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1. Introduction

Nowadays, network congestion 2 become a cru’c' b in
many populous cities. Cons ting new roads 4 ‘x S asig-
nificant investment, bufagl induce moi® . Therefore,
transportation plannerg*are leeKing for jnexpe anagement
ways to mitigate t &ﬁ; congestigfi, As such, toll pricing has
become a subjec i
to reduce the

gestio oll prieing problem is origi-
rdrop equilgh inciples (Wardrop, 1952)
ent: user 1B py(UE) and system optimum

nated fr
in trafﬂk
(SO). B the UE etwork users try to minimize
n
0

thei vel time wi idering the impact of their deci-
e network. Therefigre, their decisions are not necessarily
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Congestion toll pricing is an inexpensive maga

the delay in the network. One of the mogd
enue (MinRev) problem. The objective d @

efficiently use the network an,

W Seconds. Fur
al collecte
suggest implem

tall
quicker sc@ at a negligible additional network cost.

aper proposes a method to approximately esti-
orks. The method was implemented for four

dium to large, ang @ arge random networks. Implementation of this
nique can find an Mp#dximate toll vector that is within 0.5% of the opti-

ore, this method allows to perform sensitivity or trade-off
mber of tolled links and the desired network improve-
‘e practically efficient solutions with substantially fewer
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Ramana, 1997; Hearn & Ramana, 1998). The focus of this paper is
on the application of the MinRev problem in large-scale roadway
networks; however, this model can be applied to other large-
scale networks such as internet and telecommunication as well
(Bai, Hearn, & Lawphongpanich, 2004). The objective of this model
is to find link-tolls that simultaneously cause users to efficiently
use the network and to minimize the total toll revenues to be col-
lected. MinRev tolls are desirable due to their greater stability, sim-
plicity, and perceived equity as well as their lower out-of-pocket
costs (Penchina, 2009). Since its introduction, several researchers
have tried to write different linear formulations for this model,
such as: variational inequality (VI) formulation (Hearn, Yildirim,
Ramana, & Bai, 2001), node-link formulation (Bai et al., 2004)
and path-link formulation (Shirazi & Aashtiani, 2015). However,
regardless of what formulation is used, when applied to road net-
works in practice (i.e.: applied to large-scale roadway networks),
this model is challenging to solve optimally due to its large size.
Therefore, several studies have tried to find an efficient method
to solve this problem in large-scale networks. Below we review a
few of them.

Dial (1999) proposed a fast algorithm to find the minimal tolls
in single-origin networks. Next, in another paper, Dial (2000)
generalized his method to find an approximate solution in
multiple-origin networks. However, this paper did not provide
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any convergence analysis or large-scale implementations to evalu-
ate the performance of the method in real networks. Later,
Penchina (2004) illustrated that the single-origin algorithm that
was proposed by Dial (1999) can be modified to be used in
single-destination networks as well.

Hearn et al. (2001) used the variational inequality notation of
the MinRev model and a cutting plane method to propose an algo-
rithm to solve the MinRev problem optimally. This method divides
the MinRev problem into a master problem and a subproblem. The
master problem is a linear program (LP) that in each iteration,
based on the subproblem results, some constraints are added to
the model. The subproblem of the method includes solving an
all-or-nothing assignment for each origin-destination (OD) pair of
the network. Implementation of this method to large-scale net-
works can face numerical difficulties (Bai et al., 2004).

Bai et al. (2004) used the node-link notation of the MinRev
model, and the Dantzig-Wolfe (DW) decomposition method to
solve the problem in large-scale networks. Similar to the cutting
plane algorithm, this algorithm also divides the MinRev problem
into two problems, a master problem and a subproblem. However,
in this algorithm, based on subproblem results, some variables are
generated and added to the master problem. The subproblem of
this algorithm includes solving a minimum-cost-network-flow
problem for each origin of the network. It was reported that the
DW decomposition method is an effective method to employ when
it is applied to large-scale networks, when the MinRev model can-
not be solved directly using commercial software, such as CPLEX,
or too much time is required.

Shirazi and Aashtiani (2015) used the path-link notation of\

MinRev model, and a path generation (PG) method to prop €
algorithm for solving the problem optimally in real @
scale networks. The PG method has an important adv ta over
the link-based methods. In fact, its convergence ificantly

facilitated by using the path information derlv solving
entatlon

the SO problem, as initial paths for the PG met

of the PG method to several large-scale mdlcate%

this algorithm has a better performance rt W decompgs
r

tion method and can find the optimal 'o f the Mi Re
lem after a few iterations and CPU time.
er e

the PG algorithm is used in nchmar
the performance of our newly osed method’ %

In the following sections, we iMigially de x{ model
and provide a brief gevi the PG meth
methodology to estiiha
sub-sections. First,

mum flows in th
function (DPF) @
used t 1

s toll vector is then compared
ution for several real and random
at this toll vector is a good estimation
the proposed method is used as a tool
analysis to evaluate the effect of the number
estimated MinRev solution on the network

2. MinRev'model and path-generation method

As noted in Section 1, so far, several notations have been used to
formulate the MinRev problem, such as: VI formulation (Hearn
et al., 2001), node-link formulation (Bai et al., 2004) and path-
link (or path-based) formulation (Shirazi & Aashtiani, 2015). Given
that our proposed method to estimate the minimal revenue tolls is
also a path-based method, in this section we describe the path-
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based version (Shirazi & Aashtiani, 2015) of the original MinRev
model proposed by Hearn and Ramana (1998).

It is assumed that the OD demand is fixed, network users have
the same value of time, and every road in the network is tollable.
Let the index ‘r’ and index ‘s’, respectively, denote the origin and
the destination of the OD pair (r, s). In addition, Let K;s and A,
respectively, denote the non-empty set of paths between the OD
pair (r, s) and the set of all links in the network. The path-link com-
plementarity formulation of the MinRev problem is given as fol-
lows (Shirazi & Aashtiani, 2015):

min z=">"f.Xa (@
acA O
)+ Ba) — urs)ff =0 VkecKgs,rs 0 (1b)

Subject to:

<Z§uk ta(X

acA

uk(ta (Xo)+ o) —us =0 Vke I(m,r@ (1c)
fi=q (1d)
keK,S
52 (Te)
£0 Vkel & (1f)
B =0 Va (1g)
where

nd between the OD pair (r, s).

Xq stem optimum traffic flow on link ‘a’.
X,) = system optimum travel time on link ‘@’
= toll' on link ‘a’.

f¢ = traffic flow on path ‘k’ between the OD pair (r, s).
u,s = least generalized cost? between the OD pair (r, s).

o, = indicator that is equal to 1 if link a lies on path k € K, and
0 otherwise.

Model (1) minimizes the total toll revenue, and at the same
time ensures the system optimum flow in the network and satisfies
the equilibrium conditions. With some manipulations in con-
straints (see Shirazi & Aashtiani, 2015), Model (1) can be written
as the following linear model (MinRev-LP), Model (2), that is a
path-based version of the original link-based model proposed by
Hearn and Ramana (1998).

minz=" "p.X (2a)
acA

Subject to:

Z(t Xa) + Ba)Xa = ZQrsurs (2b)
acA

> on(ta(Ra) + Bo) — s > 0 Vk € Ky, 5 (20)
acA

Ba =0 Va (2d)

In order to solve Model (2), directly, one is required to generate
every possible path that is between each OD pair of the network

! Note: The toll component (f,) is in time unit.
2 Note: The generalized cost of a path involves the costs associated with the
combination of the travel time and toll.
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and include them in the model. However, since the number of
paths exponentially increases by increasing the network dimen-
sions, it becomes apparent that it is not practical to count and
include all of them in the model, when the MinRev model is
applied to large-scale networks. In order to overcome this diffi-
culty, the PG algorithm (Shirazi & Aashtiani, 2015) solves the
model iteratively. Beginning with the set of SO positive-flow paths,
in each iteration, a restricted version of Model (2) is solved with a
set of generated paths until constraint (2c) is satisfied for all paths
in the network with an ¢-accuracy.

3. Dynamic penalty function method

This section documents the proposed methodology. This sec-
tion is divided into two parts. First, a model that would guaran-
tee the system optimum flows in the network is presented. It is
shown that when this model is reconstructed with Kuhn-Tucker
conditions, the generalized cost function of network links would
involve toll components that ensure the SO flows in the net-
work. In the second subsection, the DPF method is used to
solve this model and estimate the tolls (a valid toll vector).
Numerical results show that with a very good precision, the
estimated toll vector is an approximate solution for the MinRev
problem.

3.1. A model to find a valid toll vector
As it was illustrated by Bergendorff et al. (1997), infinite t

network. In this section, a model is presented to find one
toll vectors.

vectors (or to be exact, valid toll vectors) can be found to satis
constraints (1b)-(1g) of Model (1) and ensure the SO flows in

If the SO flows (X,) were considered as an uppe link
flows (x,) in the Beckmann UE model (Beckman uire, &
Winsten, 1956), the following model would be
minZ/ ﬂta(w)dw

acA /0
Subject to: \
ka ={ss vrs 6(3]3)
keKys \
Xa=Y_> onfi Va \ 6 (3¢)
s keKys
fe=0 Vke K,SO (3d)

nd (3e), respectively. The optimal solution
paracterized by Kuhn-Tucker conditions as
follows;

(Zéfk (ta( + %) - urs> L =0 VkeKyrs (4a)
acA a

> o (ta (Xa) ) —Us =0 VkeKy,rs (4b)
acA Xa

fo = (s vrs (4C)

keKrs
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Xa=Y_> onfe Vva (4d)
s keKrs
fe =0 VkeKsrs (4e)
(1 - ;i> va=0 Va (4f)
1 Va (4g)
a
v, >0 Va

Given the SO principle and its definition, it becomes a

in the network. Besides, if we let 8, = v,/X, where
become apparent that Eqs. (4a)-(4e) are identicg
Therefore, If Model (4) is solved and the toll‘
this toll vector will be a valid toll vectorgfo

in the network. In t

b)-(1f).
is found,
the SO flows

next section, a proposed to solve

Model (4).
3.2. Solvin @1
@mc enalty C (DPF) method has originally
een infroduced by Shahpa®gt al. (2008) to solve traffic assign-
blems withy§ide constraints. We use this methodology
to solve Model (4 timate a valid toll vector.
Let Py(Xa, 2a), > 0, be a differentiable, monotone, and
on negative fun . If this function has the following three
propertle an replace the lagrangian multiplier (z,) (Larsson
& Pa 99 Shahpar et al., 2008) in Model (4).

0, 4a) €quals Ag.
. « > 1, Pa(Xq, /q) is sufficiently large.
If Xq/Xs < 1, Pa(Xq, Aq) is sufficiently small.

The dynamic penalty function (DPF) (Shahpar et al., 2008) is a
function that satisfies all these conditions. Egs. (5) and (6) show
the adopted DPF equation for Model (4) from the one originally
used in Shahpar et al. (2008):

X
Py(Xa, 20) = Aaw(}%’) Va

a

)

where for each p € (0,1), y(y) is defined as follows:

Sl y=1-p

The function ¢ is differentiable, monotone, and non-negative
(Shahpar et al., 2008). Besides, if p — 0, this function will have
all characteristics required to substitute the lagrangian multi-
plier v,. For each link ‘a’, the toll function f,(xq,/,) is defined
as follows:

(6)

Jap (32
Ba(Xa. Za) = ,{(* ) va ™
If B,(Xa, 4q) is replaced in Model (4) and Eqgs. (4f) and (4g) are con-

sidered implicitly, Model (8) will be derived as:

(Za;k ta(Xa) + Ba(Xa, 2a)) — u,s> =0 VkeKg,rs (8a)

acA

> i (ta(Xa) + Bo(Xar Za)) — Uss = 0 Vk € Kis, 5

acA

(8b)
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Zf;s = (s vrs (SC)
keKys
Xa=Y_> onfe Va (8d)
s keKps
T >0 VkeKgrs (8e)

If / is fixed, then, Model (8) would become a traffic assignment
problem with generalized cost function, which can be solved by
Aashtiani’s complementarity algorithm (Aashtiani, 1979;
Aashtiani & Magnanti, 1982; Shahpar et al., 2008). Let us define
the flow on link ‘a’ as:

Xa(f) = Zzézsk K
S keKps

and the generalized cost function on path ‘k’ as:

i (f,2) = Z(ta(xa(f)) + Ba(Xa(f), 4a)) 95

acA

Therefore, the complementarity problem of Model (8) would be
derived as follows:
(CF(f, ) —us)fy =0 Vk €Ky, 1s (9a)

c(f,4) —us 2 0 Vk €Ky, (9b)

)

fe =0 VkeKs,rs

(fo - qrs> Us =0 Vrs

keKys

> fi—qs >0 vrs (9e

)
keKps
Ups = 0 Vrs
Model (9) is a nonlinear co e@ problem [N& d
is too large to be solved dire en applied to lagg®®sc et-
works. However, Aashtiani (1 and Aashtia®j gnanti
(1982) proposed an iterative dé€ompositi iffarization
iteratively.

method to solve thesr
In each iteration @f the, omposition a rization algo-
ﬁposed by e OD pair¥imto subproblems
these su

ms, all components of ‘f’
e of f* = (fi)rex,.- Since
OD pair (r,s) is too large to
tly, Aashtiani and Magnanti
€ep only paths that have a positive
red to as the set of working paths
iable K7, for each given OD pair (r,s). The
adually updated in each iteration of the algo-
those with zero flow and adding the new
) be the cost of the shortest-path for the OD

shortest path will be added to K}, if the following

pair
condi isfied. Parameter ¢, specifies the required accuracy.

minkd(;';' CE
Uys

)=t

= Gc

(10)

Although the number of working paths is small, still it is not
efficient to use the general non-linear complementarity algorithms
to solve the model. In order to overcome this difficulty, Aashtiani
(1979) proposed an iterative linearization method. This iterative

linearization method linearizes the model at the current flow (f)
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to reduce the original model to a linear complementarity problem
(LCP). The linearization algorithm continues until following stop
condition is satisfied:

maxkeK"rg,fk>0 Cis(fv )”) — Uss
maxkel(‘,’;fpo C? (.fy ;v)

< & (11)
Until now, all discussions were under the assumption that X is
known and fixed; however, A is unknown. In order to overcome
this difficulty, NCP(A) can be solved iteratively by updating X in
each iteration. Let A7 denote the value of 4, in iteration ‘n’ of t
algorithm, in the next iteration, 22! is updated as follows: @

&)

In order to solve the traffic assignment proble igerative
decomposition and linearization algorithm c¢ s until it
reaches the equilibrium in the network. Howg er to solve
Model (8), this algorithm must be continu oth equilibrium
and implicit constraint (4g) are satisfied @et d &, be two small

positive numbers\Moreover, let Err® he relative-gap error.
s when Egs. nd (14) are satisfied

n+1 n Xa
an :zaw(z—ﬂ) Va

a

(13)

(14)

g
It is worth ! out that having the SO flows as an upper

bound to link\lowgyat initial iterations of this iterative algorithm
may arp change in DPF and adversely affect the

cayse a
algori nvergence. Instead, in order to achieve a better
co 7 the upper bound can be relaxed a little bit in initial
itra ; then, in next iterations, when equilibrium is more
@shed, upper bounds can get closer to SO flows. For this
ose, at the iteration ‘n’ of the algorithm, for each link ‘a’, C;

DPF.

6 ‘NQS calculated as shown in Eq. (15) and is used instead of X, in

=% x (1+228) va (15)

n

In Eq. (15), the value of y x p represents the relaxation ratio at the
first iteration of the algorithm. Note that such relaxation is also use-
ful to avoid numerical difficulties when the value of X, is equal to
zero. Taking Eq. (15) into account, Eqs. (7) and (12) are modified
as follows:

Ba(Xas ) = M/X(C) va (16)

et — ;"w(ﬁ) Va (17)
a — " Cn

a

It is also worth pointing out that, similar to the PG method, in
order to facilitate the convergence of the algorithm, it is recom-
mended to initialize the set of the working paths with the SO
positive-flow paths. The method described above to find a valid toll
vector is referred to as the DPF method in this study. In the next
section, this toll vector is compared with the MinRev optimal solu-
tion. It is shown that the total toll of this toll vector is very close to
the MinRev solution. The detailed steps of the DPF method to find a
valid toll vector are as follows:

Step 1 - Initialization
1.1. Select appropriate values for p, 7, &, &, & and vector A'.
1.2. Letn=1.
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1.3. For each OD pair (r,s), set the SO positive-flow paths in K},.

Then, let x! =%, find a feasible flow for each path k" in K,

and set its value in f}.

1.4. Update the travel time vector (t"), upper bound vector (C")

in Eq. (15), and the toll vector (8") in Eq. (16).

Step 2 - linearization and decomposition (Aashtiani & Magnanti,
1982; Shahpar et al., 2008)
2.1. For each origin ‘r’:
2.1.1. Find the shortest path from origin ‘r’ to all destina-
tions ‘s’ based on (t" + B"). Let k, be the shortest
path and 5 denote its cost.
. For each destination ‘s":

2.1.2.1. If Eq. (10) is satisfied, set K}, = K}, U {k:s}
and f, =0.
Set fy = f for k € K.
Linearize NCP,;(4") at f and solve the lin-
earized problem to obtain (f*, us).
If Eq. (11) is not satisfied, go to step
(2.1.2.2).

2.1.2.2.
2.1.2.3.

2.1.2.4.

Step 3 - updating
3.1. Update the link flow vector (x™!), travel time vector (t"*1),

upper bound vector (C*™*!) in Eq. (15), and the toll vector
(1) in Eq. (16).
3.2. Update 2™ in Eq. (17).
3.3. Find the relative-gap error.
Step 4 - stopping test

If Egs. (13) and (14) are satisfied simultaneously, sto
rithm and introduce ™! as a valid toll vector. 0@

n=n+1 and go to step 2.
&% .
S b@s. First, théues s\
from the application of the DP, @ o} eal large- e
works is discussed and compar€@y#f the optimal gol hén,
hod is usegha % per-

4. Numerical results

This section is divided into twqg

in the second sub-section, the DPF
1Mythe Min-

form sensitivity analysis o umber of tg
Rev solution, and in&tl he tradeof
1

the total
collected tolls, the nugiber o ed linkg’and Bired network
improvement.
4.1. Applicagi meic Di ction method to large-scale
network.

The
york

tion of these networks is shown in
ork, the total travel time in UE and SO prob-
d and shown in the table. The performance

forms better than other methods such as DW decomposition when
applied to large-scale networks (Shirazi & Aashtiani, 2015), but
also it has a similar structure as the DPF method (i.e.: both are
path-based methods).

Both algorithms (PG and DPF) were written in VISUAL C++. They
both were implemented on a PC with 2.66 GHz CPU and 4 GB of
RAM. For the PG method, the dual simplex routine of CPLEX (ver-
sion 12) was used to solve the LP problems, and the Bellman

e - the
Let Ov
or
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method (Golden, 1976) to compute the shortest paths. The equilib-
rium accuracy error was set to 0.0001 (¢=0.0001). For the DPF
method, the Lemke algorithm (Lemke, 1965) was used to solve
the LCP problems, and the Bellman method to compute the short-
est paths. The parameters and initial values were set to the follow-
ing values:

p =0.01
y = 3.0 (Upper bounds were relaxed by 3% at the first iteration)
74 =Xt(%) Va

& =0.0001

& =0.001 (for Sioux Falls) and &, = 0.01 (other networks)

Table 2 indicates the results of applying the PG and DP
ods to real networks. As shown in the table, even thoug
toll is not minimized directly when using the DP, %
method can have a very good estimation for thggMMR olution,
after just a few CPU seconds. The difference b the value of
the total toll in the DPF solution and the iMghe optimal solu-

orks we analyzed.’
&in the DPF solution is

ate tion after just 33.81 CPU sec-

S{aster than the PG method that finds
%ermore, the DPF method is more memory
L)

al solution.
PF method only keeps the paths with pos-
(or zero) flow;

e nt. Recall t
itive flows at a @ and discards those with no
ence, it needs l€e emory to preserve the path information. As

shown i table, the number of paths at the final iteration of

ofl is substantially less than the one in the PG method.

sults show that the DPF method is much faster and

ry efficient method than the PG method, especially as

ork size increases, and can be used as a heuristic method
stimate the MinRev tolls in large scale networks.

As discussed in the previous section, two stopping conditions
should be satisfied to terminate the DPF method: (1) the relative
gap error (Eq. (13)) and (2) reaching the SO flows (Eq. (14)). Figs. 1
and 2, respectively, show the relative gap error (Eq. (13)) and the
number of links that did not satisfy the condition that is described
in Eq. (14), at each iteration of the DPF method. Our investigation
on these stopping conditions indicated that the later condition is
much stronger than the former. Hence, the DPF method usually
stops when the later condition is satisfied (i.e.: the relative-gap
error is usually satisfied in earlier iterations of the method). For
instance, for the Winnipeg network, the relative gap error is satis-
fied after 42 iterations, but the algorithm still continues with
another 39 iterations to make sure that the flow on all links falls
below the required accuracy. For having a more efficient imple-
mentation, one may decide to stop the algorithm at iteration 42,
when the relative gap error is satisfied, and ignore the reaming four
links that are still above the required &,-accuracy of SO flows. Even
in this case, the estimated total toll revenue will be equal to
157,034 units of time that is still within the 1% of the optimal total
toll, and a reliable option to be used instead of the optimal solu-
tion. Therefore, as the number of links in the network increases,
it is more efficient to stop the algorithm when a reasonable num-
ber of links satisfy the condition described in Eq. (14), and ignore
the condition for the remaining links. This ‘reasonable’ number of
links can be a parameter discretionarily set by the analyst.

eWme

3 Recall that constraint (4g) was slightly relaxed by &,-accuracy when the DPF
method is used (see Eq. (14)). Hence, it is expected that the DPF method could find
better solutions than the MinRev optimal.
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Table 1
Network information.
Network Nodes Links Zones OD pairs UE travel time SO travel time
Sioux Falls 24 76 24 528 74.80 71.94
Mashhad 917 2526 163 7157 1,417,048 1,386,486
Winnipeg 1067 2836 147 4345 925,828 890,048
Chicago Sketch 933 2950 387 93135 18,935,450 18,518,578
Table 2
Comparing the DPF and PG methods for real networks.
Network Sioux Falls Mashhad Winnipeg Chicago Sketch
Method PG DPF PG DPF PG DPF PG DP
Number of iterations 2 45 10 49 14 81 7 1
Total toll 20.67 20.59 185617 185596 155652 155031 2794856 2784879
Difference compared to the MinRev optimal total toll Optimal 0.39% Optimal 0.01% Optimal 0.40% Optima %
Total travel time 71.94 71.95 1386484 1386524 890048 890063 18518 Q 18518764
Number of final paths 727 723 16348 10400 17934 6552 1 114971
CPU time (s) 0.14 0.03 12.12 2.59 38.45 7.12 88.4 33.81
1E1 1E-1 1E1
Mashhad | Winnipeg
| O
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' TN ‘w'\'\z""- N
RNV
1E5
0 5 10 15 20 25 30 35 40 45850 0 1
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\ eration
ig. 1. Relative& at each iteration of the DPF method.
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Fig. 2. The number of links that have a traffic flow that is above the ¢&,-accuracy of the SO solution, at each iteration of the DPF method.

Two large-scale random networks (Nie, 2010) with a lot of links
were used to (1) further investigate the observation described in

method on networks with numerous links. The first one is a
the previous paragraph and (2) evaluate the efficiency of the

40 x 40 square network and has 1600 nodes, 200 zones, 6240 links
and 39,800 OD pairs. The second is a 50 x 50 square network and
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has 2500 nodes, 312 zones, 9800 links and 97,032 OD pairs. In this
implementation, the DPF method was set to stop when more than
99% of the links satisfy the condition described in Eq. (14). Table 3
shows the results of the implementations. For both networks, the
DPF method estimates the solution with a very good precision,
even though the second stopping condition was ignored for the
1% of the links; hence, it is reasonable to ignore Eq. (14) for a small
portion of links (say 1%) when we have a network with numerous
links. For the 40 x 40 network, the DPF method finds an approxi-
mate solution for the MinRev problem after 9.6 CPU seconds that
is more than 50 times faster than the PG method. The difference
between the estimated total toll and the optimal one is less than
0.5%. For the 50 x 50 network, the DPF method estimates an
approximate toll vector after 53.4 s that is more than 100 times
faster than the PG method. The difference between the estimated
total toll and the optimal one is less than 0.1% for this network.
Recall that the DPF method is more memory efficient too. This
can be verified by looking at the number of final paths in Table 3.

4.2. Sensitivity analysis on the number of tolled links in MinRev
solution

In Section 4.1, we showed that the DPF method is a fast and
memory efficient method to estimate an approximate solution
for the MinRev model. However, there is one more advantage in
this method. Recall that constraint (3e) in Model (3) was consid-
ered for all links in the network. However, this may not be the most

work the same. In order to have more efficient implementations
we can consider the SO flows on some selected links, run

DPF method again and find a toll vector. This would result j
ing fewer tolled-links with SO flows. In this case, even t

network will not reach the SO solution, it can still be ipaREO toa
good level between the UE and SO solutions. The mal‘ﬁ ation
for this approach would be practical rather th cal and

would suggest to focus on finding an app, toll vec‘o
within a small percentage of the optimal Sgluti®® much mo

easily and quickly.
In this section, we use this ady#fita rform a se
2en the total coll d \
the number of tolled links, and th@desired networl® @ent,
e followis &D Y First,
&)

efficient way for the network, as not all tolled links impact the ne\

analysis to analyze the trade-ofi

The analysis is performed by akmg

given the approximate rk links
are ranked from the o

the DPF method is r
considered only '
example, only fo

tolls in M D ).

The thad a innj
and 61 Sinks in Min al solution (PG solution). In
apprexi i ion), all links will have tolls,
ho | for most of them is small or negligi-
i ting the approach described above
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Fig. 4. Sensitivity analysis for the Winnipeg network.

and associated costs. Figs. 3 and 4 show the sensitivity analysis
on MinRev tolled links for the Mashhad and Winnipeg networks,
respectively. As it is indicated in Fig. 3, the Mashhad network can
be improved by 2.16% if a minimal total toll that is equal to
185,617 units of time is collected from 516 tolled links. However,
it is still possible to reduce the number of tolled links to 250 (cut
the number in half) and improve the network by 1.92%. In this case,
the users will be charged for a total toll of 144,997 units of time.
For the Winnipeg network, the analyst can collect a minimal total
toll of 155,652 units of time from 615 tolled links to reach the SO
solution and improve the network by 3.86%. However, Fig. 4 shows
that one can decide to adopt a more efficient approach and
improve the network by 3.56% (only 0.3% less than the optimal
solution) by collecting 147,932 units of time from only 300 tolled

find an effig to decrease the number of tolled links links.

Table 3

Comparing e § of the DPF and PG algorithms for random networks.
Network : Random 40 x 40 Random 50 x 50
Method PG DPF PG DPF
Number of iterations 7 31 10 62
Total tolls 10817 10765 20462 20442
Difference compared to the MinRev optimal total toll Optimal 0.48% Optimal 0.10%
Total travel time 35263 35265 52342 52343
Number of final paths 105468 55269 295101 129220
CPU time (s) 486.4 9.6 6109.2 534
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Using the analysis described in this section, planners can decide
on different tolling strategies to implement these tolls. Recall that
tolls are in time units. They can be implemented either by charging
equivalent monetary values or by any means that result in chang-
ing the travel time on the roadway, such as alternating the signal
timing or implementing variable speed limits. This analysis can
also be useful in many instances where geography, terrain and
other constraints might in fact limit the potential adoption of tolls
on certain links.

5. Summary and conclusion

This paper proposed a method to estimate (or approximate) the
minimal revenue tolls in large-scale roadway networks. First, a
model was presented to find a toll vector that guarantees the sys-
tem optimum in the network. Next, the dynamic penalty function
algorithm was used to solve the model iteratively. The proposed
method was applied to four real and two random networks.
Numerical results show that this method can find an approximate
solution that is within 0.5% of the optimal solution after just a few
seconds. Hence, this method can be used as a heuristic method to
estimate the MinRev tolls. Not only it is fast, but this method is also
memory efficient. In addition, using this approximate method, one
can consider the system optimum flows as an upper bound to
selected number of links in the network and improve the network
to a level between the UE and SO solutions. Hence, the analyst can
make his decision based on a trade-off between the total collected
tolls, the number of tolled links and the desired network imprdye-

implementing tolls on many network links, one can ad
tion still very close to the system optimum but with gluc

ment. The sensitivity analysis shows that while reaching the
tem optimum solution with minimal revenue tolls may %
er

tolled links and smaller total toll. Further resear e done
to compare the results of this analysis with th um Toll
Booth problem (the minimum tolled-links rg@®ir have the

SO solution in the network) (Bai, Hear
2010; Hearn & Ramana, 1998). K
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