
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Distribution product packaging to maximize net revenue

Xiubin Bruce Wanga,⁎, Yihua Lib, Luca Quadrifoglioa, Kai Yinc

a Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, United States
bUnited Airlines, Willis Tower, 233 South. Wacker Drive, Chicago, IL 60606, United States
cHomeAway, Austin, TX 78727, United States

A R T I C L E I N F O

Keywords:
Packaging
Product distribution
Column generation

A B S T R A C T

This paper studies a problem in which a distribution center of a chain store packages a small subset of a large
number of available products (e.g. DVDs) to distribute to its local stores. Only a limited number of different
packages are allowed. We determine what products are in each package and what package to distribute to each
store for revenue maximization. A column generation method is developed in which the sub-problem generates
candidate packages and corresponding stores to serve while the master problem determines the final packages on
the production lines. Two heuristic methods are proposed to generate the candidate packages for the sub-pro-
blem. Bounds are derived for both the optimal number of packages and the total revenue in order to expedite the
solution. The algorithm shows great promise with operational data from a chain store that serves several
thousand retail locations.

1. Introduction

In the retail of large chain stores, similar products are typically
packaged together at distribution centers (DC) to distribute to local
stores. However, the limited space at retail stores and the large number
of substitutable products available at a DC require only the most
profitable products to be packaged and distributed. In addition, the
number of package production lines, each for a different package, is
subject to a limit due to space availability and the economies of scale in
packaging, which often leads to several stores served by an identical
package. Obviously, the packaging and distribution decision is complex
in order to maximize the chain store’s profitability.

This paper considers a chain store distribution center (DC) that has a
set of DVD titles available from entertainment companies at the be-
ginning of the sales season. DVDs of different titles are packed before
being distributed to its local stores for sale. According to the industry
convention, a title combination is referred to as a Plan-O-Gram later (or
POG). Due to the shelf display capacity, a POG may not have more than
N different titles in it. Each local store has a market for DVD titles. At a
store, different titles may bring in different revenues. And the same title
may have different revenues at different stores. In this problem, exactly
one POG package is needed at each local retail store according to the
identical fixture (e.g. shelf) for title display. Each POG has a constant
setup cost c for the packaging line accounting for labor, capital and lot
size at the DC. In addition, the number of POGs p must be within a
range p p[,]min max for practical considerations. At the end of the sales

season, unsold DVDs are collected back to the DC at no additional cost.
For simplicity, we assume that this problem does not replenish in-
ventory during the sales season or equivalently, the replenish cost is
assumed to be zero. The objective here is to decide the number of POGs,
the titles in each of them, and the stores each POG serves in order to
maximize the overall sales revenue less packaging cost.

In this problem, the demand at a particular retail store i is specified
by a quantity for each title k at a preset retail price,

= …D d d d(, , ,)i i i ik1 2 . The demand can also be equivalently represented
by its revenue = …R r r r(, ,)i i i ik1 2 , where =r f d()ik ik , for alli k, . This paper
adopts the latter. Furthermore, we assume that demand for one title is
independent of another title’s availability. This assumption appears
restrictive, but is necessary in subsequently developing efficient algo-
rithms. Because of the large number of available titles, the ones in a
POG are most likely in different DVD categories. Therefore, the final
solution turns out generally reasonable and acceptable. This in-
dependence assumption particularly applies to the situation in which
products are from different categories and are not substitutable. In
addition, only the packaging setup cost is considered. In comparison,
shipping cost is not considered in this problem for two reasons. First, a
package always needs to be shipped to each retail store regardless of its
content. Secondly, the shipment is typically conducted with large vo-
lumes of other products, and has a negligible marginal cost. Naturally,
there are a large number of potential combinations for POG. Ideally,
each individual retail store would have a POG package of its most de-
sired titles to maximize the revenue if other stores were not present.

https://doi.org/10.1016/j.cie.2018.05.015
Received 27 December 2017; Received in revised form 16 April 2018; Accepted 10 May 2018

⁎ Corresponding author at: ROOM 303C, DLEB Building, 3136 TAMU, College Station, TX 77843, United States.
E-mail addresses: bwang@tamu.edu (X.B. Wang), yihua.li@united.com (Y. Li).

Computers & Industrial Engineering 121 (2018) 150–160

Available online 22 May 2018
0360-8352/ Published by Elsevier Ltd.

T

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.05.015
https://doi.org/10.1016/j.cie.2018.05.015
mailto:bwang@tamu.edu
mailto:yihua.li@united.com
https://doi.org/10.1016/j.cie.2018.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.05.015&domain=pdf

But, due to the packaging setup cost, only a (much) smaller number of
packages will be chosen, a number much smaller than the number of
titles. Fig. 1 illustrates the packaging and distribution process. As in
Fig. 1, a combination of titles corresponds to one POG. And one POG
serves one or more stores. Each store receives a particular POG package.

By background, a fixture at a local store is a special shelf for DVD
title display. In one of our studies, a fixture has a capacity of displaying
about 180 different titles. In this case, a serving POG fills the fixture
perfectly up to this capacity when revenue is maximized. Depending on
the shelf depth of a fixture, each title in a POG package can have a
number of DVD duplications. As the shelf depth is exogenous to this
problem, it suffices to only decide the titles in each POG.

Product packaging and distribution is a popular practice. Large
chain stores such as War-Mart, Target and Best Buy decide their POGs
and make pricing decisions about every 3months according to demand
updates. Although this problem is significant, we have not seen any
other study directly related to this particular packaging and distribution
problem.

Research on product packaging is traditionally about determination
of packaging materials, package size, weight and other characteristics
to balance cost with safety and handling efficiency (see Chan, Chan, &
Choy, 2006, for example). One of the traditional functions of product
packaging therein is product promotion. In another study, Prendergast
and Pitt (1996) consider packaging for physical movement and en-
vironmental impact. In contrast, our paper determines bundling of
substitutable products for distribution, a critical link being missing in
the traditional retail product distribution. In literature, the product
storage location assignment problem that determines the location for
each product in a warehouse to minimize the total order picking dis-
tance appears inherently similar to our problem (see Hausman,
Schwarz, & Graves, 1976; Muppani & Adil, 2008; Rosenblatt & Eynan,
1989, for examples). Both problems essentially involve two inter-re-
lated decisions: product grouping and location/space allocation, in
which the location/space decision is about deciding the size of location
space. However, the two are not analytically equivalent.

This problem challenges both modeling and solution development.
The solution can be considered as one that pools multiple titles/pro-
ducts to serve a set of stores, or alternatively, that pools stores to sell
identical POG packages. The number of store groups, each served by an
identical POG, and the number of POGs, needs to balance with the POG
setup cost and potential market revenues. A computationally efficient
algorithm is necessary becausethe large number of potential combina-
tions of titles and stores leads to a prohibitive complexity.

We propose a formulation and subsequently a column generation
method for this problem. The column generation method dated back to
Dantzig and Wolfe (1960). Lubbecke and Desrosiers (2005) provide a
complete overview of literature on mixed integer column generation.
Vanderbeck (2005) specifically provides a tutorial. In this paper, we
propose two heuristics for generating columns (POGs), namely Bottom-
Up (BU) and Top-Down (TD). Our numerical test shows clear advantage
of the TD over the BU method. Therefore the TD method is adopted to
generate POGs. In the iteration process, we develop bounds for the
optimal number of POGs using results from both the TD and BU

methods. The bounds tighten quickly with iterations. We further pro-
pose a simple search method based on a concavity property to find the
optimal number of POGs. With operational data from a large chain
store, the solution algorithm is tested to be satisfactory.

The organization of this paper is as follows. Section 2 provides an
illustrative example to facilitate understanding of the problem. In
Section 3, a problem formulation is presented and is decomposed using
the column generation method. Two algorithms are presented to solve
the non-linear sub-problem. In Section 4, a flow chart of the solution
algorithm is introduced. Some structural properties are studied in
Section 5 followed by numerical tests based on large scale production
data. Section 6 concludes this paper with a summary of major findings
and remaining challenges.

2. An illustrative example

We present an example to illustrate the problem and solution.
Assume an identical fixture at 4 stores. The fixture allows 4 titles in a
POG, e.g., N=4, selected from 8 DVD titles. The expected revenues of
each title at the stores are shown in Table 1 below with a packaging cost
c = $500 for each POG.

If we require the number of POGs p=1, an optimal solution is to
pack Title 1 through 4 in the POG to serve all the four stores, as in
Table 2. The total revenue is $20,000.

At p=2, the two POGs in an optimal solution (T1, T4, T7, T8) and
(T2, T3, T5, T6) as in Table 3 serve stores (S1, S4) and (S2, S3) re-
spectively with a total revenue of $24,000. The solution can be re-
presented as below.

Triplet 1: ($12,000, (S1, S4), (T1, T4, T7, T8))
Triplet 2: ($12,000, (S2, S3), (T2, T3, T5, T6))

We define a triplet as a vector of a revenue, a set of stores served,
and a set of titles in a POG. The revenue results from distributing the set
of titles to the stores. More introduction to triplet is available in Section
3.

At p=3, the solution is three triplets as in Table 4 with a total
revenue of $24,000.

Triplet 1: ($12,000, (S1, S4), (T1, T4, T7, T8))
Triplet 2: ($6000, (S2), (T2, T3, T5, T6))
Triplet 3: ($6000, (S3),(T2, T3, T5, T6))

At p=4, an optimal solution as in Table 5 has four triplets with a
revenue of $24,000.

Triplet 1: ($6000, (S1), (T1, T4, T7, T8))
Tripelt 2: ($6000, (S2), (T2, T3, T5, T6))
Triplet 3: ($6000, (S3), (T2, T3, T5, T6))
Triplet 4: ($6000, (S4), (T1, T4, T7, T8))

If each POG has a setup cost $500, the above example has an op-
timal solution at p=2 with a profit being

− × ="$"24, 000 2 500 "$"23, 000.

Title 1

Title 2

Title n

……

POG 1

POG p

……

Store 1

Store 2

……

Store m

Titles POGs Package Distribution

Fig. 1. An example DVD packaging and distribution process.

Table 1
Revenue matrix.

Store No Title

1 2 3 4 5 6 7 8

1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000
2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

151

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

3. Problem formulation and solution

First, we define the following notation.

xijk indicator variable which equals to 1 if POG k containing title j
serves store i, equals to 0, otherwise.

zk indicator variable which equals to 1 if POG k serves at least
one store and contains one title; equals to 0, otherwise. It
indicates whether a production line for package k is needed.

S set of retail stores.
P set of all possible POGs.
p number of POGs. p∗ is the optimal number.
T set of titles.
pmin minimum number of POGs, which is zero if not specified

otherwise.
pmax maximum number of POGs, which equals to |S| if not specified

otherwise. The min/max number p is pre-determined by the
decision maker.

N the number of different titles included in each POG.
ck packaging cost of POG k, which is assumed a constant c later if

not specified otherwise.
rij revenue of title j at store i.
qk total revenue in a triplet from distributing POG k.
sik indicator variable which equals to 1 if store i is served by POG

k; and 0, otherwise.
tik indicator variable which equals to 1 if title i is assigned to POG

k; and 0, otherwise.
Ωk the set of triplets (or POGs with associated stores) by the kth

iteration in the column generation (CG) procedure.
θij indicator variable. It is 1.0 if store i is in POG j, 0 otherwise.

Of these notations, the decision variables includexijk, zk, sik. The rest are
given parameters in the formulation.

3.1. Mathematical formulation

Assuming an exhaustive set of POGs available, the problem can be
formulated as follows.

∑ ∑ ∑ ∑−
∈ ∈ ∈ ∈

r x c zMax
i S j T k P

ij ijk
k P

k k
(1.1)

Subject to:

∑ = ∀ ∈
∈

s i S1
k P

ik
(1.2)

∑⩽ ∀ ∈ ∀ ∈
∈

s x i S k P,ik
j T

ijk
(1.3)

⩾ ∀ ∈ ∀ ∈ ∀ ∈s x i S j T k P, ,ik ijk (1.4)

∑⩽ ∀ ∈ ∀ ∈
∈

t x j T k P,jk
i S

ijk
(1.5)

⩾ ∀ ∈ ∀ ∈ ∀ ∈t x i S j T k P, ,jk ijk (1.6)

∑ ⩽ ∀ ∈
∈

t N k P
j T

jk
(1.7)

∑ ∑⩽ ∀ ∈
∈ ∈

z x k Pk
i S j T

ijk
(1.8)

⩾ ∀ ∈ ∈ ∈z x i S j T k P, ,k ijk (1.9)

∑ ⩾
∈

z p
k P

k min
(1.10)

∑ ⩽
∈

z p
k P

k max
(1.11)

= ∀ ∈ ∀ ∈ ∀ ∈x i S j T k P0, 1 , ,ijk (1.12)

= ∀ ∈ ∀ ∈s i S k P0, 1 ,ik (1.13)

= ∀ ∈ ∀ ∈t j T k P0, 1 ,jk (1.14)

= ∀ ∈z k P0, 1k (1.15)

The first term of the objective function is for the total gross revenue,
the second term the total packaging cost associated with the number of
POGs. Here x is a binary decision variable assuming a known ex-
haustive set of combinations i j k(, ,). The constraint (1.2) requires each
store be covered exactly once. The constraints (1.3) and (1.4) specify an
incidence relationship to indicate whether a store is served by a POG.
(1.3) is binding only when store i is not served by POG k, in which case
∑ =∈ x 0j T ijk that forces =s 0ik via constraint (1.3); (1.4) is binding only
when store i is served by POGk, in which case some = ∃x j1,ijk that
forces =s 1ik via constraint (1.4). The constraints (1.5) and (1.6) define
a binary variable to determine if a title is included in a POG. (1.5) and
(1.6) are defined in a similar fashion to constraints (1.3) and (1.4),
respectively. The constraint (1.7) limits the number of titles in a POG.
Similarly, the constraints (1.8) and (1.9) specify an incidence re-
lationship to define if POG k is used. Constraint (1.8) is binding when
for some k, = ∀x i j0, (,)ijk , which forces =z 0k . Constraint (1.9) is
binding when for some ∃ i j(,), =x 1ijk , which forces =z 1k , meaning

Table 2
Optimal Solution at p=1.

POG Store Title

1 2 3 4 5 6 7 8 Total

1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $5000
2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $5000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $5000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $5000

Table 3
Optimal Solution at p=2.

POG Store Title

1 2 3 4 5 6 7 8 Total

1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000

2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

152

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

package k is being produced. The constraints (1.10) and (1.11) specify
the lower and upper bounds to the number of POGs.

For profit maximization, the number of titles in each POG always
reaches its maximum N provided the title’s respective revenue is posi-
tive. Therefore, the constraint (1.7) is always binding in the solution. In
addition, this proposed formulation implies enumeration of POGs and
store assignments. Considering the large number of stores (up to 3500,
for example) and DVD titles (up to 5000), an exhaustive enumeration is
a prohibitive task.

To illustrate the solution structure, we define an entity called triplet
(r, s, t) according to each POG, where t is a vector of titles in a parti-
cular POG, s is a vector of stores that the POG serves, ∈r 1is a scalar
for the total revenue from distributing this POG package to stores s. In
our solution later, we always associate a triplet with each POG. The
decision becomes to develop a set of triplets so that each retail store is
covered once and only once by a triplet to maximize the overall revenue
less packaging cost. Fig. 2 shows a set of triplets as a feasible solution to
a packaging and distribution problem, in which the three POGs are
planned covering the five stores.

The final solution shall be a set of triplets, specifying a one to one
correspondence between each store and a package. Interestingly, if we
know the set of stores sharing the same POG, the set of titles in this POG
would be easily determined by maximizing the total revenue. The way
to identify this set of titles is first to ranking order all titles, each have
its total revenue to the stores served. Then we take the top titles ac-
cording to revenue to pack into the package. The following proposition
clarifies this relationship.

Proposition 1. A set of stores in a triplet is sufficient to decide the optimal
revenue from the titles in the according POG assigned to serve them.

In light of Proposition 1, in what follows, we can find that the set of
stores in a triplet also indicate a unique optimal revenue and a set of
titles selected, therefore a set of stores in a triplet may represent an
entire triplet in a solution. This is because the optimal set of titles to
include in the package serving the same group of stores can be easily
determined once the group of stores is known, as explained earlier.
Therefore, first grouping the stores before deciding the titles to them
represents an effective way to solve the problem. Specifically, we will
often mention inclusion or assignment of a store to a POG. This implies
a slight misuse of the term POG according to its earlier definition,
which initially refers to the POG as a group of titles.

Obviously, it is very important to group the stores together with
similar demand characteristics. Therefore, a solution process shall
provide a means to guiding clustering of the stores into groups, each

group corresponding to a triplet.
We propose to use the column generation method. In what follows,

we introduce both the master problem and the sub-problem for the
initial formulation.

3.2. A Column generation approach

The formulation (1.1)–(1.15) is decomposed into a master and a
sub-problem. The master problem selects the optimal set of POGs to
maximize revenue less packaging cost, which is essentially a set cov-
ering problem with a given set of triplets. The sub-problem uses the
store specific dual values from the master problem to generate new
POGs, or equivalently, triplets. Subsequently, the candidate triplets are
fed back into the master problem. This process repeats until the optimal
solution is reached from the master problem, or until a stopping cri-
terion is met. In this section, a POG is referred to as a set of stores with
an according optimal revenue, which is equivalent to a triplet as ex-
plained earlier in the paper.

The master problem is formulated as follows.

3.2.1. The master problem
In the following formulation, we present the master problem.

∑ ∑−
∈ ∈

q z c zMax
k

k k
k

k
Ω Ωm m (2.1)

Subject to:

∑ = ∀ ∈
∈

θ z i S1
k

ik k
Ωm (2.2)

∑ ⩾
∈

z p
k

k
Ω

min
m (2.3)

∑ ⩽
∈

z p
k

k
Ω

max
m (2.4)

= ∀ ∈z j0, 1 Ωk m (2.5)

Note that θij is an incidence indicator between store i and POG j. It is
1.0 when POG j serves store i; 0, otherwise. It is a known (or given)
parameter in the master problem. The objective is to maximize the total
gross revenue minus the total packaging cost of selected POGs, the net
profit. The constraint (2.2) corresponds to (1.2), and means each store
must be covered exactly once. The constraints (2.3) and (2.4) corre-
spond to (1.10) and (1.11), ensuring a lower and an upper bound to the
number of POGs. In the iterative process introduced later, the linear
relaxation of the master problem is solved so that a dual value for

Table 4
Optimal Solution at p=3.

POG Store Title

1 2 3 4 5 6 7 8 Total

1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000

2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000

Table 5
Optimal Solution at p=4.

POG Store Title

1 2 3 4 5 6 7 8 Total

1 1 $2000 $1000 $1000 $1000 $1000 $1000 $2000 $1000 $6000
2 2 $1000 $2000 $1000 $1000 $1000 $2000 $1000 $1000 $6000
3 3 $1000 $1000 $2000 $1000 $2000 $1000 $1000 $1000 $6000
4 4 $1000 $1000 $1000 $2000 $1000 $1000 $1000 $2000 $6000

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

153

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

constraint (2.2) may be obtained.

3.2.2. Sub-problem (Column Generation)
We define ⌢rij as the modified revenue of store i with title j, that is,

 = −r r πij ij i, where πi is the dual value for store i from constraint (2.2) in
the master problem. In some practical literature, the dual value of a
constraint is also called shadow or bid price. In this case, one may in-
terpret that the dual value associated to store i represents the locational
potential for revenue. The sub-problem generates candidate POGs (sets
of stores) with modified revenues for titles. Again, we take the POG as
triplet equivalent.

∑ ∑ ⌢
∈ ∈

r xMax
i S j T

ij ijk
(3.1)

Subject to:

∑⩽ ∀ ∈
∈

s x i Sik
j T

ijk
(3.2)

⩾ ∀ ∈ ∀ ∈s x i S j T,ik ijk (3.3)

∑⩽ ∀ ∈
∈

t x j Tjk
i S

ijk
(3.4)

⩾ ∀ ∈ ∀ ∈t x i S j T,jk ijk (3.5)

∑ =
∈

t N
j T

jk
(3.6)

= ∀ ∈ ∀ ∈x i S j T0, 1 ,ijk (3.7)

= ∀ ∈s i S0, 1ik (3.8)

= ∀ ∈t j T0, 1jk (3.9)

The constraints are as defined in the original formulation
(1.1)–(1.15). Here index k refers to a specific column being generated.
Constraints (3.2) and (3.3) become redundant and can be eliminated.

The sub-problem is difficult to solve. It contains two major deci-
sions: generating a set of titles and a set of stores served by the titles.
Therefore, we must resort to heuristics.

3.2.3. Proposed Sub-problem algorithms
The sub-problem solves for a set of POGs as a solution to cover all

stores, each POG containing exactly N titles. The logic is that in this way
we can always guarantee a feasible solution in the master problem.
However, this does not limit the master problem to choosing POGs
generated at only one iteration from the sub-problem. The poor POGs
from the sub-problem may be spelled out of the optimal solution in the
master problem. In other words, the master problem can still bundle
POGs generated by the sub-problem from multiple iterations.
Interestingly, a poor POG at one iteration may become good at a later
iteration due to the change of revised revenue. As indicated in our
numerical tests, most of the optimal LP solutions to the master problem

(after a large number of iterations between the master and sub-pro-
blems) turn out to be integers. This way of generating POGs is empirical
and experimentally proved to be good.

Two heuristics are developed, namely Bottom-Up (BU) and Top-
Down (TD). They are respectively explained in the following. Note that
the sub-problem uses revised revenue with duals from the master pro-
blem.

3.2.3.1. BU algorithm. The BU algorithm starts with each store being
served by an exclusive POG with the most desired N titles. In this case,
each store selects its most profitable titles only subject to the limit N of
the POG size. The set of titles selected for each store are the top N titles
in the rank list of titles according to their revised revenue. Therefore,
first rank order the titles for each store, which is a polynomial time
process. Subsequently, the BU algorithm iterates by merging two POGs
into one each time until a stopping criterion (to explained shortly) is
met. Details of the merger will be introduced shortly. If we use pk for
the number of POGs at step ⩾k 1, we have =p S| |1 .

Among the −p p(1)k k
1
2 pairs of POGs potentially considered for

merger at step k, the two POGs with the least reduced total revenue
from merger are selected to merge, and the subsequent step has

= −+p p 1k k1 POGs. When evaluating the revenue increase from a
merger between two POGs, we pool together the stores served by both
POGs. Then a new rank order of all the titles is developed accordingly
based on their individual revenue to the pooled stores. The top N titles
are selected. The revenue decrease due to merger is then assessed. This
process does not stop until either of two conditions is met: (1) the total
number of POGs is smaller than the maximum limit pmax AND the in-
creased revenue from further merger is negative; (2) the total number
of POG has reached the lower limit pmin. Theoretically, it is possible that
some mergers do not improve revenue but just serve to reach pmax. Note
that the cap on the number of POGs is exogenous and is often sub-
jectively set by management due to factors not explained in the model.

This algorithm builds from each individual store having an ex-
clusive POG, and is therefore called Bottom Up (or BU). It is briefly
summarized below where k represents the index of iteration.

Step 1. Set k=1. Each store ∈i S defines its own best set of N titles
and is assigned to a unique POG i. This implies generation of a triplet
for each store. This step ends with a number of POGs equal to the
number of stores, =p S| |1 . If we use P1 for the set of POGs at this
step, P1 has |S| POGs.
Step 2. Set k= k+1. Merge POG i and POG j into a new POG if i
and j have the least revenue reduction among all potential mergers.
Set = −−p p 1k k 1 . Now Pk contains −Pk 1 plus the new POG less the
two merged POGs.
Step 3. Repeat Step 2 till either of two conditions is met: (1) the total
number of POGs is smaller than the maximum limit pmax AND the
increased revenue from further merger is negative; (2) the total
number of POGs has reached the lower limit pmin.

Triplet Retail Store DVD Title

Supply of Titles

Retail Stores

Fig. 2. Illustration of triplets and a feasible solution.

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

154

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

The BU algorithm ends up with a set of POGs that constitute a
feasible solution to the original problem. As indicated in Step 2, eval-
uating each merger and finding the optimal merger at each step is a
polynomial time, but time-consuming process.

Associated with the BU algorithm is the following property.

Proposition 2. To allow each store has its own POG generates an upper
bound on the gross revenue.

Proposition 2 is obvious. Be aware that the gross revenue in
Proposition 2 does not account for the packaging cost.

3.2.3.2. TD algorithm. Here TD refers to a top down process. In contrast
to the BU, this algorithm starts from having only one POG for all the
stores. Set =p 11 , and accordingly P1 contains the one POG. The best set
of titles for this single POG can be selected easily in the following way.
Rank order the titles based on their total revenues from all the stores,
and select the top N titles in the triplet (or, POG). Revenue evaluation of
titles for a set of stores is a common function in our algorithm, which
has been explained in the BU method for POG mergers.

After a single POG is generated for all the stores, we first split it into
two. We continue splitting, one POG at a step. At step k − 1, we end
with a set of POGs, −Pk 1, to consider for further splitting. We examine
the revenue increase potential from the split of each POG, and split the
POG j with the most incremental revenue into two new POGs, j(1) and j
(2). Then set the total POG = +−p p 1k k 1 .

In this process, an assignment function Assign (n, s) is proposed,
where n is the number of POGs resulting from splitting an original POG
serving stores s. Specially in our proposed TD method, n=2. The
function Assign (n, s), to be explained in more details shortly, returns n
best triplets from s and a total revenue increase from the split. The POG
with the most revenue increase potential from split is finally selected to
split. After the split, Pk at next step has two new additions less the one
being split. This process does not terminate until either of two condi-
tions is met: (1) The total number of POG at step k ⩾p pk min and profit
increase from a split is negative; OR, (2) the maximum number of POG
pmax is reached, i.e., =p pk max.

The function Assign (2, s) is applied to each POG in Pk to assess the
revenue potential. We introduce more details about Assign (2, s) here.
The split starts with setting two empty POGs, j(1) and j(2) for an ori-
ginal POG j with stores s. It examines each store in s to decide which of j
(1) and j(2) to assign it to. The revenue potential from an addition of a
store from s, say store m, to a new POG j(i), ∈i {1, 2}, is evaluated by
the difference between the revenue from the stores already in POG j(i)
without store m and the revenue from the stores in POG j(i) with an
addition of store m. Store m is assigned to the new POG j i()with the
bigger revenue increase. Then update the set of stores in this new POG
with the addition of store m. Repeat the process until every store in s is
assigned to either j(1) or j(2). Clearly, this is a myopic policy for split.

Again, the revenue from the stores in a POG is evaluated in the same
way as in the BU method: rank order the titles based on revenues from
this set of stores, and select the top N titles. In this way, triplets (r, s, t)
are implicitly generated.

Note that in this splitting process, stores with similar demand and
revenue potentials tend to remain together. However, as a special case,
the first n stores considered in s by the function Assign(n, s) are always
spread evenly into the n new POGs. The reason is that the incremental
revenue from including a store to an empty POG is always not smaller
than that from assigning the store to a non-empty POG.

The TD algorithm is summarized below.

Step 1. Initialize k=1. Define the best set of titles to one POG
serving all stores and set =p 11 and P1 has only one POG, e.g.

=P S{ }1 . Set k= k+1, and go to step 2.
Step 2. At step k, apply Assign (2, s) to every POG in −Pk 1. Select the
POG which potentially generates the most incremental revenue from
the split, and split into 2 POGs. Update the set of POGs, Pk, with

addition of the two new POGs to, and reduction of the one split
from, −Pk 1. Set = +−p p 1k k 1 and k= k+1.
Step 3. Repeat Step 2 until one of two conditions is met: (1) The total
number of POG at step k, ⩾p pk min, and profit increase from a split
is negative; (2) the maximum number of POG pmax is reached, i.e.,

=p pk max.
Proposition 3. One single POG serving all the stores gives rise to a lower
bound on the total gross revenue from the optimal solution.

3.3. Bounds for the optimal number of POGs and a search heuristic

As seen, if we know the optimal, or a specified, number of POGs, we
will directly generate the exact number of POGs in either the BU or TD
method at each iteration. Accordingly, in the master problem, we
would set both the upper bound and the lower bound to be this specific
number of POGs (if no other bounds are imposed). This method is
adopted in our subsequent numerical test. Experimentally, knowing this
optimal POG number expedites the solution process for the optimal
POGs. We call this a point solution. In comparison, without knowing
the exact optimal number of POGs, the master problem is extremely low
efficient. Our solution follows the idea of this point solution. This is
conducted by first narrowly bounding the optimal number of POGs with
a limited number of point solutions.

In what follows, we develop methodologies to iteratively reduce the
range for the optimal number of POGs, which builds on the following.

Observation 1 The objective value from the Integer Programming
(IP) solutions to the formulation (1.1)–(1.15) increases approxi-
mately at a decreasing rate with the number of POGs (e.g. z values).

Specially, Observation 1 is correct when the POG increases from
zero to two, which is easy to verify. For a number of stores beyond two,
the proof becomes difficult. Unfortunately, we do not have a grasp to
prove Observation 1, although we know the LP relaxation of
(1.1)–(1.15) is concave in z.

Observation 1 is supported by numerical tests. In the subsequent
100 store example, the total revenue and profit functions both appear
concave in the number of POGs.

The following result is partially derived from Observation 1.

Proposition 5. With Observation 1, the optimal number of POGs ∗p

satisfies ⩽ ⩽∗p p pDN UP, where = − ×
−()p max 1,DN R S c

R c
| |UP

DN and

= +−()p Smin | |, 1UP R R
c

UP DN
. The optimal net profit, revenue less

packaging cost, is greater than or equal to − × −R S c R cmax{ | | , }UP DN ,
where x ymax{ , } and x ymin{ , } return the larger and smaller values of x
and y, respectively.

Proof. Denote the revenue at the optimal POG number ∗p by ∗R . Note
that − ×R S c| |UP is the profit when the number of POGs allowed is equal
to the store number.

If we draw a line from =R 0 at z= 0 through =R RDN at z= 1 on
the revenue curve, the rate of revenue increase is RDN , an upper bound
for the increase rate due to Observation 1. It takes a minimum of

− ×
−

R S c
R c

| |UP

DN packages to achieve a profit − ×R S c| |UP . The number of
packages necessary to reach the optimal profit is obviously higher than
this. In addition, this number should not be less than one. This proves
the first inequality.

Furthermore,
− ⩽ −∗ ∗R c R p cDN (Both sides represent revenue minus packaging

costs), and
> ∗R RUP (This is from Proposition 1).

The first inequality minus the second one gives − − ⩽ − ∗R R c p cDN UP ,
which shows ⩽∗p pUP.

It follows that − ⩾ − ⩾ − −∗ ∗ ∗R p c R p c R R(DN DN UP

− = − −R c R R c) 2DN DN UP , which provides a potential lower bound to the

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

155

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

optimal profit. This bound is not as tight as a bound from the TD
method, −R cDN

. The BU method provides another lower bound in
profit, − ×R S c| |UP .

Clearly a lower bound results: − × −R S c R cmax{ | | , }UP DN . □

As a special case in Proposition 5, if the (marginal) packaging cost is
zero, ⩾pDN R

R

UP

DN . Proposition 5 helps to decide an approximate range
for the number of POGs. Computationally, it is very costly to solve for
the optimal POGs even at a given number z of POGs, as experienced in
the numerical test. Our test shows that this bound significantly reduces
the range for the optimal number of POGs. A practical meaning in our
algorithm of having this bound is that we do not need to generate so-
lutions in the BU or TD method with the number of POGs exceeding this
bound. By developing a tight bound on the optimal number of POGs, a
significant savings in computational time is achieved. However, as will
be seen in our test, the lower bound on ∗p is usually very close to 1, very
loose.

4. Flow chart of the iterative algorithm

The POGs generated from the sub-problem heuristics are first fed to
the master problem for LP solution. If the solution to the master pro-
blem is not optimal to the original problem, the dual values from the
master problem will be used to revise the revenue from each title. The
revised revenues are used in the subproblem heuristics, which will in
turn generate new candidate columns for the master problem. The
standard iteration between a master problem and a sub-problem is
described as in Fig. 4.

Applying the B&B method in the process of column generation is
explained well in Vanderbeck (2005) and Lubbecke and Desrosiers
(2005).

5. Tightening bounds and numerical test

The master problem always contains a feasible solution due to the
TD or BU method. The quality feasible solutions play significant roles in
the master problem because of two advantages. The first is that they
provide a good lower bound to the master problem when the branch
and bound algorithm (B&B) is called. A good lower bound is critical to
application of the B&B algorithm. The second advantage is that the
feasible solution allows us to further tighten the bound on the optimal
POG number ∗p for the master problem, as described in Proposition 5.
In addition, a tight bound for the POG number is useful to both the BU
and TD methods. As will explained later, our solution algorithm de-
pends on having a fixed POG number.

The LP solution to the master problem provides dual values to guide
generation of POGs in the subproblem algorithm implementation. In
order for an efficient feasible solution, if the computational time ex-
ceeds 20 h, or if there is no improvement to the master problem ob-
jective function within 500 iterations between the master and

subproblems, the solution process terminates. The best solution that has
been generated from the subproblem is selected as the optimal solution
to this problem. Our heuristic feasible solutions allow us to stop the
master problem at anytime of our choice and always with a solution.

We next explain how a quality feasible solution helps tighten bound
on the optimal number of POGs. Suppose at some iteration, we have a
feasible solution from the sub-problem with revenue RI and n POGs that
we know ⩽∗p n. It is clear that this feasible solution implies a lower
bound for the objective value in the master problem, −R ncI . In addition,
if we denote the optimal revenue with two POGs byR2, we have,

Proposition 6. Suppose a feasible solution has n POGs with a total
revenueRI . In the case ⩾ ⩾∗n p 2, there holds

⩽ ⩽ +− − −
− −

∗ −pmax{2, } 1R R n c
R R c

R R
c

(2)I
DN

I DN2

2
in light of Observation 1.

Observation 1 implies that profit increase from =z 1 to =z 2 gives an
upper bound on the profit increase rate with z for >z 2. This helps
prove the lower bound for ∗p . Proof for the second inequality is obvious
because RI is a new upper bound of revenue.

5.1. Heuristic search for the optimal number of POGs

As indicated in the subsequent numerical tests, our bound on the
optimal number of POGs tightens fast, but is hardly further improved
after a number of iterations. As in the larger numerical test shortly later,
the range for the optimal POG number is improved from [1, 2500] to be
within [1, 20] after two iterations, after which, Proposition 6 does not
further tighten the bound. In this case, based on Observation 1, we
propose the following algorithm to further narrow the scope for the
optimal POG number which is most lately assumed bounded to within a
range p p[,]DN UP .

Step 1 Calculate the optimal revenues for two POG numbers p and
+p 1 in the middle of the range p p[,]DN UP with their revenues being

Rp and +Rp 1 respectively.
Step 2 If < −+R R cp p 1 , update with = +p p 1DN , and =p pUP UP.
Repeat Step 1. If > −+R R cp p 1 , update with =p pDN DN and =p pUP ,
and repeat Step 1. If = −+R R cp p 1 , stop the algorithm, and the op-
timal POG number is p or +p 1.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 5 10 15 20 25 30 35

Revenue

Profit

Number of POG

Fig. 3. Example Revenue and profit function with the number of POGs.

Initial Solution

master Problem

Stop with Final Solution

Branch and Bound

Sub-problem

Yes

No

No

Yes

Optimal to the Original
Problem?

Are Solutions Integer ?

Column X

Fig. 4. The standard column generation flow chart.

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

156

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

This heuristic search is based on Observation 1. One can easily find that
the maximum number of steps in the proposed heuristic search is
bounded bylog S

2
| |. For a store with 2500 locations, this bound is 11.3.

Note that in this process, calculation of revenue at a given POG number
with the master problem requires replacing constraints (2.3) and (2.4)
with ∑ =∈ z 1.0.j jΩk

5.2. Performance of the BU and TD methods

Both the BU and TD methods generate revenues that can be used for
calculation of bounds to the optimal POG number as indicated in
Proposition 5 and 6. We would like to choose between BU and TD for
the sub-problem based on their numerical performances.

A data set with 100 stores and 500 titles from the Target chain
stores is available. The fixture capacity allows display of 172 titles. The
number of POGs ranges from 1 to 100. Both the BU and TD methods are
applied to this data. The performance comparison is shown in Table 6 in
the Appendix A.

In Table 6, the comparison shows an overwhelming advantage of
the TD over BU method in terms of the total revenue when the POG
number is below 60. For the POG numbers above 60, the BU method is
slightly better in revenue. The computational time is a total for all the
100 cases, which shows that the TD method consumes about 50% more
time than the BU method. As computer time does not appear to be a
major concern for the application of the heuristics, we only adopt the
TD method in the following test problems. Although we could adopt
both and choose the better solution each time, we believe the marginal
gain in the improved solution is not worth the additional computational
time.

The following test uses the TD method.
Test 1
A total of 372 titles is available for 100 Target chain stores. The

fixture has a capacity of displaying 96 DVD titles. A cost of $5000 is set
per POG. In this relatively small test problem, we are able to see in
detail the performance of our proposed algorithm, part of which is il-
lustrated in Fig. 3 earlier. In this revised solution, we replace the con-
straints (2.3) and (2.4) with ∑ =∈ z pj j givenΩk

, where pgiven is a chosen
number of POGs.

Here, S| |=100, c = $5000, the revenue RUP (p=100) = $456315,
RDN (p=1) = $354626, where the parameter in parentheses is for the
number of corresponding POGs.

Iteration 1.

⎜ ⎟= ⎛
⎝

− ×
−

⎞
⎠

= ⎛
⎝

− ×
−

⎞
⎠

=

p R S c
R c

max 1, | | max 1, 456315 100 5000
354626 5000

1(POG)

DN
UP

DN

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈

p R R
c

min 100, 1 min 100, 456315 354626
5000

1

21(POGs)

UP
UP DN

Thus, 1≤ p∗ ≤ 21.
Iteration 2. Update Rup with R(pUP=21) = $400527:

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈

p R R
c

min 100, 1 min 100, 400527 354626
5000

1

10,

UP
UP DN

Thus, 1≤ p∗ ≤ 10.
Iteration 3. Update Rup with R(pUP=10) = $388302:

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈p R R
c

min 100, 1 min 100, 388302 354626
5000

1 7,UP
UP DN

Thus, 1≤ p∗ ≤ 7.
Iteration 4. Update Rup with R(pUP=7) = $383569:

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈p R R
c

min 100, 1 min 100, 383569 354626
5000

1 6,UP
UP DN

Thus, 1≤ p∗ ≤ 6.
Since 6 is small enough, we are able to find the optimal solution for

each POG number as follows.

Maximum Revenue(6) = $382380, profit = $352,380
Maximum Revenue(5) = $380249, profit = $355,249
Maximum Revenue(4) = $376920, profit = $356,920
Maximum Revenue(3) = $373487, ∗profit = $373,487 – 3∗5000 =
$358,487 (Optimal)
Maximum Revenue(2) = $367476, profit = $357,476
Maximum Revenue(1) = $354626, profit = $349,626

The optimal solution from CG includes p∗ = 3, R∗ = $373183, and a
profit = $358,183.

Test 2
Test 2 is a full-sized problem from real production data. At each of

the 2500 locations of a chain store, there is a fixture for displaying 180
DVD titles selected from a total of 500 titles. The packaging cost is
subjectively determined to be $250,000 per POG by the management.
By background, the current annual revenue from DVD sales is in multi-
billion dollars. Thus, a small percentage improvement of revenue is
significant.

A sample forecasted revenue matrix is illustrated in Table 7.
With the TD method, it is easy to get RDN= R(p=1) =

$69,666,310, RUP=R(p=2500) = $91,958,456. Here, S| |=2500, c =
$250,000. Then we start to tighten the bound for the optimal number of
POG p∗ as follows.

Iteration 1.

⎜ ⎟= ⎛
⎝

− ×
−

⎞
⎠

= ⎛
⎝

− ×
−

⎞
⎠

=

p R S c
R c

max 1, | | max 1, 91958456 2500 250000
69666310 250000

1(POG)

DN
UP

DN

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈

p R R
c

min 2500, 1

min 2500, 91958456 69666310
250000

1 90(POGs)

UP
UP DN

Thus, 1≤ p∗ ≤ 90. Here the optimal revenue at =p 90is
=R "$"74, 437, 632. Update RUPwith R, which will be used in the next

iteration to strengthen the bound on ∗p .
Iteration 2.

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

= ⎛
⎝

− + ⎞
⎠

≈

p R R
c

min 2500, 1

min 2500, 74437632 69666310
250000

1 20(POGs)

UP
UP DN

Table 7
Revenue Forecast Matrix (Stores/Titles).

StoreID⧹TitleID Title001 Title002 Title003 … Title498 Title499 Title500

S0001 $741 $55 $659 … $14 $151 $741
S0002 $196 $82 $96 … $247 $181 $316
… … … … … … … …
S2500 $226 $92 $206 … $41 $247 $412

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

157

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

Within 2509 iterations between the master and Sub-problems when
the number of POGs is 20, CG generated 49,681 POGs to get the final
solution. The solution takes 10.5 h on an HP workstation. And a total
revenue of $74,437,632 is achieved.

After iteration 2, we cannot use Proposition 5 to further tighten the
bound on the optimal number of POGs. It is clear now that the optimal
number of POGs must be within the range [1, 20]. We subsequently
adopt the proposed search algorithm, and calculate the revenue at POG
numbers 10 and 11 respectively. The revenues turn out to be
$73,974,746 and $74,063,730 accordingly. The revenue increase from
POG=10 to POG=11 is outweighed by the packaging cost $25,000.
Therefore we next calculate the revenues at POG=5, and POG=6
respectively. The revenues are $73,278,391 and $73,421,947

respectively. At the third step, we calculate the revenues at POG=3
and POG=4 respectively. The according revenues are $72,289,653
and $72,993,037, whose differential revenue still outnumbers the
packaging cost. By now, it is clear that the optimal number of POGs is 5.
Table 8 summarizes the numerical results in this test, with revenues at
several additional POG numbers for the purpose of verification. The
bold lines indicate cases actually calculated in our algorithm.

Optimality of the final feasible solution is hard to evaluate. If one
believes the optimal revenue generated with 20 POGs in the test pro-
blem provides an upper bound to the revenue from 5 POGs, the solution
is within 97% of the optimal net revenue.

6. Conclusion

The retail industry often distributes products in packages. This
paper studies a special product selection and packaging for distribution
in order to maximize the total profit. In this particular application, the
decision concerns packaging a small number of DVDs out of hundreds
of thousands of them available to serve several thousand retail stores.
Only a limited number of different packages are allowed. We propose
an optimization algorithm using column generation. We define a master
problem and a sub-problem, and propose two heuristic algorithms for
the sub-problem, namely the Bottom UP (BU) and Top Down (TD)
methods respectively. The TD method appears superior to the BU based
on the numerical tests. We further develop bounds on the optimal
number of POGs and the optimal profit for the master problem. The
bounds tighten fast and significantly reduce the computational time.
Our full-sized problem test shows that our proposed algorithm is pro-
mising for application. DVD sale is a multi-billion dollar business an-
nually at major chain stores. According to an internal estimate by the
management of the chain store, the annual revenue improvement po-
tential from using our developed methodologies, compared with using
the current manual method, would be in dozens of millions of dollars.

This practical problem has more features than studied in this paper.
First, each store could have different fixtures. For this particular ex-
ample of DVD distribution, our simplification might represent a prac-
tically acceptable approximation to the more complex problems.
Secondly, it would be interesting to examine if and how the relaxation
of the assumption on demand independence between titles affects the
distribution decisions.

Appendix A

See Table 6.

Table 8
Numerical Results.

POG # Revenue Profit ComputingTime (sec)

2500 91,958,456 −533041544 135
… … … …
90 76,072,616 53,572,616m 71,120
… … … …
22 74,472,455 68,972,455 53,114
21 74,455,444m 69,205,444 45,760
20 74,437,632 69,437,632 38,393
19 74,423,094 69,673,094 31,391
18 74,390,289 69,890,289 25,412
17 74,362,531 70,112,531 20,566
16 74,283,151 70,283,151 16,115
15 74,245,915 70,495,915 13,579
14 74,222,158 70,722,158 11,200
13 74,181,375 70,931,375 9018
12 74,146,173 71,146,173 7233
11 74,063,730m 71,313,730 5868
10 73,974,746 71,474,746 4709
9 73,765,906 71,515,906 3853
8 73,772,721 71,772,721 3172
7 73,570,780 71,820,780 2504
6 73,421,947 71,921,947 2028
5* 73,278,391 72,028,391 1645
4 72,993,037 71,993,037 1300
3 72,289,653 71,539,653 1146
2 71,900,411 71,650,411 907
1 69,666,310 69,416,310 103

Table 6
Comparison between BU and TD Methods.

Number of POGS Total Revenue Revenue Difference (TD-
BU)/BU

BU TD

1 354,626 354,626 0.000000
2 358,129 367,474 0.026094
3 363,472 371,947 0.023317
4 366,495 372,944 0.017596
5 368,009 373,061 0.013728
6 368,662 373,760 0.013828
7 370,904 378,193 0.019652
8 371,635 379,282 0.020577
9 373,030 380,130 0.019033
10 373,542 380,447 0.018485
11 374,955 380,622 0.015114
12 375,827 381,868 0.016074
13 376,654 383,872 0.019163
14 377,322 384,004 0.017709
15 378,066 381,131 0.008107
16 380,125 386,571 0.016958

(continued on next page)

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

158

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

Table 6 (continued)

Number of POGS Total Revenue Revenue Difference (TD-
BU)/BU

BU TD

17 381,956 387,670 0.014960
18 385,233 389,782 0.011808
19 386,477 390,919 0.011494
20 387,393 391,403 0.010351
21 388,497 391,952 0.008893
22 389,165 393,771 0.011836
23 390,049m 393,981m 0.010081
24 393,839 395,541 0.004322
25 395,336 396,939 0.004055
26 395,074 397,831 0.006978
27 395,730 400,397 0.011793
28 397,262 401,754 0.011307
29 397,921 403,772 0.014704
30 398,814 403,772 0.012432
31 401,187 404,441 0.008111
32 402,492 405,116 0.006519
33 403,569 405,837 0.005620
34 403,769 406,736m 0.007348
35 404,334 407,367m 0.007501
36 405,673 408,901 0.007957
37 406,697 410,173 0.008547
38 408,256 411,624 0.008250
39 407,748 412,445 0.011519
40 408,810 413,619 0.011763
41 409,309 415,247 0.014507
42 410,546 416,489 0.014476
43 412,485 416,893 0.010686
44 413,192 418,454 0.012735
45 412,893 419,452 0.015885
46 415,607 420,620 0.012062
47 417,024 421,565 0.010889
48 417,508 422,292 0.011458
49 417,849 422,880 0.012040
50 418,649 424,006 0.012796
51 419,310 424,560 0.012521
52 420,141 424,869 0.011253
53 420,164 424,917 0.011312
54 421,147 424,982 0.009106
55 423,139 425,824 0.006345
56 423,226 426,702 0.008213
57 424,228m 426,829 0.006131
58 424,727 427,021 0.005401
59 425,195 427,396 0.005176
60 426,076 427,399 0.003105
61 427,060 427,818m 0.001775
62 428,531 428,458 −0.00017
63 429,609 428,740 −0.00202
64 430,381 428,953 −0.00332
65 431,004 430,474 −0.00123
66 432,063 431,923 −0.00032
67 432,527 432,087 −0.00102
68 433,354 432,213 −0.00263
69 434,548 432,618 −0.00444
70 435,761 432,915 −0.00653
71 435,763 433,809 −0.00448
72 436,114 435,112 −0.00230
73 437,010 436,299 −0.00163
74 437,361 436,568 −0.00181
75 438,788 437,324 −0.00334
76 438,795 437,835 −0.00219
77 439,947 438,943 −0.00228
78 440,671 439,607 −0.00241
79 440,721 440,199 −0.00118
80 442,020 440,423 −0.00361
81 443,202 441,448 −0.00396
82 443,895 441,837 −0.00464
83 444,696 442,721 −0.00444
84 445,399 443,428 −0.00443
85 446,193 444,309 −0.00422
86 447,227 445,394 −0.00410
87 448,114 446,761 −0.00302
88 448,787 447,340 −0.00322
89 449,108 448,559 −0.00122

(continued on next page)

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

159

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

References

Chan, F. T. S., Chan, H. K., & Choy, K. L. (2006). A systematic approach to manufacturing
packaging logistics. International Journal of Advanced Manufacturing Technology, 29,
1088–1101.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs.
Operations Research, 8, 101–111.

Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal storage assignment in
automatic warehousing systems. Management Science, 22(6), 629–638.

Lubbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53(6), 1007–1023.

Muppani, V. R., & Adil, G. K. (2008). Class-based storage-location assignment to minimize
pick travel distance. International Journal of Logistics: Research and Application, 11(4),
247–265.

Prendergast, G., & Pitt, L. (1996). Packaging, marketing, logistics and the environment:
Are there trade-offs? International Journal of Physical Distribution and Logistics
Management, 26(6), 69–72.

Rosenblatt, M. J., & Eynan, A. (1989). Deriving the optimal boundaries for class-based
automatic storage/retrieval systems. Management Science, 35(12), 1519–1524.

Vanderbeck, F. (2005). In G. Desaulniers, J. Desrosiers, & M. M. Solomon (eds.),
Implementing mixed integer column generation (pp. 331–358). Springer.

Table 6 (continued)

Number of POGS Total Revenue Revenue Difference (TD-
BU)/BU

BU TD

90 450,185 449,196 −0.00220
91 451,599 450,001 −0.00354
92 451,625 450,385 −0.00275
93 452,264 451,026 −0.00274
94 452,822 451,967 −0.00189
95 453,632 452,704 −0.00205
96 454,211 453,791 −0.00092
97 454,903 454,508 −0.00087
98 455,223 455,236 0.0000286
99 455,913 455,913 0.000000
100 456,315 456,315 0.000000
Total Computing Time

(sec)
7350 11,275 SUM=0.6044

X.B. Wang et al. Computers & Industrial Engineering 121 (2018) 150–160

160

Auth
or'

s P
ers

on
al

Cop
y

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

http://refhub.elsevier.com/S0360-8352(18)30216-X/h0005
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0005
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0005
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0010
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0010
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0020
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0020
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0025
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0025
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0030
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0030
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0030
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0035
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0035
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0035
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0040
http://refhub.elsevier.com/S0360-8352(18)30216-X/h0040

	Distribution product packaging to maximize net revenue
	Introduction
	An illustrative example
	Problem formulation and solution
	Mathematical formulation
	A Column generation approach
	The master problem
	Sub-problem (Column Generation)
	Proposed Sub-problem algorithms
	BU algorithm
	TD algorithm

	Bounds for the optimal number of POGs and a search heuristic

	Flow chart of the iterative algorithm
	Tightening bounds and numerical test
	Heuristic search for the optimal number of POGs
	Performance of the BU and TD methods

	Conclusion
	Appendix A
	References

