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ARTICLE INFO ABSTRACT

Keywords: This paper studies a problem in which a distributi r of a chain store @@ s a small subset of a large
Packaging number of available products (e.g. DVDs) to di§ ited number of different
Product distribution packages are allowed. We determine what pr8 ackage to distribute to each

Column generation store for revenue maximization. A columprSeners hich the sub-problem generates
candidate packages and corresponding s @ ; pioblem determines the final packages on

the production lines. Two heugistic meth® ‘e proposed to getierate the candidate packages for the sub-pro-

solution. The algorithm shows

thousand retail locationE e

1. Introduction sea 1dJDVDs are collected back to the DC at no additional cost.
Fog simplicity, we assume that this problem does not replenish in-
In the retail of large chain stores, similar produ @ typically ent| ring the sales season or equivalently, the replenish cost is
packaged together at distribution centers (DC) istribite to local al to be zero. The objective here is to decide the number of POGs,
stores. However, the limited space at retail stg the large nugb e titles in each of them, and the stores each POG serves in order to
of substitutable products available at a quire only the aximize the overall sales revenue less packaging cost.
profitable products to be packaged an d. In additiofy th In this problem, the demand at a particular retail store i is specified
number of package production lig€s,Seacli for'a different % is by a quantity for each title k at a preset retail price,
subject to a limit due to space a¥ S in D; = (da, diz, ...,di). The demand can also be equivalently represented

ty and the economi€sof

packaging, which often leads to seyeral stores serveﬁ "%ntical by its revenue R; = (1, nip....1ik), where rx = f (dy), for alli, k. This paper
package. Obviously, the packaging an@®distributjgf x omplex adopts the latter. Furthermore, we assume that demand for one title is
in order to maximize ghe immstore’s profitaiiil independent of another title’s availability. This assumption appears

This paper considegs a chaingtore distributio DC) that hasa restrictive, but is necessary in subsequently developing efficient algo-
set of DVD titles a ble from enter panies at the be- rithms. Because of the large number of available titles, the ones in a
ginning of the s3 POG are most likely in different DVD categories. Therefore, the final
being distribute solution turns out generally reasonable and acceptable. This in-

dependence assumption particularly applies to the situation in which
ma i
identical fixt
etup cost ¢ fa

products are from different categories and are not substitutable. In
addition, only the packaging setup cost is considered. In comparison,
shipping cost is not considered in this problem for two reasons. First, a
package always needs to be shipped to each retail store regardless of its
content. Secondly, the shipment is typically conducted with large vo-

t each local retail store according to the

e (e.g.\8helf) for title display. Each POG has a constant lumes of other products, and has a negligible marginal cost. Naturally,
the pagkaging line accounting for labor, capital and lot there are a large number of potential combinations for POG. Ideally,
size a . ddition, the number of POGs p must be within a each individual retail store would have a POG package of its most de-
rangé ] for practical considerations. At the end of the sales sired titles to maximize the revenue if other stores were not present.
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Titles

POGs

Package Distribution

Fig. 1. An example DVD packaging and distribution process.

But, due to the packaging setup cost, only a (much) smaller number of
packages will be chosen, a number much smaller than the number of
titles. Fig. 1 illustrates the packaging and distribution process. As in
Fig. 1, a combination of titles corresponds to one POG. And one POG
serves one or more stores. Each store receives a particular POG package.

By background, a fixture at a local store is a special shelf for DVD
title display. In one of our studies, a fixture has a capacity of displaying
about 180 different titles. In this case, a serving POG fills the fixture
perfectly up to this capacity when revenue is maximized. Depending on
the shelf depth of a fixture, each title in a POG package can have a
number of DVD duplications. As the shelf depth is exogenous to this
problem, it suffices to only decide the titles in each POG.

Product packaging and distribution is a popular practice. Large
chain stores such as War-Mart, Target and Best Buy decide their POGs
and make pricing decisions about every 3 months according to demand
updates. Although this problem is significant, we have not seen any
other study directly related to this particular packaging and distributi
problem.

to balance cost with safety and handling efficiency (see Chag, Cha®, &

vironmental impact. In contrast, our paper,
substitutable products for distribution, a

the traditional retail product distributi
storage location assignment pro a
each product in a warehouse ti ize the total grde

tance appears inherently simila our problem sman,
Schwarz, & Graves, 1976; pani &YAdil, 2008 Eynan,
Ve two inter-re-

allocation, in

1989, for examples).@t ms essentidl

lated decisions: prodget gr g and
which the location/s&iecision isa

hat pools multiple titles/pro-
ively, that pools stores to sell
of store groups, each served by an
OGs, needs to balance with the POG

ithm is nege88agy becat8ethe large number of potential combina-
tions of titlesfand storgs leads to a prohibitive complexity.
We proposg, a formulation and subsequently a column generation
methogd is pfoblem. The column generation method dated back to
Dant blfe (1960). Lubbecke and Desrosiers (2005) provide a

Vanderbeck” (2005) specifically provides a tutorial. In this paper, we
propose two heuristics for generating columns (POGs), namely Bottom-
Up (BU) and Top-Down (TD). Our numerical test shows clear advantage
of the TD over the BU method. Therefore the TD method is adopted to
generate POGs. In the iteration process, we develop bounds for the
optimal number of POGs using results from both the TD and BU

Research on product packaging is traditionally about determinati
of packaging materials, package size, weight and other ch@
O
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Table 1

Revenue matrix.
Store No  Title

1 2 3 4 5 6 7 8

1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000
2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000

methods. The bounds tighten quickly with iterations. We further pro@
pose a simple search method based on a concavity property to fin,
optimal number of POGs. With operational data from a lar; @
store, the solution algorithm is tested to be satisfactory.

an
. In

The organization of this paper is as follows. Sectio id
illustrative example to facilitate understanding of b
Section 3, a problem formulation is presented and is.de ed using

g % sented to solve
hargof the solution
rties are studied in

ge scale production
mary of major findings

the column generation method. Two algorithms
the non-linear sub-problem. In Section 4, a

algorithm is introdiced. Some structura
Section 5 followegd byanumerical tests ba
data. Sectio c s this paper jwith ‘a
and remain lenges.

2. An j

ative example

present an &e to illustrate the problem and solution.
} at 4 stores. The fixture allows 4 titles in a

d from 8 DVD titles. The expected revenues of

POG, e.g., N = 4]

each title e stores are shown in Table 1 below with a packaging cost
c =, %5 ch POG.
IFwe e the number of POGs p = 1, an optimal solution is to

through 4 in the POG to serve all the four stores, as in

2, T3, T5, T6) as in Table 3 serve stores (SI1, S4) and (S2, S3) re-
pectively with a total revenue of $24,000. The solution can be re-
presented as below.

packyTi
ble» The total revenue is $20,000.
% D = 2, the two POGs in an optimal solution (T1, T4, T7, T8) and

Triplet 1: ($12,000, (S1, S4), (T1, T4, T7, T8))
Triplet 2: ($12,000, (S2, S3), (T2, T3, T5, T6))

We define a triplet as a vector of a revenue, a set of stores served,
and a set of titles in a POG. The revenue results from distributing the set
of titles to the stores. More introduction to triplet is available in Section
3.

At p = 3, the solution is three triplets as in Table 4 with a total
revenue of $24,000.

Triplet 1: ($12,000, (S1, S4), (T1, T4, T7, T8))
Triplet 2: ($6000, (S2), (T2, T3, T5, T6))
Triplet 3: ($6000, (S3),(T2, T3, T5, T6))

At p = 4, an optimal solution as in Table 5 has four triplets with a
revenue of $24,000.

Triplet 1: ($6000, (S1), (T1, T4, T7, T8))
Tripelt 2: ($6000, (S2), (T2, T3, T5, T6))
Triplet 3: ($6000, (S3), (T2, T3, T5, T6))
Triplet 4: ($6000, (S4), (T1, T4, T7, T8))

If each POG has a setup cost $500, the above example has an op-
timal solution at p=2 with a profit being
"$"24, 000—2 x 500 = "$"23, 000.
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Table 2
Optimal Solution at p = 1.
POG Store Title
1 2 3 4 5 6 7 8 Total
1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $5000
2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $5000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $5000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $5000

3. Problem formulation and solution

k< Y, Xjo ViES, VkEP
JET )
sug=xy VIES, VjET, VkEP

<D xp VjET, VkeP

First, we define the following notation.

X indicator variable which equals to 1 if POG k containing title j

serves store i, equals to 0, otherwise. = (1.5)
Zx  indicator variable which equals to 1 if POG k serves at least
one store and contains one title; equals to 0, otherwise. It L2 xj VieES, VjeT, VkeP (1.6)

indicates whether a production line for package k is needed.
S set of retail stores.
P set of all possible POGs.
P number of POGs. p” is the optimal number.
T set of titles.
Pmin  Minimum number of POGs, which is zero if not specified

D k<

N Vke
jer % Q 1.7)
ies *:ET @ (1.8)

otherwise. (1.9)
Pmax Maximum number of POGs, which equals to |S| if not specified
otherwise. The min/max number p is pre-determined by the 2k & Pmin K (1.10)
decision maker. ’
N the number of different titles included in each POG. \ Z 2k S P, O
¢  packaging cost of POG k, which is assumed a constant c latgf'1 kep e (1.11)
not specified otherwise.
r;  revenue of title j at store i. Xijk = 0 V ies, vVjeT, VkePp 1.12)
g, total revenue in a triplet from distributing PO ies, VkeP (1.13)
sy indicator variable which equals to 1 if store i is by POG
k; and 0, otherwise. . G VjeT, VkeP (1.14)
ty  indicator variabl(.e which equals to 1 if tiglei gned to Pg -0, 1 VkeP 1.15)
k; and 0, otherwise.
Q. the set of triplets (or POGs with stores) by th \ The first term of the objective function is for the total gross revenue,
iteration in the column ge; G) procedure. the second term the total packaging cost associated with the number of
6;  indicator variable. It is re in POG j, 0 gtherwi POGs. Here x is a binary decision variable assuming a known ex-

haustive set of combinations (i, j, k). The constraint (1.2) requires each
store be covered exactly once. The constraints (1.3) and (1.4) specify an
incidence relationship to indicate whether a store is served by a POG.
(1.3) is binding only when store i is not served by POG k, in which case
Zj er Xk = 0 that forces sy, = 0 via constraint (1.3); (1.4) is binding only
when store i is served by POGk, in which case some x;; = 1, 3 j that
forces sy = 1 via constraint (1.4). The constraints (1.5) and (1.6) define

les includexy;, 2.5 st are

\
3.1. Mathematical fo ati

Of these notations, the decision va
given parameters in the formulation.

Assuming an ive set of PQGs'ayailable, the problem can be
formulated as fd @

a binary variable to determine if a title is included in a POG. (1.5) and

Max i Xijk ¢ (1.6) are defined in a similar fashion to constraints (1.3) and (1.4),
EP k 1.D respectively. The constraint (1.7) limits the number of titles in a POG.
Su Similarly, the constraints (1.8) and (1.9) specify an incidence re-
lationship to define if POG k is used. Constraint (1.8) is binding when
m=1 ViesS for some k, x; =0,V (i, j), which forces z; = 0. Constraint (1.9) is
€p 1.2) binding when for some 3 (i, j), x;% = 1, which forces z; = 1, meaning
Table 3
Optim Oh atp = 2.
POG ore Title
1 2 3 4 5 6 7 8 Total
1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000
2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000
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Table 4

Optimal Solution at p = 3.
POG Store Title

1 2 3 4 5 6 7 8 Total
1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000

2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000

package k is being produced. The constraints (1.10) and (1.11) specify
the lower and upper bounds to the number of POGs.

For profit maximization, the number of titles in each POG always
reaches its maximum N provided the title’s respective revenue is posi-
tive. Therefore, the constraint (1.7) is always binding in the solution. In
addition, this proposed formulation implies enumeration of POGs and
store assignments. Considering the large number of stores (up to 3500,
for example) and DVD titles (up to 5000), an exhaustive enumeration is
a prohibitive task.

To illustrate the solution structure, we define an entity called triplet
(1, s, t) according to each POG, where t is a vector of titles in a parti-
cular POG, s is a vector of stores that the POG serves, r € Rlis a scalar
for the total revenue from distributing this POG package to stores s. In
our solution later, we always associate a triplet with each POG. The
decision becomes to develop a set of triplets so that each retail store is
covered once and only once by a triplet to maximize the overall revenue
less packaging cost. Fig. 2 shows a set of triplets as a feasible solution to
a packaging and distribution problem, in which the three POGs age
planned covering the five stores.

The final solution shall be a set of triplets, specifying a one t@f0

€

have
titles ac-

to identify this set of titles is first to ranking order all
its total revenue to the stores served. Then we t
cording to revenue to pack into the package. T
clarifies this relationship.

Proposition 1. A set of stores in a triplet
revenue from the titles in the accor

@ed to serve th
lows, we can find of
e optimal % set of

In light of Proposition 1, in
stores in a triplet also indicate a u
titles selected, therefore a
entire triplet in a sol
include in the packa;
determined once

of stores in a resent an
set of titles to
servi

t to group the stores together with
ics. Therefore, a solution process shall

ing propositi
L 2
to decide the 'x keQm

group corresponding to a triplet.

We propose to use the column generation method. In what fo(l}@@
he

we introduce both the master problem and the sub-problem fog, t
initial formulation.

3.2. A Column generation approach

The formulation (1.1)—(1.15) is decomposed i master and a
sub-problem. The master problem selects thgfoptimalfset of POGs to

essentially a set cov-

maximize revenue l€ss packaging cost, whi
ering problem wi iven set of trip b-problem uses the
ifi : s from the blem to generate new
‘ i ub@ly, e candidate triplets are
\: 5 g

cess repeats until the optimal
astemgproblem, or until a stopping cri-
POG is referred to as a set of stores with
which is equivalent to a triplet as ex-

terion i . In this section, @

n accgrding optimal fevenue,
earlier in th er.

The master p % 1*formulated as follows.

ter problem
ing formulation, we present the master problem.

3.2.1. Th
th

M k—C Z Zk

sﬂl keQm 2.1

ject to:

Okzk=1 VieSs

(2.2)

2 Tk 2 Prin
keQm (2.3)

Z Zk S Prmax
k€Qm 2.4)
Zk=0,1 Vi€ Qn (2.5)

Note that 6; is an incidence indicator between store i and POG j. It is
1.0 when POG j serves store i; 0, otherwise. It is a known (or given)
parameter in the master problem. The objective is to maximize the total
gross revenue minus the total packaging cost of selected POGs, the net
profit. The constraint (2.2) corresponds to (1.2), and means each store
must be covered exactly once. The constraints (2.3) and (2.4) corre-
spond to (1.10) and (1.11), ensuring a lower and an upper bound to the
number of POGs. In the iterative process introduced later, the linear
relaxation of the master problem is solved so that a dual value for

Table

Opti atp = 4.
POG tore Title

1 2 3 4 5 6 7 8 Total

1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000
4 4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000
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O Triplet @ DVD Title

Fig. 2. Illustration of triplets and a feasible solution.

constraint (2.2) may be obtained.

3.2.2. Sub-problem (Column Generation)

We define 7; as the modified revenue of store i with title j, that is,
ij = nj—m;, where 7; is the dual value for store i from constraint (2.2) in
the master problem. In some practical literature, the dual value of a
constraint is also called shadow or bid price. In this case, one may in-
terpret that the dual value associated to store i represents the locational
potential for revenue. The sub-problem generates candidate POGs (sets
of stores) with modified revenues for titles. Again, we take the POG as
triplet equivalent.

Max 37 > Ty

ies jer (
Subject to:

Sik < Z Xje ViIES @

jer :
sezxp VieS, VjeT OQ,&
<Y, xp VjET %

ies ‘ )
ti>xp ViES, VjeT K \
> =N @ \{
ot . % '6)
Xp=0,1 VieS, VjeT \ 3.7)
sk=0,1 Yies \6 (3.8)
th=0,1 VjET (3.9)

as defined in

o a‘Specific’column being generated.
e redtindant and can be eliminated.
tQ,_SO

The constr@&

only one iteration from the sub-problem. The poor POGs
from the sub-problem may be spelled out of the optimal solution in the
master problem. In other words, the master problem can still bundle
POGs generated by the sub-problem from multiple iterations.
Interestingly, a poor POG at one iteration may become good at a later
iteration due to the change of revised revenue. As indicated in our
numerical tests, most of the optimal LP solutions to the master problem

A

Retail Store

(after a large number of iterations between the mastes
blems) turn out to be integers. This way of generating

and experimentally proved to be good.
@ BU) and Top-
olowing. Note that

Two heuristics are developed, namely Bo
Down (TD). They arg respectively explained i
the sub-problem useSirevised revenue wi om the master pro-
blem.
3.2.31. m. The g starts with each store being

e most desired N titles. In this case,
table titles only subject to the limit N of
cted for each store are the top N titles

PO

ects its most

ach sto
the POG size. The set ofytitles
nk list of title§ according to their revised revenue. Therefore,

first rank order i or each store, which is a polynomial time
process. Subseqhe BU algorithm iterates by merging two POGs
into one each time%fitil a stopping criterion (to explained shortly) is
met. De the merger will be introduced shortly. If we use p, for
of POGs at step k > 1, we have p, = ISI.

e %pk (p,—1) pairs of POGs potentially considered for
at step k, the two POGs with the least reduced total revenue
erger are selected to merge, and the subsequent step has
+1 = DP—1 POGs. When evaluating the revenue increase from a
erger between two POGs, we pool together the stores served by both
POGs. Then a new rank order of all the titles is developed accordingly
based on their individual revenue to the pooled stores. The top N titles
are selected. The revenue decrease due to merger is then assessed. This
process does not stop until either of two conditions is met: (1) the total
number of POGs is smaller than the maximum limit p,_,  AND the in-
creased revenue from further merger is negative; (2) the total number
of POG has reached the lower limit p,; . Theoretically, it is possible that
some mergers do not improve revenue but just serve to reach p, ... Note
that the cap on the number of POGs is exogenous and is often sub-
jectively set by management due to factors not explained in the model.

This algorithm builds from each individual store having an ex-
clusive POG, and is therefore called Bottom Up (or BU). It is briefly
summarized below where k represents the index of iteration.

Step 1. Set k = 1. Each store i € S defines its own best set of N titles
and is assigned to a unique POG i. This implies generation of a triplet
for each store. This step ends with a number of POGs equal to the
number of stores, p, = ISI. If we use P, for the set of POGs at this
step, P, has |S| POGs.

Step 2. Set k = k + 1. Merge POG i and POG j into a new POG if i
and j have the least revenue reduction among all potential mergers.
Set p, = p,_;—1. Now P; contains Py_; plus the new POG less the
two merged POGs.

Step 3. Repeat Step 2 till either of two conditions is met: (1) the total
number of POGs is smaller than the maximum limit p_,  AND the
increased revenue from further merger is negative; (2) the total
number of POGs has reached the lower limit p, ;.
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The BU algorithm ends up with a set of POGs that constitute a
feasible solution to the original problem. As indicated in Step 2, eval-
uating each merger and finding the optimal merger at each step is a
polynomial time, but time-consuming process.

Associated with the BU algorithm is the following property.

Proposition 2. To allow each store has its own POG generates an upper
bound on the gross revenue.

Proposition 2 is obvious. Be aware that the gross revenue in
Proposition 2 does not account for the packaging cost.

3.2.3.2. TD algorithm. Here TD refers to a top down process. In contrast
to the BU, this algorithm starts from having only one POG for all the
stores. Set p, = 1, and accordingly P; contains the one POG. The best set
of titles for this single POG can be selected easily in the following way.
Rank order the titles based on their total revenues from all the stores,
and select the top N titles in the triplet (or, POG). Revenue evaluation of
titles for a set of stores is a common function in our algorithm, which
has been explained in the BU method for POG mergers.

After a single POG is generated for all the stores, we first split it into
two. We continue splitting, one POG at a step. At step k — 1, we end
with a set of POGs, Px_;, to consider for further splitting. We examine
the revenue increase potential from the split of each POG, and split the
POG j with the most incremental revenue into two new POGs, j(1) and j
(2). Then set the total POG p, =p,_; + 1.

In this process, an assignment function Assign (n, s) is proposed,
where n is the number of POGs resulting from splitting an original POG
serving stores s. Specially in our proposed TD method, n = 2. The
function Assign (n, s), to be explained in more details shortly, return
best triplets from s and a total revenue increase from the split. The
with the most revenue increase potential from split is finally selec d
split. After the split, P, at next step has two new additions le,
being split. This process does not terminate until either o

tions is met: (1) The total number of POG at step k pk proﬁt
increase from a split is negative; OR, (2) the maximu r of POG
Dmax i Teached, i.e., p, = p....

The function Assign (2, s) is applied to eac k to asse
revenue potential. We introduce more detail: sign (2, s)
The split starts with setting two empty and j(2) for
ginal POG j with stores s. It examines relin s to dec1de
(1) and j(2) to assign it to. The @ po 1al from an
store from s, say store m, to a neWyPOG j(i), i € {1 Q is ed by
the difference between the revenue OG j@
without store m and the i) with an
addition of store m. Store ™t is j()with the
bigger revenue incre, Then update t n this new POG
with the additio m. Repeat i
ass1gned to eith pr j(2). Clea

Step 1. Initialize k = 1. Define the best set of titles to one POG
serving all stores and set p, =1 and P, has only one POG, e.g.
P, ={S}. Set k = k + 1, and go to step 2.

Step 2. At step k, apply Assign (2, s) to every POG in Pj_;. Select the
POG which potentially generates the most incremental revenue from
the split, and split into 2 POGs. Update the set of POGs, Py, with
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addition of the two new POGs to, and reduction of the one split
from, Py_;. Set p, =p;_; + landk =k + 1.
Step 3. Repeat Step 2 until one of two conditions is met: (1) The total
number of POG at step k, p; > p,;,, and profit increase from a split
is negative; (2) the maximum number of POG p, . is reached, i.e.,
Pr = Pmax-

Proposition 3. One single POG serving all the stores gives rise to a lower

bound on the total gross revenue from the optimal solution.
e@

TD

3.3. Bounds for the optimal number of POGs and a search heuristic

As seen, if we know the optimal, or a specified, number of POG,
will directly generate the exact number of POGs in either the
method at each iteration. Accordingly, in the master proble
would set both the upper bound and the lower bound to B, this, specific
number of POGs (if no other bounds are imposed). ethod is
adopted in our subsequent numerical test. Experimeata wing this
optimal POG number expedites the solution pr @ pr the optimal
POGs. We call this a point solution. In compariso
the exact optimal nulber of POGs, the m, lem is extremely low
efficient. Our solugion) follows the 1de point solution. This is

conducted b al number of POGs with
a limited n
In ogles to iteratively reduce the

, which builds on the following.
Observation 1 Thé objective value from the Integer Programming
solutions to, the, formulation (1.1)-(1.15) increases approxi-
mately at a d @ ng Tate with the number of POGs (e.g. z values).

Speci. Observation 1 is correct when the POG increases from
ZerQyt r&ch is easy to verify. For a number of stores beyond two,
the& es difficult. Unfortunately, we do not have a grasp to
ro rvation 1, although we know the LP relaxation of

1)-[¥.15) is concave in 2.

servation 1 is supported by numerical tests. In the subsequent

0 store example, the total revenue and profit functions both appear
concave in the number of POGs.

The following result is partially derived from Observation 1.

Proposition 5. With Observation 1, the optimal number of POGs p*
RUP—IS\XC) d
T

The optimal net profit, revenue less

satisfies  pPN < p* < pU!, where pPN = max(l,
PP = min(ISI, R =R
packaging cost, is greater than or equal to max{RY’—|S| x ¢, RPN—c},
wheremax{x, y} and min{x, y} return the larger and smaller values of x
and y, respectively.

+1)

Proof. Denote the revenue at the optimal POG number p* by R*. Note
that RUP—IS| x c is the profit when the number of POGs allowed is equal
to the store number.

If we draw a line from R = 0 at z = 0 through R = RPN atz =1 on
the revenue curve, the rate of revenue increase is R”N, an upper bound
for the increase rate due to Observation 1. It takes a minimum of
% packages to achieve a profit RV’—|S| X ¢. The number of
packagces necessary to reach the optimal profit is obviously higher than
this. In addition, this number should not be less than one. This proves
the first inequality.

Furthermore,

RPN—¢ < R*—p*c (Both sides represent revenue minus packaging
costs), and

RYP > R* (This is from Proposition 1).

The first inequality minus the second one givesRPN—RUP—¢ < —p*c,
which shows p* < p'F.

It follows that R*—p*c > RPN—p*c > RPN—(RVP—
RPN)—¢ = 2RPN_RUP—¢_which provides a potential lower bound to the
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optimal profit. This bound is not as tight as a bound from the TD
method, RPN—c_ The BU method provides another lower bound in
profit, RV"—|S| X c.

Clearly a lower bound results: max{RY"—IS| x ¢, R°PN—c}. ]

As a special case in Proposition 5, if the (marginal) packaging cost is
zero, pPN > ﬁ%. Proposition 5 helps to decide an approximate range
for the number of POGs. Computationally, it is very costly to solve for
the optimal POGs even at a given number z of POGs, as experienced in
the numerical test. Our test shows that this bound significantly reduces
the range for the optimal number of POGs. A practical meaning in our
algorithm of having this bound is that we do not need to generate so-
lutions in the BU or TD method with the number of POGs exceeding this
bound. By developing a tight bound on the optimal number of POGs, a
significant savings in computational time is achieved. However, as will
be seen in our test, the lower bound on p*is usually very close to 1, very
loose.

4. Flow chart of the iterative algorithm

The POGs generated from the sub-problem heuristics are first fed to
the master problem for LP solution. If the solution to the master pro-
blem is not optimal to the original problem, the dual values from the
master problem will be used to revise the revenue from each title. The
revised revenues are used in the subproblem heuristics, which will in
turn generate new candidate columns for the master problem. The
standard iteration between a master problem and a sub-problem is
described as in Fig. 4.

Applying the B&B method in the process of column generatio
explained well in Vanderbeck (2005) and Lubbecke and Desrosiers
(2005).

5. Tightening bounds and numerical test

The master problem always contains a feasible sol
TD or BU method. The quality feasible solutions pldy si
the master problem because of two advanta
provide a good lower bound to the master p
and bound algorithm (B&B) is called. A g
application of the B&B algorithm p
feasible solution allows us to fi 'Q ghten the bound o:
POG number p* for the master problem, as described”

a
e opti
osition 5.

the BU

algorithm de-

provides dial values to guide
orithm implementation. In
, if computational time ex-

provement to the master problem ob-
iteratiols between the master and

The LP solution t

e master probl
subprob
easible solui

In addition, a tight bound for, the POG
and TD methods. As @ill ined later, o
pends on having a ﬁ%é ber.

i

Q

Revenue

300000 Profit

25000

200

150000
100000
50000 Number of POG
0 : : : : : : ‘
0 5 10 15 20 25 30 35

Fig. 3. Example Revenue and profit function with the number of POGs.

em when the br;
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advantage i tthe
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Initial Solution

A

A 4
master Problem | Column X
A
Optimal to the Original Sub-problem
Problem?

Are Solutions Integer ? Branch and Bol

D
)
|

of mn:eneration flow chart.

ubproplems, the solutign process terminates. The best solution that has

nerated from Ql‘bproblem is selected as the optimal solution

to this problem. Our¥hetsistic feasible solutions allow us to stop the
master problem % ime of our choice and always with a solution.

We next explain low a quality feasible solution helps tighten bound

on the o % umber of POGs. Suppose at some iteration, we have a

feas olutign from the sub-problem with revenue R; and n POGs that

* < n. It is clear that this feasible solution implies a lower

r the objective value in the master problem, R;—nc. In addition,

enote the optimal revenue with two POGs byR,, we have,

oposition 6. Suppose a feasible solution has n POGs with a total
revenueR;. In the case n>p*>2, there holds

R —Ry—(n—2)c Rr— RPN s .
m} < p* < e + 1in llght of Observation 1.

max{2,
Observation 1 implies that profit increase from z = 1 to z = 2 gives an
upper bound on the profit increase rate with z for z > 2. This helps
prove the lower bound for p*. Proof for the second inequality is obvious

because R; is a new upper bound of revenue.
5.1. Heuristic search for the optimal number of POGs

As indicated in the subsequent numerical tests, our bound on the
optimal number of POGs tightens fast, but is hardly further improved
after a number of iterations. As in the larger numerical test shortly later,
the range for the optimal POG number is improved from [1, 2500] to be
within [1, 20] after two iterations, after which, Proposition 6 does not
further tighten the bound. In this case, based on Observation 1, we
propose the following algorithm to further narrow the scope for the
optimal POG number which is most lately assumed bounded to within a
range[pPV, pUr].

Step 1 Calculate the optimal revenues for two POG numbers p and
p + 1in the middle of the range [pPN, pU?] with their revenues being
R, and Ry, respectively.

Step 2 If R, < Rpy1—c, update with pPN =p + 1, and p'? = pP.
Repeat Step 1. If R, > R,41—c, update with pPN = pPN and p'? = p,
and repeat Step 1. If R, = R,,1—c, stop the algorithm, and the op-
timal POG number is p or p + 1.
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This heuristic search is based on Observation 1. One can easily find that
the maximum number of steps in the proposed heuristic search is
bounded bylog'sI For a store with 2500 locations, this bound is 11.3.
Note that in this process, calculation of revenue at a given POG number
with the master problem requires replacing constraints (2.3) and (2.4)
with Zjeﬂk Zj =1.0.

5.2. Performance of the BU and TD methods

Both the BU and TD methods generate revenues that can be used for
calculation of bounds to the optimal POG number as indicated in
Proposition 5 and 6. We would like to choose between BU and TD for
the sub-problem based on their numerical performances.

A data set with 100 stores and 500 titles from the Target chain
stores is available. The fixture capacity allows display of 172 titles. The
number of POGs ranges from 1 to 100. Both the BU and TD methods are
applied to this data. The performance comparison is shown in Table 6 in
the Appendix A.

In Table 6, the comparison shows an overwhelming advantage of
the TD over BU method in terms of the total revenue when the POG
number is below 60. For the POG numbers above 60, the BU method is
slightly better in revenue. The computational time is a total for all the
100 cases, which shows that the TD method consumes about 50% more
time than the BU method. As computer time does not appear to be a
major concern for the application of the heuristics, we only adopt the
TD method in the following test problems. Although we could adopt
both and choose the better solution each time, we believe the marginal
gain in the improved solution is not worth the additional computational
time.

The following test uses the TD method.

Test 1

A total of 372 titles is available for 100 Target chain s
fixture has a capacity of displaying 96 DVD titles. A cost of
per POG. In this relatively small test problem, we are e
detail the performance of our proposed algorithm, pal @ hi
lustrated in Fig. 3 earlier. In this revised solutio :

, IS a clw

is il-

straints (2.3) and (2.4) with Zj
number of POGs.
Here, IS| = 100, ¢ = $5000, the reve
RPN (p = 1) = $354626, where
number of corresponding POGs
Iteration 1.

€eQ g = pgiven’

RUP |S| X C 000

456315 A.Pl..

pPV = max

= 1(POG)

)

teration 2. Update

= $400527:

N\

Iteration 1.
~100) = $4 .
parentheses pPN = max(l w)
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Thus, 1 < p* < 10.
Iteration 3. Update R*’ with R(ppYF = 10) = $388302:

UP_ pDN _
pYF = min| 100, R7-R +1|= min(lOO, 388302-354626 + 1) ~ 7,
5000
Thus, 1 < p* =< 7.
Iteration 4. Update R*” with R(p"F = 7) = $383569:

RUP_RDN 383569—354626

pY" = min| 100,
5000

+ 1) = min(lOO, 1) ~ 6,
Thus, 1 < p” < 6.
Since 6 is small enough, we are able to find the optimal solutio
each POG number as follows.

Maximum Revenue(6) = $382380, profit = $352,
Maximum Revenue(5) = $380249, profit = $355,
Maximum Revenue(4) = $376920, profit = $356,
Maximum Revenue(3) = $373487, «profit = §
$358,487 (Optimal)

Maximum Revenue(2) = $367476, profit& $ <
Maximum Revente(1) = $354626, p 49,626

3,R" = $373183,and a

full-sized pr from real production data. At each of
locations of aghain e, there is a fixture for displaying 180
es selected a total of 500 titles. The packaging cost is
subjectively deteg @ be $250,000 per POG by the management.
By background, ent annual revenue from DVD sales is in multi-
billion dollars. Th#s#a small percentage improvement of revenue is
significal

the 25

e forecasted revenue matrix is illustrated in Table 7
TD method, it is easy to get RP°N=R( =1)
0, R%? = R(p = 2500) = $91,958,456. Here, |S|=2500, ¢ =
0. Then we start to tighten the bound for the optimal number of
p* as follows.
ax(l,

91958456—2500 X 250000)
69666310—250000

= 1(POG)

X RUP_RDN
pUf = mm(ZSOO, —_+ 1)
c

. 1958456— 1
= mln(ZSOO, 91958456-69666310 1) ~ 90(POGs)
250000
Thus, 1 <p* = 90. Here the optimal revenue at p = 90is

R = "$"74, 437, 632, Update RY’with R, which will be used in the next
iteration to strengthen the bound on p*.
Iteration 2.

RUP_RDN
- pYf = mln(ZSOO, _ 1)
Imn 10 N mln 100 400525700?)54626 * 1) 74437632—69666310
= min(2500, L 1) ~ 20(POGs)
250000

Table
Revenue st Matrix (Stores/Titles).

StoreID\ TitleID Title001 Title002 Title003 Title498 Title499 Title500

S0001 $741 $55 $659 $14 $151 $741

S0002 $196 $82 $96 $247 $181 $316

S$2500 $226 $92 $206 $41 $247 $412

157
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Table 8 respectively. At the third step, we calculate the revenues at POG = 3
Numerical Results. and POG = 4 respectively. The according revenues are $72,289,653
POG # Revenue Profit ComputingTime (sec) and $72,993,037, whose differential revenue still outnumbers the

packaging cost. By now, it is clear that the optimal number of POGs is 5.
2500 91,958,456 —533041544 135 Table 8 summarizes the numerical results in this test, with revenues at

several additional POG numbers for the purpose of verification. The
90 76,072,616 53,572,616m 71,120

bold lines indicate cases actually calculated in our algorithm.
22 74,472,455 68,972,455 53,114 Optimality of the final feasible solution is hard to evaluate. If one
21 74,455,444m 69,205,444 45,760 believes the optimal revenue generated with 20 POGs in the test pro-
20 74,437,632 69,437,632 38,393 blem provides an upper bound to the revenue from 5 POGs, the solution
19 74,423,094 69,673,094 31,391 is within 97% of the optimal net revenue
18 74,390,289 69,890,289 25,412 P ’
17 74,362,531 70,112,531 20,566
16 74,283,151 70,283,151 16,115 6. Conclusion
15 74,245,915 70,495,915 13,579
14 74,222,158 70,722,158 11,200 . _ .
13 74181375 70,931.375 0018 The re.taﬂ 1ndus.try often dlstrlb'utes products 'm
12 74,146,173 71,146,173 7933 paper studies a special product selection and packaging {0
11 74,063,730m 71,313,730 5868 in order to maximize the total profit. In this particularfa
10 73,974,746 71,474,746 4709 decision concerns packaging a small number of D
o 73,765,906 71,515,906 3853 of thousands of them available to serve sever:
8 73,772,721 71,772,721 3172 Onlv a limited ¢ diff K
7 73,570,780 71,820,780 2504 nly a limited numger of different packages
6 73,421,947 71,921,947 2028 an optimization algofithm using column g
5 73,278,391 72,028,391 1645 lem, and propot
4 72,993,037 71,993,037 1300 the Bot g()) and Top Down (TD)
3 72,289,653 71,539,653 1146 .
5 71,900,411 71,650,411 007 eT th@dfappears€uperior to the BU b?sed
1 69,666,310 69,416,310 103 er “develop bounds on the optimal

ofit for the master problem. The
ntly reduce the computational time.
test shows that our proposed algorithm is pro-
D sale is a multi-billion dollar business an-
nually at major ores. According to an internal estimate by the
management of ain store, the annual revenue improvement po-
tential fry ing our developed methodologies, compared with using
the ual method, would be in dozens of millions of dollars.
raetical problem has more features than studied in this paper.
store could have different fixtures. For this particular ex-
DVD distribution, our simplification might represent a prac-
ally acceptable approximation to the more complex problems.

condly, it would be interesting to examine if and how the relaxation
of the assumption on demand independence between titles affects the
distribution decisions.

Within 2509 iterations between the master and Sub-problems when
the number of POGs is 20, CG generated 49,681 POGs to get the ﬁ\

solution. The solution takes 10.5h on an HP workstation. And a 1
revenue of $74,437,632 is achieved.
n
imal

After iteration 2, we cannot use Proposition 5 to further tighte:
bound on the optimal number of POGs. It is clear now that4he o
D

number of POGs must be within the range [1, 20].

numbers 10 and 11 respectively. The reven
$73,974,746 and $74,063,730 accordingly. T
POG = 10 to POG = 11 is outweighed by the
Therefore we next calculate the revenu P
respectively. The revenues

Appendix A

See Table 6. \

en BU and TD Meth

Total Revenue Revenue Difference (TD-
BU)/BU
BU TD

354,626 354,626 0.000000
358,129 367,474 0.026094
3 363,472 371,947 0.023317
4 366,495 372,944 0.017596
5 368,009 373,061 0.013728
6 368,662 373,760 0.013828
370,904 378,193 0.019652
371,635 379,282 0.020577
373,030 380,130 0.019033
10 373,542 380,447 0.018485
11 374,955 380,622 0.015114
12 375,827 381,868 0.016074
13 376,654 383,872 0.019163
14 377,322 384,004 0.017709
15 378,066 381,131 0.008107
16 380,125 386,571 0.016958

(continued on next page)
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Table 6 (continued)
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Number of POGS

Total Revenue

Revenue Difference (TD-
BU)/BU

BU TD
17 381,956 387,670 0.014960
18 385,233 389,782 0.011808
19 386,477 390,919 0.011494
20 387,393 391,403 0.010351
21 388,497 391,952 0.008893
22 389,165 393,771 0.011836
23 390,049m 393,981m 0.010081
24 393,839 395,541 0.004322
25 395,336 396,939 0.004055
26 395,074 397,831 0.006978
27 395,730 400,397 0.011793
28 397,262 401,754 0.011307
29 397,921 403,772 0.014704
30 398,814 403,772 0.012432
31 401,187 404,441 0.008111
32 402,492 405,116 0.006519
33 403,569 405,837
34 403,769 406,736m
35 404,334 407,367m
36 405,673 408,901
37 406,697 410,173
38 408,256 411,6
39 407,748 412, A
40 408,810 11763
41 409,309 @ 7 0.014507
42 410,546 16,489 0.014476
43 412,485 16,893 0.010686
44 413,192 418,454 0.012735
45 412,893 419,452 0.015885
46 415,607 420,620 0.012062
47 417,024 421,565 0.010889
48 417,508 422,292 0.011458
49 417,849 0.012040
50 418,649 0.012796
51 419,310 4 0.012521
52 420 69 0.011253
53 42 Q 424,917 0.011312
54 424,982 0.009106
55 39 425,824 0.006345
56 ,226 * 426,702 0.008213
57 424,228m 426,829 0.006131
58 424,727 427,021 0.005401
59 425,195 427,396 0.005176
60 427,399 0.003105
61 427,818m 0.001775
62 428,458 —0.00017
63 428,740 —0.00202
64 \ 6 428,953 —0.00332
65 430,474 —0.00123
66 431,923 —0.00032
67 432,087 —0.00102
68 433,354 432,213 —0.00263
69 434,548 432,618 —0.00444
435,761 432,915 —0.00653
435,763 433,809 —0.00448
436,114 435,112 —0.00230
7 437,010 436,299 —0.00163
437,361 436,568 —0.00181
438,788 437,324 —0.00334
76 438,795 437,835 —0.00219
77 439,947 438,943 —0.00228
78 440,671 439,607 —0.00241
9 440,721 440,199 —0.00118
8 442,020 440,423 —0.00361
443,202 441,448 —0.00396
443,895 441,837 —0.00464
8 444,696 442,721 —0.00444
84 445,399 443,428 —0.00443
85 446,193 444,309 —0.00422
86 447,227 445,394 —0.00410
87 448,114 446,761 —0.00302
88 448,787 447,340 —0.00322
89 449,108 448,559 —0.00122

(continued on next page)
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Table 6 (continued)

Number of POGS Total Revenue Revenue Difference (TD-
BU)/BU
BU TD
90 450,185 449,196 —0.00220
91 451,599 450,001 —0.00354
92 451,625 450,385 —0.00275
93 452,264 451,026 —0.00274
94 452,822 451,967 —0.00189
95 453,632 452,704 —0.00205
96 454,211 453,791 —0.00092
97 454,903 454,508 —0.00087
98 455,223 455,236 0.0000286
99 455,913 455,913 0.000000
100 456,315 456,315 0.000000
Total Computing Time 7350 11,275 SUM = 0.6044
(sec)
References Muppani, V. R., & Adil, GK. (2008). Class-based storage-¥@@atio nment to minimize
pick travel distance. fternational Journal of Logj, rch and Application, 11(4),

247-265.
Chan, F. T. S., Chan, H. K., & Choy, K. L. (2006). A systematic approach to manufacturing Prendergast, G., §
packaging logistics. International Journal of Advanced Manufacturing Technology, 29, Are there gf
1088-1101.
Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Satle® optimal boundaries for class-based
Operations Research, 8, 101-111. gacement Science, 35(12), 1519-1524.
Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal storage assignment in E . . fers, J. Desrosiers, & M. M. Solomon (eds.),
automatic warehousing systems. Management Science, 22(6), 629-638. e
Lubbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53(6), 1007-1023.
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