Therefore,
the PG algorithm is used in this paper as benchmark to evaluate
the performance of our newly proposed method.

In the following sections, we initially define the MinRev model
and provide a brief review of the PG method. Next, our proposed
methodology to estimate the MinRev tolls is described in two
sub-sections. First, a model that would guarantee the system opti-
mum flows in the network is presented; then, the dynamic penalty
function (DPF) method (Shahpar, Aashtiani, & Babazadeh, 2008) is
used to solve this model iteratively and estimate a valid toll vector
(Note: a toll vector that guarantees the SO flows in the network is
referred to as a valid toll vector). This toll vector is then compared
against the optimal MinRev solution for several real and random
networks. Results show that this toll vector is a good estimation
for the MinRev tolls. Lastly, the proposed method is used as a tool
to perform sensitivity analysis to evaluate the effect of the number
of tolled links in the estimated MinRev solution on the network
improvement.
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1 Note: The toll component (ba) is in time unit.
2 Note: The generalized cost of a path involves the costs associated with the

combination of the travel time and toll.

O

2. MinRev model and path-generation method

As noted in Section 1, so far, several notations have been used to
formulate the MinRev problem, such as: VI formulation (Hearn
et al., 2001), node-link formulation (Bai et al., 2004) and path-
link (or path-based) formulation (Shirazi & Aashtiani, 2015). Given
that our proposed method to estimate the minimal revenue tolls is
also a path-based method, in this section we describe the path-

D

based version (Shirazi & Aashtiani, 2015) of the original MinRev
model proposed by Hearn and Ramana (1998).

It is assumed that the OD demand is fixed, network users have
the same value of time, and every road in the network is tollable.
Let the index ‘r’ and index ‘s’, respectively, denote the origin and
the destination of the OD pair (r, s). In addition, Let Krs and A,
respectively, denote the non-empty set of paths between the OD
pair (r, s) and the set of all links in the network. The path-link com-
plementarity formulation of the MinRev problem is given as fol-
lows (Shirazi & Aashtiani, 2015):

min z ¼
X
a2A

ba�xa ð1aÞ

Subject to:

X
a2A

drsakðtað�xaÞ þ baÞ � urs

 !
f rsk ¼ 0 8k 2 Krs; rs ð1bÞ

X
a2A

drsakðtað�xaÞ þ baÞ � urs P 0 8k 2 Krs; rs ð1cÞ

X
k2Krs

f rsk ¼ qrs 8rs ð1dÞ

�xa ¼
X
rs

X
k2Krs

drsakf
rs
k 8a ð1eÞ

f rsk P 0 8k 2 Krs; rs ð1fÞ

ba P 0 8a ð1gÞ
where

qrs = demand between the OD pair (r, s).
�xa = system optimum traffic flow on link ‘a’.
tað�xaÞ = system optimum travel time on link ‘a’.
ba = toll1 on link ‘a’.
f rsk = traffic flow on path ‘k’ between the OD pair (r, s).
urs = least generalized cost2 between the OD pair (r, s).

drsak = indicator that is equal to 1 if link a lies on path k 2 Krs and

0 otherwise.

Model (1) minimizes the total toll revenue, and at the same
time ensures the system optimum flow in the network and satisfies
the equilibrium conditions. With some manipulations in con-
straints (see Shirazi & Aashtiani, 2015), Model (1) can be written
as the following linear model (MinRev-LP), Model (2), that is a
path-based version of the original link-based model proposed by
Hearn and Ramana (1998).

min z ¼
X
a2A

ba�xa ð2aÞ

Subject to:X
a2A

ðtað�xaÞ þ baÞ�xa ¼
X
rs

qrsurs ð2bÞ

X
a2A

drsakðtað�xaÞ þ baÞ � urs P 0 8k 2 Krs; rs ð2cÞ

ba P 0 8a ð2dÞ
In order to solve Model (2), directly, one is required to generate

every possible path that is between each OD pair of the network
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and include them in the model. However, since the number of
paths exponentially increases by increasing the network dimen-
sions, it becomes apparent that it is not practical to count and
include all of them in the model, when the MinRev model is
applied to large-scale networks. In order to overcome this diffi-
culty, the PG algorithm (Shirazi & Aashtiani, 2015) solves the
model iteratively. Beginning with the set of SO positive-flow paths,
in each iteration, a restricted version of Model (2) is solved with a
set of generated paths until constraint (2c) is satisfied for all paths
in the network with an e-accuracy.

3. Dynamic penalty function method

This section documents the proposed methodology. This sec-
tion is divided into two parts. First, a model that would guaran-
tee the system optimum flows in the network is presented. It is
shown that when this model is reconstructed with Kuhn–Tucker
conditions, the generalized cost function of network links would
involve toll components that ensure the SO flows in the net-
work. In the second subsection, the DPF method is used to
solve this model and estimate the tolls (a valid toll vector).
Numerical results show that with a very good precision, the
estimated toll vector is an approximate solution for the MinRev
problem.

3.1. A model to find a valid toll vector

As it was illustrated by Bergendorff et al. (1997), infinite toll
vectors (or to be exact, valid toll vectors) can be found to satisfy
constraints (1b)–(1g) of Model (1) and ensure the SO flows in the
network. In this section, a model is presented to find one of these
toll vectors.

If the SO flows (�xa) were considered as an upper bound to link
flows (xa) in the Beckmann UE model (Beckmann, McGuire, &
Winsten, 1956), the following model would be resulted:

min
X
a2A

Z xa

0
taðwÞdw ð3aÞ

Subject to:X
k2Krs

f rsk ¼ qrs 8rs ð3bÞ

xa ¼
X
rs

X
k2Krs

drsakf
rs
k 8a ð3cÞ

f rsk P 0 8k 2 Krs; rs ð3dÞ

xa
�xa

6 1 8a ð3eÞ

Let ta denote the travel time function. Assuming that ta is pos-
itive, continuous and strictly increasing, Model (3) becomes a con-
vex optimization model. Let urs and va denote the lagrangian
multipliers of Eqs. (3b) and (3e), respectively. The optimal solution
of Model (3) can be characterized by Kuhn–Tucker conditions as
follows:

X
a2A

drsak taðxaÞ þ va

�xa

� �
� urs

 !
f rsk ¼ 0 8k 2 Krs; rs ð4aÞ

X
a2A

drsak taðxaÞ þ va

�xa

� �
� urs P 0 8k 2 Krs; rs ð4bÞ

X
k2Krs

f rsk ¼ qrs 8rs ð4cÞ
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xa ¼
X
rs

X
k2Krs

drsakf
rs
k 8a ð4dÞ

f rsk P 0 8k 2 Krs; rs ð4eÞ

1� xa
�xa

� �
va ¼ 0 8a ð4fÞ

xa
�xa

6 1 8a ð4gÞ

va P 0 8a ð4hÞ
Given the SO principle and its definition, it becomes apparent

that at the optimal solution, constraint (4g) will stop at its upper
bound (xa ¼ �xa). In other words, Model (4) ensures the SO flows
in the network. Besides, if we let ba ¼ va=�xa where ba P 0, it would
become apparent that Eqs. (4a)–(4e) are identical to Eqs. (1b)–(1f).
Therefore, If Model (4) is solved and the toll vector (b) is found,
this toll vector will be a valid toll vector to reach the SO flows
in the network. In the next section, a method is proposed to solve
Model (4).

3.2. Solving the model using the DPF method

The Dynamic Penalty Function (DPF) method has originally
been introduced by Shahpar et al. (2008) to solve traffic assign-
ment problems with side constraints. We use this methodology
to solve Model (4) and estimate a valid toll vector.

Let Paðxa; kaÞ, with ka P 0, be a differentiable, monotone, and
non-negative function. If this function has the following three
properties, it can replace the lagrangian multiplier (va) (Larsson
& Patriksson, 1999; Shahpar et al., 2008) in Model (4).

1. If xa=�xa ¼ 1, Paðxa; kaÞ equals ka.
2. If xa=�xa > 1, Paðxa; kaÞ is sufficiently large.
3. If xa=�xa < 1, Paðxa; kaÞ is sufficiently small.

The dynamic penalty function (DPF) (Shahpar et al., 2008) is a
function that satisfies all these conditions. Eqs. (5) and (6) show
the adopted DPF equation for Model (4) from the one originally
used in Shahpar et al. (2008):

Paðxa; kaÞ ¼ kaw
xa
�xa

� �
8a ð5Þ

where for each q 2 ð0;1Þ, wðyÞ is defined as follows:

wðyÞ ¼
q

2ð1�yÞ y < 1� q
y�1
2q þ 1 y P 1� q

(
ð6Þ

The function w is differentiable, monotone, and non-negative
(Shahpar et al., 2008). Besides, if q! 0, this function will have
all characteristics required to substitute the lagrangian multi-
plier va. For each link ‘a’, the toll function baðxa; kaÞ is defined
as follows:

baðxa; kaÞ ¼
kaw

xa
�xa

� �
�xa

8a ð7Þ

If baðxa; kaÞ is replaced in Model (4) and Eqs. (4f) and (4g) are con-
sidered implicitly, Model (8) will be derived as:

X
a2A

drsakðtaðxaÞ þ baðxa; kaÞÞ � urs

 !
f rsk ¼ 0 8k 2 Krs; rs ð8aÞ

X
a2A

drsakðtaðxaÞ þ baðxa; kaÞÞ � urs P 0 8k 2 Krs; rs ð8bÞ
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X
k2Krs

f rsk ¼ qrs 8rs ð8cÞ

xa ¼
X
rs

X
k2Krs

drsakf
rs
k 8a ð8dÞ

f rsk P 0 8k 2 Krs; rs ð8eÞ
If k is fixed, then, Model (8) would become a traffic assignment

problem with generalized cost function, which can be solved by
Aashtiani’s complementarity algorithm (Aashtiani, 1979;
Aashtiani & Magnanti, 1982; Shahpar et al., 2008). Let us define
the flow on link ‘a’ as:

xaðf Þ ¼
X
rs

X
k2Krs

drsakf
rs
k

and the generalized cost function on path ‘k’ as:

crsk ðf ; kÞ ¼
X
a2A

ðtaðxaðf ÞÞ þ baðxaðf Þ; kaÞÞdrsak

Therefore, the complementarity problem of Model (8) would be
derived as follows:

ðcrsk ðf ; kÞ � ursÞf rsk ¼ 0 8k 2 Krs; rs ð9aÞ

crsk ðf ; kÞ � urs P 0 8k 2 Krs; rs ð9bÞ

f rsk P 0 8k 2 Krs; rs ð9cÞ

X
k2Krs

f rsk � qrs

 !
urs ¼ 0 8rs ð9dÞ

X
k2Krs

f rsk � qrs P 0 8rs ð9eÞ

urs P 0 8rs ð9fÞ
Model (9) is a nonlinear complementarity problem [NCP(k)] and

is too large to be solved directly, when applied to large-scale net-
works. However, Aashtiani (1979) and Aashtiani and Magnanti
(1982) proposed an iterative decomposition and linearization
method to solve the problem iteratively.

In each iteration of the decomposition and linearization algo-
rithm, NCP(k) is decomposed by each OD pair into subproblems
denoted by NCPrs(k). In these subproblems, all components of ‘f ’
are fixed at the current solution except those of f rs ¼ ðf kÞk2Krs

. Since
the number of paths between each OD pair ðr; sÞ is too large to
solve the NCPrs(k) subproblems directly, Aashtiani and Magnanti
(1982) introduced a method to keep only paths that have a positive
flow. These set of paths are referred to as the set of working paths
and are denoted by the variable Kw

rs for each given OD pair ðr; sÞ. The
working paths are gradually updated in each iteration of the algo-
rithm by eliminating those with zero flow and adding the new
shortest path. Let �urs be the cost of the shortest-path for the OD
pair ðr; sÞ. The shortest path will be added to Kw

rs if the following
condition is satisfied. Parameter ec specifies the required accuracy.

mink2Kw
rs
crsk ðf ; kÞ � �urs

�urs
P ec ð10Þ

Although the number of working paths is small, still it is not
efficient to use the general non-linear complementarity algorithms
to solve the model. In order to overcome this difficulty, Aashtiani
(1979) proposed an iterative linearization method. This iterative
linearization method linearizes the model at the current flow (�f Þ
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to reduce the original model to a linear complementarity problem
(LCP). The linearization algorithm continues until following stop
condition is satisfied:

maxk2Kw
rs ;f k>0 crsk ðf ; kÞ � urs

maxk2Kw
rs ;f k>0 crsk ðf ; kÞ

6 ec ð11Þ

Until now, all discussions were under the assumption that k is
known and fixed; however, k is unknown. In order to overcome
this difficulty, NCP(k) can be solved iteratively by updating k in
each iteration. Let kna denote the value of ka in iteration ‘n’ of the
algorithm, in the next iteration, knþ1

a is updated as follows:

knþ1
a ¼ knaw

xna
�xa

� �
8a ð12Þ

In order to solve the traffic assignment problems, the iterative
decomposition and linearization algorithm continues until it
reaches the equilibrium in the network. However, in order to solve
Model (8), this algorithmmust be continued until both equilibrium
and implicit constraint (4g) are satisfied. Let e1 and e2 be two small
positive numbers. Moreover, let Erreq denote the relative-gap error.
The algorithm stops when Eqs. (13) and (14) are satisfied
simultaneously.

Erreq < e1 ð13Þ

max
xa
�xa

� �
< ð1þ e2Þ ð14Þ

It is worth pointing out that having the SO flows as an upper
bound to link flows at initial iterations of this iterative algorithm
may cause a sharp change in DPF and adversely affect the
algorithm convergence. Instead, in order to achieve a better
convergence, the upper bound can be relaxed a little bit in initial
iterations; then, in next iterations, when equilibrium is more
established, upper bounds can get closer to SO flows. For this
purpose, at the iteration ‘n’ of the algorithm, for each link ‘a’, Cn

a

is calculated as shown in Eq. (15) and is used instead of �xa in
DPF.

Cn
a ¼ �xa � 1þ c� q

n

� �
8a ð15Þ

In Eq. (15), the value of c� q represents the relaxation ratio at the
first iteration of the algorithm. Note that such relaxation is also use-
ful to avoid numerical difficulties when the value of �xa is equal to
zero. Taking Eq. (15) into account, Eqs. (7) and (12) are modified
as follows:

baðxa; kaÞ ¼
kaw xa

Cn
a

� �
�xa

8a ð16Þ

knþ1
a ¼ knaw

xna
Cn
a

� �
8a ð17Þ

It is also worth pointing out that, similar to the PG method, in
order to facilitate the convergence of the algorithm, it is recom-
mended to initialize the set of the working paths with the SO
positive-flow paths. The method described above to find a valid toll
vector is referred to as the DPF method in this study. In the next
section, this toll vector is compared with the MinRev optimal solu-
tion. It is shown that the total toll of this toll vector is very close to
the MinRev solution. The detailed steps of the DPF method to find a
valid toll vector are as follows:

Step 1 - Initialization
1.1. Select appropriate values for q, c, e1, e2, ec and vector k1.
1.2. Let n ¼ 1.
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1.3. For each OD pair ðr; sÞ, set the SO positive-flow paths in Kw
rs.

Then, let x1 ¼ �x, find a feasible flow for each path ‘k’ in Kw
rs,

and set its value in f rsk .
1.4. Update the travel time vector (tnÞ, upper bound vector (Cn)

in Eq. (15), and the toll vector (bn) in Eq. (16).

Step 2 - linearization and decomposition (Aashtiani & Magnanti,

1982; Shahpar et al., 2008)
2.1. For each origin ‘r’:

2.1.1. Find the shortest path from origin ‘r’ to all destina-
tions ‘s’ based on (tn þ bnÞ. Let krs be the shortest
path and �urs denote its cost.

2.1.2. For each destination ‘s’:
2.1.2.1. If Eq. (10) is satisfied, set Kw

rs ¼ Kw
rs [ fkrsg

and f krs ¼ 0.

2.1.2.2. Set �f k ¼ f k for k 2 Krs.
2.1.2.3. Linearize NCPrsðknÞ at �f and solve the lin-

earized problem to obtain ðf rs; ursÞ.
2.1.2.4. If Eq. (11) is not satisfied, go to step

(2.1.2.2).

Step 3 - updating
3.1. Update the link flow vector (xnþ1Þ, travel time vector (tnþ1Þ,

upper bound vector (Cnþ1) in Eq. (15), and the toll vector
(bnþ1) in Eq. (16).

3.2. Update knþ1 in Eq. (17).
3.3. Find the relative-gap error.

Step 4 - stopping test

If Eqs. (13) and (14) are satisfied simultaneously, stop the algo-
rithm and introduce bnþ1 as a valid toll vector. Otherwise, Let
n ¼ nþ 1 and go to step 2. na
3 Recall that constraint (4g) was slightly relaxed by e2-accuracy when the DPF
ethod is used (see Eq. (14)). Hence, it is expected that the DPF method could find

better solutions than the MinRev optimal.

o
i
4. Numerical results

This section is divided into two sub-sections. First, the results
from the application of the DPF method to real large-scale net-
works is discussed and compared to the optimal solution. Then,
in the second sub-section, the DPF method is used as a tool to per-
form sensitivity analysis on the number of tolled links in the Min-
Rev solution, and investigate the tradeoff between the total
collected tolls, the number of tolled links and the desired network
improvement.

4.1. Application of the dynamic penalty function method to large-scale
networks

The Sioux Falls, Mashhad, Winnipeg and Chicago Sketch net-
works are used to evaluate the performance of the DPF method
for real networks. The information of these networks is shown in
Table 1. For each network, the total travel time in UE and SO prob-
lems were also calculated and shown in the table. The performance
of the DPF method is compared with the performance of the PG
method (Shirazi & Aashtiani, 2015) and the MinRev optimal solu-
tion. The PG method was used for comparison since not only it per-
forms better than other methods such as DW decomposition when
applied to large-scale networks (Shirazi & Aashtiani, 2015), but
also it has a similar structure as the DPF method (i.e.: both are
path-based methods).

Both algorithms (PG and DPF) were written in VISUAL C++. They
both were implemented on a PC with 2.66 GHz CPU and 4 GB of
RAM. For the PG method, the dual simplex routine of CPLEX (ver-
sion 12) was used to solve the LP problems, and the Bellman
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method (Golden, 1976) to compute the shortest paths. The equilib-
rium accuracy error was set to 0.0001 (e = 0.0001). For the DPF
method, the Lemke algorithm (Lemke, 1965) was used to solve
the LCP problems, and the Bellman method to compute the short-
est paths. The parameters and initial values were set to the follow-
ing values:

q ¼ 0:01

c ¼ 3:0 (Upper bounds were relaxed by 3% at the first iteration)
k1a = �xatð�xaÞ 8a
e1 = 0.0001
e2 = 0.001 (for Sioux Falls) and e2 = 0.01 (other networks)

Table 2 indicates the results of applying the PG and DPF meth-
ods to real networks. As shown in the table, even though the total
toll is not minimized directly when using the DPF method, this
method can have a very good estimation for the MinRev solution,
after just a few CPU seconds. The difference between the value of
the total toll in the DPF solution and the one in the optimal solu-
tion (PG solution) is less than 0.5% for the networks we analyzed.3

In addition, the value of the total travel time in the DPF solution is
just slightly more than the system optimum. Results show that as
the network size increases, the DPF method becomes a more efficient
option to employ. For instance, for the Chicago Sketch network, this
method can find an approximate solution after just 33.81 CPU sec-
onds, that is about 100 times faster than the PG method that finds
the optimal solution. Furthermore, the DPF method is more memory
efficient. Recall that the DPF method only keeps the paths with pos-
itive flows at a time, and discards those with no (or zero) flow;
hence, it needs less memory to preserve the path information. As
shown in the table, the number of paths at the final iteration of
the DPF method is substantially less than the one in the PG method.
Overall, the results show that the DPF method is much faster and
more memory efficient method than the PG method, especially as
the network size increases, and can be used as a heuristic method
to estimate the MinRev tolls in large scale networks.

As discussed in the previous section, two stopping conditions
should be satisfied to terminate the DPF method: (1) the relative
gap error (Eq. (13)) and (2) reaching the SO flows (Eq. (14)). Figs. 1
and 2, respectively, show the relative gap error (Eq. (13)) and the
number of links that did not satisfy the condition that is described
in Eq. (14), at each iteration of the DPF method. Our investigation
on these stopping conditions indicated that the later condition is
much stronger than the former. Hence, the DPF method usually
stops when the later condition is satisfied (i.e.: the relative-gap
error is usually satisfied in earlier iterations of the method). For
instance, for the Winnipeg network, the relative gap error is satis-
fied after 42 iterations, but the algorithm still continues with
another 39 iterations to make sure that the flow on all links falls
below the required accuracy. For having a more efficient imple-
mentation, one may decide to stop the algorithm at iteration 42,
when the relative gap error is satisfied, and ignore the reaming four
links that are still above the required e2-accuracy of SO flows. Even
in this case, the estimated total toll revenue will be equal to
157,034 units of time that is still within the 1% of the optimal total
toll, and a reliable option to be used instead of the optimal solu-
tion. Therefore, as the number of links in the network increases,
it is more efficient to stop the algorithm when a reasonable num-
ber of links satisfy the condition described in Eq. (14), and ignore
the condition for the remaining links. This ‘reasonable’ number of
links can be a parameter discretionarily set by the analyst.
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Table 1
Network information.

Network Nodes Links Zones OD pairs UE travel time SO travel time

Sioux Falls 24 76 24 528 74.80 71.94
Mashhad 917 2526 163 7157 1,417,048 1,386,486
Winnipeg 1067 2836 147 4345 925,828 890,048
Chicago Sketch 933 2950 387 93135 18,935,450 18,518,578

Table 2
Comparing the DPF and PG methods for real networks.

Network Sioux Falls Mashhad Winnipeg Chicago Sketch

Method PG DPF PG DPF PG DPF PG DPF

Number of iterations 2 45 10 49 14 81 7 128
Total toll 20.67 20.59 185617 185596 155652 155031 2794856 2784579
Difference compared to the MinRev optimal total toll Optimal 0.39% Optimal 0.01% Optimal 0.40% Optimal 0.37%
Total travel time 71.94 71.95 1386484 1386524 890048 890063 18518578 18518764
Number of final paths 727 723 16348 10400 17934 6552 176991 114971
CPU time (s) 0.14 0.03 12.12 2.59 38.45 7.12 3288.49 33.81

Fig. 1. Relative-gap error at each iteration of the DPF method.

Fig. 2. The number of links that have a traffic flow that is above the e2-accuracy of the SO solution, at each iteration of the DPF method.
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Two large-scale random networks (Nie, 2010) with a lot of links
were used to (1) further investigate the observation described in
the previous paragraph and (2) evaluate the efficiency of the
method on networks with numerous links. The first one is a
40 � 40 square network and has 1600 nodes, 200 zones, 6240 links
and 39,800 OD pairs. The second is a 50 � 50 square network and
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Fig. 3. Sensitivity analysis for the Mashhad network.
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Fig. 4. Sensitivity analysis for the Winnipeg network.
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has 2500 nodes, 312 zones, 9800 links and 97,032 OD pairs. In this
implementation, the DPF method was set to stop when more than
99% of the links satisfy the condition described in Eq. (14). Table 3
shows the results of the implementations. For both networks, the
DPF method estimates the solution with a very good precision,
even though the second stopping condition was ignored for the
1% of the links; hence, it is reasonable to ignore Eq. (14) for a small
portion of links (say 1%) when we have a network with numerous
links. For the 40 � 40 network, the DPF method finds an approxi-
mate solution for the MinRev problem after 9.6 CPU seconds that
is more than 50 times faster than the PG method. The difference
between the estimated total toll and the optimal one is less than
0.5%. For the 50 � 50 network, the DPF method estimates an
approximate toll vector after 53.4 s that is more than 100 times
faster than the PG method. The difference between the estimated
total toll and the optimal one is less than 0.1% for this network.
Recall that the DPF method is more memory efficient too. This
can be verified by looking at the number of final paths in Table 3.

4.2. Sensitivity analysis on the number of tolled links in MinRev
solution

In Section 4.1, we showed that the DPF method is a fast and
memory efficient method to estimate an approximate solution
for the MinRev model. However, there is one more advantage in
this method. Recall that constraint (3e) in Model (3) was consid-
ered for all links in the network. However, this may not be the most
efficient way for the network, as not all tolled links impact the net-
work the same. In order to have more efficient implementations,
we can consider the SO flows on some selected links, run the
DPF method again and find a toll vector. This would result in hav-
ing fewer tolled-links with SO flows. In this case, even though the
network will not reach the SO solution, it can still be improved to a
good level between the UE and SO solutions. The main justification
for this approach would be practical rather than theoretical and
would suggest to focus on finding an approximate toll vector
within a small percentage of the optimal solution much more
easily and quickly.

In this section, we use this advantage to perform a sensitivity
analysis to analyze the trade-off between the total collected tolls,
the number of tolled links, and the desired network improvement.
The analysis is performed by taking the following two steps. First,
given the approximate (or optimal) MinRev tolls, the network links
are ranked from the ones with the largest to the lowest toll. Then,
the DPF method is run again. However, this time, the SO flow is
considered only for those links with the highest toll values (for
example, only for the top 20% of the links that have the highest
tolls in MinRev solution).

The Mashhad and Winnipeg networks, respectively, have 516
and 615 tolled-links in MinRev optimal solution (PG solution). In
approximate solution (DPF solution), all links will have tolls,
although the value of the toll for most of them is small or negligi-
ble. Therefore, it is worth adopting the approach described above
to find an efficient way to decrease the number of tolled links
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Table 3
Comparing the results of the DPF and PG algorithms for random networks.

Network Random 40

Method PG

Number of iterations 7
Total tolls 10817
Difference compared to the MinRev optimal total toll Optimal
Total travel time 35263
Number of final paths 105468
CPU time (s) 486.4

A
DO
and associated costs. Figs. 3 and 4 show the sensitivity analysis
on MinRev tolled links for the Mashhad and Winnipeg networks,
respectively. As it is indicated in Fig. 3, the Mashhad network can
be improved by 2.16% if a minimal total toll that is equal to
185,617 units of time is collected from 516 tolled links. However,
it is still possible to reduce the number of tolled links to 250 (cut
the number in half) and improve the network by 1.92%. In this case,
the users will be charged for a total toll of 144,997 units of time.
For the Winnipeg network, the analyst can collect a minimal total
toll of 155,652 units of time from 615 tolled links to reach the SO
solution and improve the network by 3.86%. However, Fig. 4 shows
that one can decide to adopt a more efficient approach and
improve the network by 3.56% (only 0.3% less than the optimal
solution) by collecting 147,932 units of time from only 300 tolled
links.
� 40 Random 50 � 50

DPF PG DPF

31 10 62
10765 20462 20442
0.48% Optimal 0.10%
35265 52342 52343
55269 295101 129220
9.6 6109.2 53.4
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Using the analysis described in this section, planners can decide
on different tolling strategies to implement these tolls. Recall that
tolls are in time units. They can be implemented either by charging
equivalent monetary values or by any means that result in chang-
ing the travel time on the roadway, such as alternating the signal
timing or implementing variable speed limits. This analysis can
also be useful in many instances where geography, terrain and
other constraints might in fact limit the potential adoption of tolls
on certain links.

5. Summary and conclusion

This paper proposed a method to estimate (or approximate) the
minimal revenue tolls in large-scale roadway networks. First, a
model was presented to find a toll vector that guarantees the sys-
tem optimum in the network. Next, the dynamic penalty function
algorithm was used to solve the model iteratively. The proposed
method was applied to four real and two random networks.
Numerical results show that this method can find an approximate
solution that is within 0.5% of the optimal solution after just a few
seconds. Hence, this method can be used as a heuristic method to
estimate the MinRev tolls. Not only it is fast, but this method is also
memory efficient. In addition, using this approximate method, one
can consider the system optimum flows as an upper bound to
selected number of links in the network and improve the network
to a level between the UE and SO solutions. Hence, the analyst can
make his decision based on a trade-off between the total collected
tolls, the number of tolled links and the desired network improve-
ment. The sensitivity analysis shows that while reaching the sys-
tem optimum solution with minimal revenue tolls may require
implementing tolls on many network links, one can adopt a solu-
tion still very close to the system optimum but with much fewer
tolled links and smaller total toll. Further research can be done
to compare the results of this analysis with the Minimum Toll
Booth problem (the minimum tolled-links required to have the
SO solution in the network) (Bai, Hearn, & Lawphongpanich,
2010; Hearn & Ramana, 1998). so
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