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Abstract 

Most transportation systems fall into two broad categories: fixed route 

systems that are cost efficient but lack of flexibility and demand responsive transit 

(DRT) systems which are flexible but costly.  The Mobility Allowance Shuttle 

Transit (MAST) service is a new concept in transportation that merges the flexibility 

of DRT systems with the low cost operability of fixed route bus systems.  In a 

MAST system vehicles follow a base fixed route composed by a few mandatory 

checkpoints conveniently located at major connection points; given an appropriate 

slack time, vehicles are allowed to deviate from the fixed path within a proper 

service area to pick up and drop off passengers at their desired locations. 

The purpose of this research is to address the gap in the research community 

by studying this hybrid fixed and flexible type of service providing insights of its 

challenges and foreseeing its performance for utilization in large scale as an 

alternative to conventional public services. 

The system is defined as viable if the longitudinal velocity along the primary 

direction of the service is higher than a minimum threshold value to maintain the 

service attractive to customers.  By using continuous approximations we develop a 

relationship between this velocity and the demand to assess the viability and aid in 

the setting of the main parameters of the service. 

For the static operating scenario we provide a mathematical formulation of 

the MAST system as an integer linear program and we aim to find the optimal 
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 viii

schedule.  Because of the combinatorial nature of the problem we develop a set of 

valid inequalities to increase the lower optimality bound and efficiently speed up the 

search for the optimal solution. 

For the dynamic operating scenario we develop a customized insertion 

scheduling algorithm, which includes control parameters to prevent the “wild” 

consumption of the slack time and significantly improve the performance of the 

algorithm.  A comparison vs. conventional fixed route systems shows that MAST 

services are competitive with conventional ones and perform better under certain 

demand distributions. 
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 1

1 Introduction 

Transit is one of the vital service sectors of the present and the future US 

economy and it holds tremendous social significance.  Transit systems are essential 

for preserving and revitalizing the nation’s cities by minimizing congestion, urban 

sprawl, central city decline, and air pollution.  Owing to their inherent ease of routing 

and low capital costs, bus transit systems in particular are integral to meeting the 

growing transportation requirements.  However, today's urban transit systems are at a 

crossroads.  On the one hand, demands on transit agencies for improved and 

extended services are increasing.  Yet on the other, there is little public support for 

increases in fares or subsidies.  Therefore, transit agencies are currently seeking 

ways to improve service flexibility in a cost efficient manner. 

Most bus transit systems fall into two broad categories: fixed-route and 

demand responsive transit (DRT) systems.  Fixed-route systems are typically more 

cost efficient because of the predetermined schedule, the large loading capacity of 

the vehicles and the consolidation of many passenger trips onto a single vehicle 

(ridesharing).  However, the general public considers them to be inconvenient 

because of their lack of flexibility since either the locations of pick-up and/or 

drop-off points or the service’s schedule do not match the individual rider’s desires.  

Moreover, the total trip time is perceived as being too long and, for longer trips, 

there is often a need for transfers between vehicles.  DRT systems instead provide 

much of the desired flexibility with a door-to-door type of service but they are much 
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 2

more costly to deploy and therefore largely limited to specialized operations such as 

taxicab, shuttle vans or Dial-a-Ride services mandated under the Americans with 

Disabilities Act (paratransit DRT).  The National Transit Summaries and Trends 

(NTST) report for 2002 indicates that the average cost per passenger trip for DRT 

systems is $20.8 with fares ranging from $2-3.  By way of contrast, the average cost 

per trip for fixed-route lines is $2.4 with fares being roughly 25% of the cost. 

The Mobility Allowance Shuttle Transit (MAST) system is an innovative 

concept that merges the flexibility of DRT systems with the low cost operability of 

fixed-route bus systems.  A MAST service has a base fixed-route that covers a 

specific geographic zone, with one or more mandatory checkpoints conveniently 

located at major connection points or high density demand zones; the innovative 

twist is that, given an appropriate slack time, buses are allowed to deviate from the 

fixed path to pick up and drop off passengers at their desired locations.  The only 

restriction on flexibility is that the deviations must lie within a service area designed 

around the base fixed-route.  Customers make a reservation in order to add their 

desired pick-up and/or drop-off stops in the schedule of the service.  The MAST 

system works under a dynamic environment since the majority of the requests occur 

while the vehicle is on duty.  Passengers willing to use the service as a regular 

fixed-route line traveling between checkpoints can do so without the need of going 

through a booking process. 

Such a system already exists in a reduced and simplified scale.  The 

Metropolitan Transit Authority (MTA) of Los Angeles County introduced MAST as 
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 3

part of its feeder line 646.  Line 646 transports passengers between a large business 

hub in the San Pedro area of Los Angeles County and a nearby bus terminal.  The 

area served by Line 646 is located close to the Los Angeles harbor and is one of the 

County's busiest commercial hubs, consisting of several warehouses, factories and 

offices.  However, for safety reasons, employees of local firms working on night 

shifts have been finding it extremely inconvenient to walk to and wait at a bus stop.  

Therefore, Line 646 offers a MAST nightline service.  During daytime, this line 

serves as a fixed-route service.  During nighttime, the line changes to a MAST 

service and allows specific deviations of half a mile from either side of the 

fixed-route.  Customers may call in to be picked up, or may ask the operator to be 

dropped off at their desired locations if within the service area. 

The demand of line 646 is currently low enough to allow the bus operator to 

make all the decisions concerning accepting/rejecting requests and routing the 

vehicle.  Clearly, in case of heavier demand in a potential daytime MAST operation 

and several requests for deviations, the operator would not be able to handle this task 

efficiently by him/herself and would need help from the recent developments in 

communication and computation technologies that allow real-time information about 

pick-up/drop-off requests and buses status to be used to re-route the vehicles 

dynamically by means of a scheduling algorithm. 

While DRT systems focus strictly on point-to-point transport services, the 

hybrid characteristic of the MAST service adds additional and significant time and 

space constraints to the problem mainly due to the need of having the vehicles arrive 
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 4

at the checkpoints on or before their scheduled departure time.  This is because 

checkpoints typically represent major transfer centers and serve simultaneously as 

pick-up and drop-off points, like regular fixed-route stops.  Delays at the checkpoints 

would result in undesirable deviations from a predetermined fixed schedule and 

passengers missing their connections in case of late arrivals. 

Although MAST systems can be considered as a special case of the Pickup 

and Delivery Problem (PDP) with time windows and there has been a significant 

amount of research on DRT systems like the PDP, we are unaware of any work 

performed on specifically studying systems such as the MAST service.  The purpose 

of this research is to address the gap in the research community by studying this 

hybrid fixed and flexible type of service from a design, theoretical and operational 

points of view, providing insights of its challenges and foreseeing its performance 

for an utilization in large scale as an alternative to conventional public services. 

The contribution of this research is as follows: 

• From a design point of view, by utilizing a continuous approximations 

model, we provide insights about the relationships among the 

longitudinal velocity of the vehicles and the main parameters of the 

service to help in the design process (Chapter 4). 

• From an operational perspective we develop scheduling tools.  We 

first look at the problem in a static scenario (Chapter 5).  MAST 

systems are mathematically formulated as mixed integer linear Auth
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 5

programs.  Since they are NP-Hard problems, we develop a set of 

effective valid inequalities. 

• For a dynamic operating scenario (Chapter 6) we propose a 

customized insertion heuristic scheduling algorithm that makes use of 

proper control parameters. 

• Finally, we present conclusions and future research (Chapter 7). 
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 6

2 Literature review 

Hybrid types of transportation systems have been only recently approached 

by researchers.  Zhao and Dessouky (2004) studied the optimal service capacity 

through a stochastic approach.  Malucelli et al. (1999) also approached the problem 

including it in a general overview of flexible transportation systems.  Crainic et al. 

(2001) described the MAST concept and incorporated it in a more general network 

setting providing also a mathematical formulation. 

The hybrid type of service that we are studying consists of the same vehicle 

performing the fixed and variable portions of the trip.  There has been some work in 

studying hybrid systems in which different vehicles perform the fixed and variable 

portions.  In the latter case, local service is provided by on-demand vehicles and 

line-haul service is provided by a fixed route line.  Passengers switch vehicles at a 

transfer station.  Aldaihani et al. (2004) develop a continuous approximation model 

for designing such a service.  There has been some work in developing operational 

scheduling and routing policies for this latter type of hybrid system.  Liaw et al. 

(1996) develop a scheduling heuristic based on a system in Ann Arbor, Michigan.  

Hickman and Blume (2000) develop an insertion heuristic and test it on a data set 

from Houston, Texas.  Aldaihani and Dessouky (2003) develop a tabu search 

heuristic and test it on a data set from Antelope Valley in California.  They show that 

shifting some of the demand to a hybrid service route (18.6% of the requests) Auth
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 7

reduces the on-demand vehicle distance by 16.6% without significantly increasing 

the trip times. 

In the first part of this thesis we make use of continuous approximations to 

analyze the problem.  As noted by Daganzo (1991), the main objective of this 

approach is to obtain reasonable solutions with as little information as possible.  Hall 

(1986) also pointed out that continuous approximation are useful to develop models 

that are easy for humans to comprehend; on the other hand, he observed that these 

models should not replace but supplement the more detailed mathematical 

programming models.  There is a significant body of work in the literature on 

continuous approximation models for transportation systems.  Most of the work has 

been developed to provide decision support tools for strategic planning in the design 

process.  Langevin et al. (1996) provide a detailed overview of the research 

performed in the field.  They concentrate primarily on freight distribution systems, 

while we focus on public transport; but most of the issues of interest are common to 

both fields. 

The second and third part of this thesis focus on finding a solution of the 

MAST scheduling problem utilizing an exact and an heuristic approach.  As 

mentioned, MAST systems are related to DRT systems because they can be 

considered as a special case of the PDP with time windows and there is a significant 

body of work in the literature on routing and scheduling DRT systems.  Savelsbergh 

and Sol (1995) and Desaulniers et al. (2000) provide detailed reviews of the PDP, 

examining mathematical formulations and solutions approaches presented by 
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 8

different authors.  Due to the combinatorial nature of the problem (the PDP is 

NP-Hard) exact optimization methods are theoretically interesting but practically 

unsolvable.  Therefore, most of the research efforts focus on heuristic approaches. 

Here below we present a literature review of the most relevant works done in 

the field, categorized by their research focus. 

 

General Continuous approximations: 

Pioneering research on continuous approximation model dates back to the 

fifties.  Beardwood et al. (1959) provided the first approximation formula to estimate 

the length of a Traveling Salesman Problem (TSP) tour in a compact zone with 

uniform demand density. Stein (1978a) and Jaillet (1988) integrated their work by 

estimating the value of the TSP tour length in case of Euclidean and rectilinear 

metrics.  In general, geometrical probability has been extensively studied to provide 

estimates on the average distances among points for different shapes.  We mention in 

this area the work of Ghosh (1951), Fairthorne (1965), Schweizer (1968), 

Christofides and Elion (1969), Bouwkamp (1977), Ruben (1978), Daganzo (1980, 

1984b), Vaughan (1984), Koshizuka and Kurita (1991) and Stone (1991).  Similar 

works on estimating TSP length have been developed from a more theoretical and 

multi-dimensional point of view by Verblunsky (1951), Rhee (1993) and Stadje 

(1995). 
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Continuous Models: 

Szplett (1984) provides a review of the research performed on continuous 

models specifically for public transport.  In this area we cite the work of Holroyd 

(1965), Newell (1979), Mandl (1980), Ceder and Wilson (1986), LeBlanc (1988), 

Chang and Schonfeld (1991a, 1991b), Chien and Schonfeld (1997) and Aldaihani et 

al. (2004) that studied the optimality of bus network systems.  Lesley (1976a, 

1976b), Vaughan and Cousins (1977), Wirasinghe and Ghoneim (1981) and Kuah 

and Perl (1988) analyzed the optimality of spacing between bus stops.  The work of 

Daganzo (1984a) is especially related to our research because it introduces the 

concept of “strip strategy”, providing an approximate estimate of the optimal width 

of a corridor in order to minimize the distance between points and therefore the 

length of the TSP tour while employing a simple no-backtracking routing policy 

along the strip. 

Continuous models have also been utilized to examine DRT systems.  

Daganzo (1978) used an approximate analytical model to study many-to-many DRT 

systems.  Jacobson (1980) and Bélisle (1989) also made use of an analytical model 

for DRT systems.  Diana et al. (2005) provide an analytical model to determine the 

fleet size of a DRT system. 

 

Exact algorithms: 

Exact approaches to solve DRT systems provide optimal solutions, but the 

combinatorial nature of the problem limits the applicability of these methods to very 
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 10

small instances; therefore, they provide a good theoretical insight, but practically can 

not be used to solve real situations. 

Psaraftis (1980) describes an exact backwards dynamic programming 

solution approach for the single vehicle Dial-a-Ride problem for static and dynamic 

environments without time windows.  A forward dynamic programming approach is 

then presented in Psaraftis (1983a), to handle cases with time windows.  The 

complexity of those algorithms is exponential and they can solve only small 

problems up to 10 customers. 

Another dynamic programming approach for the single vehicle PDP with 

time windows is described in Desrosiers et al. (1986).  The adopted techniques are 

very efficient and the running time of the algorithm increases slower with the 

problem size if the time windows are tighter.  The increased efficiency of the 

procedure allows handling instances with up to 20 customers. 

Sexton and Bodin (1985a, 1985b) and Sexton and Choi (1986) describe a 

Benders’ decomposition approach to solve the single vehicle PDP with time 

windows and capacity constraints.  The latter paper introduced the concept of soft 

instead of hard time windows, meaning that the time windows can be violated, but 

the solution will be arbitrarily and proportionally penalized for this gap in the 

objective function; an infinity penalty function would transform the problem to the 

hard time windows case.  Note that the routing sub-problems are solved by a 

heuristic. Therefore, their optimization approach is not entirely an exact algorithm; Auth
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 11

should the routing problem be solved optimally, the entire procedure would become 

an exact algorithm. 

Dumas et al. (1991) present a Dantzig-Wolfe approach for optimally solving 

the multiple vehicles PDP with time windows and capacity constraints.  The master 

problem is iteratively solved by a column generation algorithm and a 

branch-and-bound exploration tree, while the constrained shortest path sub-problems 

are solved by a forward dynamic programming algorithm. 

Savelsbergh and Sol (1998) propose a branch-and-price based algorithm to 

solve the dynamic multi vehicle PDP.  Their approach uses a sophisticated column 

management technique and incorporates heuristics in the pricing procedure to allow 

the algorithm to solve large instances quickly.  Instances up to 30 customers were 

successfully solved. 

Kalantari et al. (1985) apply a branch and bound algorithm to the PDP.  All 

the arcs that violate the active precedence constraints are precluded in each branch.  

Fischetti and Toth (1989) develop an additive bounding procedure suitable for a 

branch-and-bound algorithm for the single vehicle PDP.  Rulan and Rodin (1997) 

introduce a polyhedral approach and a branch-and-cut algorithm to solve the single 

vehicle PDP without capacity constraints. 

An exact algorithm approach is described in Lu and Dessouky (2004).  The 

optimization procedure utilizes a branch-and-cut technique to solve the multi vehicle 

PDP.  An effective application of valid equality and inequality constraints helps the Auth
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algorithm to reach solutions faster.  Instances with up to 5 vehicles and 17 customers 

have been successfully optimized in a reasonable time. 

 

Clustering algorithms: 

Clustering approaches use the intuitive idea of merging together in a single 

point requests that are physically close to each other.  The problem instances are 

reduced in size and therefore exact approaches can then be applied efficiently. 

Ioachim et al. (1995) develop a clustering algorithm to solve the multi vehicle 

PDP with time windows.  The requests are grouped together in mini-clusters and the 

problem is then solved by a column generation approach and compared to an existing 

parallel insertion heuristic.  In addition, in order to allow the algorithm to handle 

even larger problems, the original network is reduced to a sub-network by 

eliminating some arcs. 

Min (1989) also proposes a clustering heuristic approach to solve the vehicle 

routing problem.  In addition, he allows single nodes to serve simultaneously as 

pickup and delivery points as often happens in practice; this concept is relevant for 

this research because, in MAST systems, checkpoints are exactly of this type. 

The work of Daganzo (1984c) describes a checkpoint DRT system that 

combines the characteristics of both fixed route and door-to-door service.  In a 

checkpoint system, a service request is still made but the pick-up and drop-off points 

are not at the door but at centralized locations called checkpoints.  The author shows 

that a checkpoint system, intermediate between fixed route and DRT systems, can be 
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 13

useful only for a narrow range of demand density in a given service area.  However, 

the MAST system conceptually differs from the checkpoint only system described, 

since it allows also for door-to-door requests. 

Stein (1978a, 1978b) develops a probabilistic analysis of the PDP.  His 

analysis shows how optimal path lengths can be bounded with high probability by a 

constant function of the service area and the amount of random requests from a 

uniform distribution.  Based on these findings, he proposes heuristics to solve single 

and multiple vehicle problems for static and dynamic environments, basically 

partitioning the service area into sub-regions (clustering). 

 

Local search techniques: 

Local search techniques are those heuristics that start from an initial feasible 

solution and “move” locally in the neighborhood of the solution space.  The main 

drawback is that the solution found might be a local optimum, potentially very far 

from the global optimal. 

Psaraftis (1983b, 1983c) presents two heuristic approaches for the single 

vehicle Dial-a-Ride problem with no time windows.  In the first one is described a 

k-interchange local search heuristic approach: the algorithm performs a local 

improvement of a current solution by substituting k arcs with new ones while 

maintaining feasibility; the algorithm complexity, with N requests, is O(Nk).  The 

second one is based on a Minimum Spanning Tree procedure: the solution is Auth
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 14

constructed from an initial MST following a simple but effective procedure; the 

complexity of this algorithm is O(N2). 

Local search procedures are reported in Van Der Bruggen et al. (1993).  The 

single vehicle PDP with time windows is solved by an arc interchange procedure 

with variable depth.  In addition, a simulated annealing procedure is introduced to 

prevent the algorithm from getting stuck into a local optimal. 

Healy and Moll (1995) present another local search technique for the Dial-a-

Ride problem.  They introduce a new procedure called sacrificing: basically the 

algorithm is allowed to proceed not only towards lower cost feasible solutions, but 

also towards higher cost solutions and broader feasibility neighborhood. 

Tabu search techniques have been applied by Rochat and Taillard (1995), 

Badeau et al. (1997) and Landrieu et al. (2001) for the vehicle routing problem with 

hard time windows; by Taillard et al. (1997) for the soft windows case; by Nanry and 

Barnes (2000) and Cordeau and Laporte (2003) to solve the multi vehicle PDP. 

 

Insertion Heuristics: 

Insertion heuristics are probably the most popular techniques.  Campbell and 

Savelsbergh (2004) justify their extensive use in practice, because they are very fast 

and capable to handle large problems, provide good solutions compared to 

optimality, can easily handle complicating constraints and can be simply 

implemented in dynamic environments. Auth
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Jaw et al. (1986) illustrate a heuristic algorithm for the static multi vehicle 

PDP with time windows.  The algorithm takes in consideration one customer at a 

time, evaluates all feasible insertions for pickup and delivery points and selects the 

one with the minimum cost; a new vehicle is assigned if no existing routes can 

accommodate a new customer.  The insertion approach used in this work 

demonstrates its effective applicability for large amounts of customers because of its 

computational speed. 

Madsen et al. (1995) implement an insertion heuristic approach for a partly 

dynamic multi vehicle PDP.  Requests known in advance are considered as static, 

while real-time requests are handled in a sequential fashion. 

Potvin and Roussean (1993) and Liu and Shen (1999) develop parallel regret 

insertion heuristic algorithms for the multi vehicle routing problem and with time 

windows.  These algorithms create routes in parallel and use a generalized regret 

measure over all un-routed customers in order to select the next candidate for 

insertion.  Diana and Dessouky (2004) apply the same concept for the PDP, with an 

appropriate metric that helps to overcome the myopic behavior that is often the 

drawback of such a method. 

A parallel insertion heuristic is proposed by Toth and Vigo (1997) to solve 

the static multi vehicle PDP with soft time windows.  The insertion algorithm is very 

fast and applied to the transportation of handicapped persons.  A tabu search is also 

proposed to improve the solution generated by the insertion heuristic.  Their Auth
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algorithm is tested with real life instances in the city of Bologna, Italy and their 

results outperform the hand made schedules. 

Teodorovich and Radivojevic (2000) use a fuzzy logic insertion approach to 

solve dynamically the Dial-a-Ride problem.  This approximate reasoning algorithm 

allows the insertion procedure to be executed in real time. 

Dessouky, Rahimi, and Weidner (2003) develop an insertion procedure with 

objective function that includes both cost and environmental impact objectives.  

Experimental analysis on data sets representing dial-a-ride operations in Los Angeles 

County show that the best fleet composition is not, necessarily, a fleet comprised 

exclusively of vehicles selected to optimize one objective or the other. 

Lu and Dessouky (2005) present a new insertion based construction heuristic 

to solve the multi-vehicle pickup and delivery problem with hard time windows.  

The new heuristic does not only consider the classical incremental distance measure 

in the insertion evaluation criteria but also the cost of reducing the time window 

slack due to the insertion.  They also present a new non-standard measure, Crossing 

Length Percentage, to evaluate the ‘visual attractiveness’ of the route.  The effect of 

using the proposed measure to guide the construction heuristic in obtaining a higher 

quality solution has also been investigated.  They compared the heuristic to a 

standard insertion heuristic on different benchmarking problems, and the 

computational results show that the proposed heuristic performs better with respect 

to both the standard and non-standard measures. 
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Theoretical and technologically based works: 

A few authors provide theoretical insights to the problem, while recent 

developments in the field based on technologically advanced systems, have attracted 

the attention of the researchers in the latest years. 

Feuerstein and Stougie (2001) investigate the best possible competitive ratio 

for an on-line single server dial-a-ride problem.  They show that no heuristic 

algorithm can have a competitive ratio better than 2, where the competitive ratio is 

the worst case ratio between the objective value produced by the algorithm and the 

optimal value. 

Dial (1995) proposes a fully automated routing and scheduling system, where 

the customer is the only human interacting with it in the entire process of booking a 

ride.  The system is embedded in a decentralized control strategy. 

Horn (2002b) develops an algorithm for the scheduling and routing of a fleet 

of vehicles that is embedded in a modeling framework for the assessment of the 

performance of a general public transport system with the latter being presented in 

Horn (2002a). 

Fu (2002) presents a simulation model to test if and how the introduction of 

technologically advanced paratransit services can be beneficial.  The results seem 

promising, but in some cases a decline on the overall performance of the system is 

observed. 
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3 Description of MAST systems 

A Mobility Allowance Shuttle Transit (MAST) system is represented by a 

fleet of vehicles serving a set of customers’ requests.  Vehicles follow a fixed-route 

line (back and forth between two terminal checkpoints or around a loop, see Figure 

1) composed by an ordered set of stops (checkpoints) associated with prescheduled 

departure times. 

 

Figure 1 – Possible configurations of MAST systems 

 

Each customer’s request is defined by pick-up/drop-off service stops and a 

ready time for pick-up.  The MAST service can respond to four different types of 

requests: pick-up (P) and drop-off (D) at the checkpoints; non-checkpoint pick-up 

Checkpoints Service areaCheckpoints Service area
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(NP) and drop-off (ND), representing customers picked up/dropped off at any 

location within a service area designed around the base fixed-route.  A certain 

amount of slack time between any consecutive pair of checkpoints is needed in order 

to allow deviations to serve NP or ND requests. 

There are consequently four different possible types of customers’ requests: 

 

• PD (“regular”): pick-up and drop-off at the checkpoints 

• PND (“hybrid”): pick-up at the checkpoint, drop-off not at the 

checkpoint 

• NPD (“hybrid”): pick-up not at the checkpoint, drop-off at the 

checkpoint 

• NPND (“random”): pick-up and drop-off not at the checkpoints 

 

PD requests rely only on already scheduled checkpoints and they use the 

service like a regular fixed-route line; therefore, they just show up at their pick-up 

checkpoint, not needing any booking or scheduling procedure.  The other types of 

requests need to make reservations instead (by phone, internet or at terminals located 

at the checkpoints) to schedule one or both their non-checkpoint service stops. 

The service can work dynamically, so that customers may book their rides (or 

show up at the checkpoints) at any moment before or during the service.  An 

effective MAST system needs to rely on recent developments in communication and 

computation technologies that allow real-time information about pick-up/drop-off 
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requests to be used to re-route the vehicle by means of a scheduling algorithm.  Its 

necessity becomes more evident in case a MAST system serves a heavy demand and 

relies on a fleet of vehicles and/or MAST networks.  Ideally after each request the 

vehicles’ routes are updated in real time and customers are immediately notified 

whether their request has been accepted, postponed or rejected and are provided with 

an approximate time (or time windows) for their pick-up and/or drop-off at their 

non-checkpoint locations. 
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4 Design perspective 

One of the factors that has to be taken into consideration in the design process 

of a MAST system is its viability.  In fact, in case of public transport, the main 

purpose of the vehicle is to move customers along a primary direction (see Figure 2).  

The more customers that are served, the slower the vehicle would move along this 

direction because of the deviations needed for pick-ups and drop-offs. 

 

Figure 2 – Primary direction of MAST services 

 

The purpose of this chapter is to provide insights about the viability of MAST 

systems to help in the design process of the main system parameters.  The service is 

defined viable if the velocity of the vehicle along this direction is kept high enough 

to maintain the service attractive to customers while serving a sufficient demand.  A 

minimum threshold value of the velocity can be used to set the maximum slack time 

allowable between checkpoints and to determine the maximum demand level that 

can be served by one vehicle and the number of vehicles to be employed per line. 

 

Primary directionPrimary direction
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4.1 System definition 

The MAST system model considered for our analysis is described by a linear 

corridor of width W and length L >> W, oriented in a horizontal direction.  The 

demand is assumed to be known in advance and is represented by a set of passenger 

trips that occur with density ρ per unit area.  We do not need to know the distribution 

of the trip length for the purpose of this Chapter.  Pick-up and drop-off points are 

uniformly distributed across the width and the length of the corridor.  Vehicles 

follow rectilinear paths within the corridor and travel with constant speed v, except 

at pick-up/drop-off points where there is a constant stop time of b. 

Vehicles serve passenger trips by following a forward progression through 

the corridor in either a left-right or right-left direction.  This means that a left-right 

(right-left) vehicle rides from the checkpoint at the left (right) end to the checkpoint 

at the right (left) end of the corridor and only serves customers whose drop-off is to 

the right (left) of the pick-up (see Figure 3).  This is only a reasonable operating 

policy, but not necessarily optimal.  We also assume no mandatory checkpoints in 

between. 

The general system is represented by several vehicles riding along the 

corridor, but we assume that ρ represents one cycle of the demand served by two 

vehicles with infinite capacity: a left-right one and a right-left one.  The problem is 

symmetrical and we analyze only the left-right case, with a demand density per unit Auth
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area of ρ/2 trips and ρ stops, since each trip has two service points (we are 

simplifying the analysis by assuming that ρ includes NPND requests only). 

 

Figure 3 – Right-left and left-right vehicles 

 

The longitudinal velocity V of the vehicle is defined by the rate at which the 

vehicle moves in the horizontal direction which has the average given by 

 

ρWLb
v
p

LV
+

=  (4.1) 

 

where p is the length of a rectilinear Hamiltonian path among all the service points, 

respecting the customer precedence constraints (for each customer the drop-off must 

be scheduled after the pick-up) and ρWLb represents the total stop time (counting 

pick-up and drop-off stops).  The problem (P) is to minimize p (with optimal value 

p*), which corresponds to maximize V (with optimal value V*). 

W
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Drop-offs

LR

RL

left-right customers
right-left customers RL: right-left vehicle

LR: left-right vehicle

W

Pick-ups
Drop-offs
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Because P is NP-Hard, its combinatorial nature causes it to be unsolvable in 

reasonable time for a large number of stops; in addition, we do not know the exact 

locations of the demand points but only their distribution.  Therefore, we proceed by 

generating lower and upper bounds on V*, assuming continuous approximations of 

the system parameters.  We also provide an estimate of V* based on the results from 

Beardwood (1959) and we perform a simulation to compute the velocity when 

utilizing an insertion heuristic algorithm. 

A summary of the system parameters and the notation used in this chapter are 

as follows: 

 

W Width of corridor (miles) 

L Length of the corridor (miles); L >> W 

v Average vehicle speed (miles/hour) 

b Stop time while serving pick-up/drop-off (hours) 

ρ Demand density (customers/miles2) 

= stop density for the left-right case (stops/miles2) 

V Longitudinal velocity of the vehicle (miles/hour) 

V* Optimal (maximum) value of V 

i∈N Set of all “left-right” stops (pick-ups and drop-offs) 

xi longitudinal coordinate of i, increasing from left to right (miles) 

yi lateral coordinate of i, increasing from bottom to top (miles) 
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4.2 Lower bound of V* 

Let’s consider a no-backtracking policy, allowing the vehicle to move only in 

the forward direction (left to right) and serve all the demand, as illustrated in Figure 

4.  The numbers represent the customers, where “+” is a pick-up and “-” a drop-off. 

 

Figure 4 – No-backtracking policy 

 

Since by assumption the customers served by a left-right vehicle have their 

drop-off always on the right of their pick-up, this policy guarantees feasibility 

because all origins are served before their destination points, satisfying all the 

customer precedence constraints.  However, this policy is not necessarily optimal.  In 

fact, the solution could be improved by simply removing the arbitrary 

“no-backtracking” constraint and developing a better routing strategy.  Thus, this 

simple no-backtracking policy provides a feasible lower bound on V*, but it does not 

provide optimality.  For our purpose it is useful because we can compute its closed 

form solution. 
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Because of the uniformity of the demand we know that the expected value of 

the lateral (along the vertical direction) distance ly traveled by the vehicle between 

any pair of stops is given by 

 

( )
3
WlE y =  (4.2) 

 

and the expected value of the time ty spent by the vehicle while moving laterally 

when traveling between two consecutive points given by 

 

( ) ( )
3v
W

v
lE

tE y
y ==  (4.3) 

 

In a corridor L×W with given density ρ there are ρWL stops and the expected value 

of the total time t spent by the vehicle while driving along the corridor is given by 

 

( ) ( )[ ] 







+






 +=++=

v
1b

3v
WρWL

v
LbtEρWLtE y  (4.4) 

 

where L/v is the time spent by the vehicle while moving longitudinally along the 

corridor and b is the service time per stop. 
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Finally, the lower bound on V* is formally computed by L×E(1/t) which is very well 

approximated and lower bounded by L/E(t).  In fact we know by the Jensen 

inequality that E(1/t) ≥ 1/E(t).  Therefore, we compute the lower bound Vl by 

 

( )






 ++

==≥





×

3
WbvρW1

v
tE

LV
t
1EL l  (4.5) 

 

We can also verify by the following Table 1 the good estimates provided by 

Equation (4.5) on the true lower bound L×E(1/t) computed by simulation for 

different values of ρ.  The simulation values are obtained by averaging 30 

replications for each ρ considered.  In each replication we considered 5,000 stops 

uniformly distributed in a corridor of width W = 0.5 miles, a v = 30 miles/hour and 

b = 30 seconds. 

 

Table 1 – Vl values: analytical vs. simulation 

 Vl (miles/hour) 
ρ Equation (4.5) Simulation
1 24.83 24.83 
5 14.69 14.69 
10 9.73 9.73 
50 2.63 2.63 
100 1.37 1.37 
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Note that Vl is inversely proportional to W, b and ρ.  With ρ = 0 (no demand) 

the vehicle would have its Vl = v as expected. 

 

4.3 Optimality of no-backtracking policy 

Before estimating the first upper bound we want to focus on the “strip 

strategy” introduced by Daganzo (1984a).  He showed that good solutions of the TSP 

tour, for any shape of the service area, are obtained by cutting a swath covering the 

whole area and having the vehicle drive along the resulting long strip while serving 

the demand uniformly distributed in the area.  He claimed that selecting a proper 

width of the strip a simple no-backtracking policy produces good results in terms of 

the total distance traveled. 

We want to determine if there exists any sufficient condition on the locations 

of the demand points that would guarantee optimality of a no-backtracking routing 

policy.  This would allow us to select a subset of points that satisfy this condition so 

that we can utilize the no-backtracking routing policy to serve them optimally.  The 

longitudinal velocity to serve this subset will be an upper bound on V*. 

To find out whether this sufficient condition exists, let’s consider a left-right 

vehicle following a Hamiltonian path (α) among a set of demand points.  Referring 

to Figure 5, consider points j, h and k.  We assume that xh ≤ xj and xh ≤ xk and that 

the backtracking sub-sequence …-j-h-k-… is part of path α.  We want to determine 

if there exists a condition on xh with respect to xj and xk to guarantee that a 
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reinsertion of h earlier in the schedule in a no-backtracking fashion will always lead 

to a shorter total distance traveled. 

It is always possible to identify two consecutive points a and b earlier in the 

schedule such that xa ≤ xh ≤ xb (at the limit, we can have a be the checkpoint in the 

far left and/or b ≡ j).  Therefore, we have path α following the sequence 

…-a-b-…-j-h-k-…. 

Consider another path (β) that follows the sequence …-a-h-b-…-j-k-… with 

point h reinserted between a and b in a no-backtracking fashion. 

 

Figure 5 – Two different paths to serve points a, b, j, h, k 

 

Let’s compute the rectilinear distance driven in the two cases, considering only the 

relevant portions of the sequences that differ between α and β.  Path α yields to the 

following distance lα: 

 

hkhkhjhjabab yyxxyyxxyyxxlα −+−+−+−+−+−=  (4.6) 
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For the path β the distance lβ is given by 

 

jkjkhbhbahah yyxxyyxxyyxxlβ −+−+−+−+−+−=  (4.7) 

 

We want to determine the minimum longitudinal distance between h and j 

and/or h and k needed to guarantee that path β will always be better than path α in 

terms of minimizing the total distance traveled.  Therefore, we impose the condition 

lβ ≤ lα and after a few passages we obtain the following inequality: 

 

hkhjjkabhbah

hjkkj

yyyyyyyyyyyy

x2xxxx

−−−−−+−−−+−

≥−−−+
 (4.8) 

 

Depending on the random lateral position of the points along the corridor, the 

maximum possible value for abhbah yyyyyy −−−+−  is 2W when h is located on 

the opposite edge of the corridor with respect to a and b; while 

hkhjjk yyyyyy −−−−−  can be at most equal to 0 when h is located laterally in 

between j and k.  Otherwise, it is less than 0.  Therefore, the right-hand side of 

Equation (4.8) is less than or at most equal to 2W and the inequality becomes 

 

( ) Wxx,xmin ≥− hkj  (4.9) 
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that is the sufficient condition on the longitudinal position of h, with respect to the 

closest (longitudinally) point between j and k, that would guarantee that the 

reinsertion of h somewhere earlier in the schedule in a no-backtracking fashion 

between some points a and b would always lead to a better solution in terms of 

shorter distance traveled. 

Given the result obtained by Equation (4.9) we can state the following. 

 

Proposition 1.  Given a set of points randomly distributed along a corridor of width 

W and length L, the shortest Hamiltonian rectilinear path from the first point on the 

far left to the last point on the far right is the sequence of points ordered by 

increasing longitudinal coordinate (no-backtracking), as long as the minimum 

longitudinal distance between any pair of points is at least W. 

 

Proof.  Consider a set of points identified by i = 1, 2, 3,… and ordered by increasing 

longitudinal coordinate (no-backtracking) and let the minimum longitudinal distance 

between any pair of points be at least W.  Assume that there exists an optimal 

sequence Λ ordered not following a no-backtracking policy; the position of each i in 

Λ is identified by λ(i).  Let’s consider the smallest point i0 ≠ λ(i0)∈Λ.  We can show 

by Equation (4.9) that by reinserting i0 in Λ such that i0 = λ(i0) and readjusting all 

other λ(i)  accordingly leads to a better solution.  But this is a contradiction, because 

we supposed Λ to be optimal, therefore, the no-backtracking policy is optimal.   
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4.4 First upper bound on V* 

To create an upper on V* we first identify a subset G[g(1), g(2), g(3),…] ⊆ N 

of points such that the longitudinal distance between any pair of them is as small as 

possible but at least W.  By Proposition 1 we know that the optimal routing policy to 

serve the subset G is given by a no-backtracking sequence.  We then assume that all 

the points i∈N, but i∉G, will be served as well, but that no additional lateral 

deviations are required to reach them.  This is a subproblem P' (with optimal value 

p'*) of the original problem P.  We know by construction that p'* ≤ p*, because in 

computing the total distance traveled in P' we are ignoring some of the vertical 

deviations and possible backtracking portions of the path needed to attain p*.  

Therefore, this policy guarantees optimality of the subproblem P', without assuring 

feasibility of P, and represents a lower bound on the total minimum distance traveled 

(thus, an upper bound V*). 

To construct the subset G from the set N, we can use the following algorithm: 

 

Algorithm 1 

1. g(1) is the first point on the far left of the corridor 

2. g(i+1) is the longitudinally closest point to the right of g(i) after a “jump” of 

W units of length to the right of g(i); with i = 1, 2, 3,… 

3. Repeat step 2 until there are no more points 
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As an example, referring to Figure 6, we first include 1+ in the subset G; then, from 

its horizontal coordinate x1+ we move W units of length to its right and we include in 

G the longitudinally closest point to the right of the location x1++W (point 4+); and 

we proceed in this fashion including in G points 6+, 6-, etc…, until the end. 

 

Figure 6 – subset G: longitudinal distance of at least w among points. 

 

We know from Equation (4.2) that the expected lateral distance driven by the 

vehicle while moving between any pair of points is given by E(ly) = W/3.  Equation 

(4.3) provides the expected time E(ty) = W/3v spent by the vehicle while moving 

along ly. 

The expected longitudinal distance E(lx) between two consecutive points in 

the subset G is given by 

 

( )
ρW
1WlE x +=  (4.10) 
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where W is the minimum step and 1/ρW is the expected longitudinal distance to be 

traveled in order to find the next closest point on the right.  This occurs because with 

uniformly, independently and randomly scattered points on the corridor, the 

positions along the side of the strip at which points lie form (locally) a Poisson 

process with rate ρW.  Thus, the expected number of points E(nG) in G is given by 

 

( ) 2G ρW1
ρWL

ρW
1W

LnE
+

=
+

=  (4.11) 

 

We note that higher values of nG would lead to smaller gaps between p'* and p*, 

because of the smaller number of stops (and lateral deviations) ignored.  Thus, the 

bound is tighter for narrower corridors (smaller W) and sparser demand density 

(lower ρ). 

The expected value of the total time t' spent by the vehicle while moving 

along the corridor, including the stop time b to serve each point in N and the time 

spent moving longitudinally, is given by 

 

( ) ( ) ( ) ( )
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v
LρWLb

v
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Finally, the upper bound Vu on V* would be given by L×E(1/t') which does not have 

a closed form solution, but it is very well approximated by L/E(t') and therefore 

given by 

 

( )
( )2

2
u

ρW13
ρWρWbv1

v
t'E

LV

+
++

=≅  (4.13) 

 

Again, we can verify the good estimate of Vu provided by Equation (4.13) by 

looking at the following Table 2.  The simulation values are obtained as for Table 1 

(30 replications; 5,000 stops uniformly distributed; W = 0.5 miles; v = 30 miles/hour 

and b = 30 seconds). 

 

Table 2 – Vu values: analytical vs. simulation 

 Vu (miles/hour) 
ρ Equation (4.13) Simulation
1 25.17 25.18 
5 16.57 16.57 
10 12.06 12.06 
50 3.97 3.97 
100 2.17 2.17 

 

As for Vl, Vu is inversely proportional to W, b and ρ; with ρ = 0, Vu = v. 
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4.5 Second upper bound on V* 

To produce the second upper bound we again remove constraints from 

problem P.  The Hamiltonian path among all the points requires exactly one 

incoming arc and one outgoing arc at each node of the network so that all the points 

are connected to complete the tour.  We remove the first assumption allowing 

unlimited incoming arcs at any node, but we still require exactly one outgoing arc 

from each node.  In addition, we remove the customer precedence constraints.  This 

is another subproblem P″ (with optimal value p″*) of the original problem P.  p″* is 

given by the summation over all the stops of the arcs connecting any stop to its 

closest neighbor.  In other words, we are stating that from each stop the vehicle has 

to travel at least to its closest neighbor; the sum over all stops produces p″*, which is 

a lower bound on p* and which therefore yields to an upper bound on V*. 

We know that uniformly and randomly scattered points follow a spatial 

Poisson distribution.  Specifically, the number of points Γ(A) within the area A is a 

Poisson random variable and its distribution is given by 

 

( )[ ] ( ) ρA

!
ρAAPr −==Γ e

q
q

q

 q = 0, 1, 2, 3,… (4.14) 

 

with expected value equal to ρA. 

Let D be the random variable indicating the distance of the closest neighbor 

from any stop i∈N.  We can say that 
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( ) ( ) ( )[ ] ( )dedddF ρA0)(APrDPr −==Γ=>=  (4.15) 

 

where A(d) is the area around i within rectilinear distance d falling in the corridor. 

We want to calculate the expected value E(D).  For the purpose of this 

analysis we assume the limiting case where L/W→∞, ignoring the effect on the 

calculation given by the left and right ends of the corridor. 

Let y be the distance of a random stop i∈N from the nearest edge of the 

corridor, which we suppose to be the bottom one without loss of generality.  

Depending on d we can have three different scenarios to compute A(d) as shown in 

Figure 7. 

 

Figure 7 – A depending on d 
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Case 1. ( ) 22A dd =  0 ≤ d ≤ y (4.16) 

Case 2. ( ) ( ) dyydyddd 22A 2222 +−=−−=  y ≤ d ≤ W-y (4.17) 

Case 3. 
( ) ( ) ( )

( ) 2

222

2W22W
W2A

yyd
ydyddd

−−+=

=−+−−−=
 d ≥ W-y (4.18) 

 

The expected value of D depending on y is given by 

 

( ) ( ) ( )∫∫
∞

−
∞

==
0

ρA

0

dd)(DE deddFy d  (4.19) 

 

Averaging over all values of y between 0 and W/2 we finally obtain 

 

( ) ( )∫=
2

W

0

d)D(E
W
2DE yy  (4.20) 

 

Note that the analysis for W/2 ≤ y ≤ W is symmetrically the same. 

Equation (4.20) does not have a closed form solution, but we can examine 

two limiting scenarios, depending on the value of the parameter ρW , that is an 

indication of the effect of the edges of the strip on the calculation of E(D). 

If ∞→ρW  we can approximate E(D) by considering only Case 1 and 

compute A(d) by Equation (4.16).  For the majority of the points, the probability of 
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finding the closest point in an area defined by Case 2 or Case 3 is negligible, either 

because the edges are too far (large W) or because the density is very high.  

Therefore, 

 

( )
ρ
63.0

ρ22
1dDE

0

ρ2 2

≈=≈ ∫
∞

− πde d  (4.21) 

 

If 0ρW →  we can approximate E(D) by considering only Case 3 and 

compute A(d) by Equation (4.18).  For the majority of the points, the probability of 

finding the closest point in an area defined by Case 1 or Case 2 is negligible, either 

because W is very small or the density is very low.  Therefore, we obtain 

 

( ) ( )[ ]
ρW2
1dDE

0

2W22Wρ 2

=≈ ∫
∞

−−+− de yyd  (4.22) 

 

that also corresponds to the expected distance of the closest point (in either direction) 

in a one-dimensional case with all the points uniformly distributed along a line with 

linear density ρW. 
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We performed a numerical integration on Equations (4.19) and (4.20) with 

W = 1 for different values of ρ.  The results are shown in the following Figure 8 

along with the figures computed by simulations performed with L >> W, in 

dimensionless form. 

 

Figure 8 – E(D) vs. simulation and asymptotic limits 

 

“Analytical” refers to the values computed by numerical integration; “Limit 

1” and “Limit 2” refer to Equation (4.21) and (4.22) respectively.  The chart shows 

that the “Analytical” curve is asymptotically bounded by the two limits for 

0ρW →  and ∞→ρW  as expected.  In addition, the “Simulation” curve closely 

matches the “Analytical” curve, confirming that assuming L/W→∞ instead of 

L >> W did not affect the results even for lower values of ρ. 
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The expected value of the time t″ spent by the vehicle is given by 

 

( ) ( )




 +=

v
DEbρWLt"E  (4.23) 

 

Finally, we have that the upper bound on V* is given by L×E(1/t″), very well 

approximated by L/E(t″).  Therefore the second upper bound Vu2 on V* is given by 

 

( ) ( )[ ]DEbvρW
v

t"E
LVu2

+
=≅  (4.24) 

 

As before, we can verify the good estimate of Vu2 provided by Equation (4.24) by 

looking at the following Table 3.  The simulation values are obtained as for Table 1 

(30 replications; 5,000 stops uniformly distributed; W = 0.5 miles; v = 30 miles/hour 

and b = 30 seconds). 

 

Table 3 – Vu2 values: analytical vs. simulation 

 Vu2 (miles/hour) 
ρ Equation (4.24) Simulation
1 42.53 42.49 
5 20.29 20.30 
10 12.65 12.64 
50 3.49 3.49 
100 1.90 1.90 
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As for Vl and Vu, Vu2 is inversely proportional to W, b and ρ.  With 0ρ →  or 

∞→ρ , by applying Equation (4.21) and (4.22), the asymptotic values of Vu2 are 

given by 

 

ρ0.63WρWbv
vVlim u2

ρ +
=

∞→
 (4.25) 

2vVlim u2

0ρ
=

→
 (4.26) 

 

4.6 Approximate value for V* 

We know by Beardwood et al. (1959) and Jaillet (1988) that the length T of 

the optimal TSP tour for rectilinear metric visiting M points distributed randomly in 

a region of area A is approximated by the following formula: 

 

AM97.0T =  (4.27) 

 

This formula provides better approximations with large values of M. 

To make use of this result for our case, we assume that the MAST vehicle is 

driving along a long corridor that is shaped as a loop, having the starting and ending 

checkpoints of the vehicle coincide.  Since we assumed L >> W, we can approximate 

the ring-shaped service area A by 
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A = LW (4.28) 

 

and estimate the optimal length of the tour by Equation (4.27) for different values of 

M given by 

 

M = ρA = ρWL (4.29) 

 

Since the total time ta spent to complete a loop is given by 

 







 +=+= bρ

v
0.97ρLWMb

v
Tta  (4.30) 

 

The resulting approximation of the optimal longitudinal velocity Va is given by 

 

ρ0.97WρWbv
v

t
LV

a

a

+
==  (4.31) 

 

which has the same form as the asymptotic value of Vu2 for ρ going to infinity, given 

by Equation (4.25), with 0.97 replacing 0.63.  As for Vl, Vu and Vu2, Va is inversely 

proportional to W, b and ρ.  However, Va goes to infinity when ρ goes to zero, 

confirming that Equation (4.31) does not provide good estimates for low ρ. Auth
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We need to emphasize that Va is neither an upper nor a lower bound of V* 

and it does not consider the customer precedence constraints. 

 

4.7 Insertion heuristic simulation value for V* 

In addition to the bounds and the approximation formula, we computed Vi, 

representing the longitudinal velocity obtained by simulation for different values of 

ρ, while implementing a simple insertion heuristic algorithm to schedule the 

uniformly distributed demand.  Insertion algorithms generally provide good feasible 

solutions, but they do not guarantee optimality.  Therefore, the resulting curve 

represents a lower bound for V* as well, but since it does not have a closed form 

solution it can not be quickly computed like Vl for different scenarios. 

 

4.8 Viability 

We are now able to plot the lower bound Vl, the upper bounds Vu and Vu2, the 

approximate value Va, respectively using Equations (4.5), (4.13), (4.24) and (4.31), 

and Vi from the insertion heuristic to analyze the results.  The curves are drawn 

utilizing a vehicle speed v = 30 miles/hour and a service time b = 30 sec for each 

stop.  We analyze two different cases, with W = 1 (see Figure 9), consistent with the 

existing MAST system (line 646 in the Los Angeles County), and W = 0.5 miles 

(Figure 10). 
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Figure 9 – Longitudinal velocity (V) vs. demand density (ρ); W = 1 

 

Figure 10 – Longitudinal velocity (V) vs. demand density (ρ); W = 0.5 
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We note that in both charts Vl and Vu converge for lower values of ρ (as 

expected since they are both equal to v for ρ = 0), while Vu2 goes to 2v.  Vu2 is a 

tighter bound than Vu for higher ρ and this is more evident for the case with W = 1.  

The gap between Vl and Vu/Vu2 does not diverge significantly with increasing ρ 

maintaining a reasonably narrow range.  The approximate value Va falls in the 

middle of this range, except for smaller ρ, because Equation (4.31) is no longer a 

good estimate for low demand density.  The insertion heuristic curve Vi lies a little 

above Vl; the gap between them slightly increases with ρ, showing that the 

improvement provided by the insertion heuristic algorithm over the no-backtracking 

policy is more evident for denser demand.  This gap is smaller for W = 0.5, because 

the narrower corridor guarantees better solutions from the no-backtracking policy (in 

accordance with Proposition 1). 

Even though MAST services are designed to provide a comfortable 

door-to-door service, customers would probably perceive the service as being too 

slow if the velocity along the primary direction would fall below a threshold value.  

According to a random check of the timetables of various fixed-route bus lines in the 

Los Angeles County, regular fixed-route buses generally achieve an overall average 

velocity along their routes of about 15 miles per hour, depending on the number of 

stops placed in the route and the number of customers to be served (they can go as 

quick as 20 miles/hour for interurban fast lines and they can go as slow as 10 

miles/hour for downtown services).  We assume that MAST customers would be 

willing to sacrifice some of this velocity for the convenience of being picked up and 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 47

dropped off at their desired locations.  This might be true for NPND, NPD and PND 

types of customers (as defined in Chapter 3), but MAST systems are designed serve 

also the “regular” PD customers that rely only on already scheduled checkpoints for 

both their service points and that clearly would not welcome any reduction on the 

velocity of the service, since they do not require any deviations from the route. 

As an example, we assume the minimum acceptable V of a MAST system to 

be 10 miles/hour, 33% less than that of average fixed-route buses; we suppose that 

below this level the demand would radically drop, because it is too inconvenient.  

From the charts we note that the demand density that can be served corresponding to 

this value is in the range of ρ = 4-6 customers/mile2 (when W = 1 mile) and 

ρ = 10-14 customers/mile2 (when W = 0.5 miles), according to the values provided 

by the bounds.  Recall that ρ represents the density of the stops served only by the 

left-right vehicle, which corresponds also to the density of all customers served by 

both vehicles of the systems (the right-left vehicle and the left-right one).  Therefore, 

the system would be able to serve at least 4 customers every mile of the corridor 

(when W = 1 mile) or at least 10×0.5 = 5 customers every mile of the corridor (when 

W = 0.5 miles), not considering “regular” PD customers being picked up and 

dropped off at the checkpoints.  The existing MAST line 646 currently serves a very 

low nighttime demand of about ρ = 1 customers/miles2; the width of the service area 

is W = 1 mile that allows the system to properly serve all the customers, maintaining 

a relatively high longitudinal velocity of almost 20 miles/hour.  Heavier demands 

would require either to lower the longitudinal velocity maintaining the same size of 
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the service area or to narrow the width of the strip keeping the same longitudinal 

velocity or to add more vehicles thereby reducing the cycle length. 

While designing a MAST system a planner can make use of the information 

provided in Figure 9 and Figure 10 to schedule the time difference between 

checkpoints in order to set the velocity of the service and therefore establish the 

maximum slack time allowed for deviations.  In areas where most customers are of 

the PD type and would use the service as a regular fixed-route line between the 

checkpoints and only a small portion of them would take advantage of the 

door-to-door characteristic, the demand would probably significantly increase for 

higher values of V and it might be more convenient (also for capacity constraints) to 

design the MAST system assigning a larger amount of “faster” vehicles to the line, 

instead of fewer slower buses. 
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5 Static operating scenario: schedule optimization 

In this chapter we look at the problem of scheduling MAST services in static 

scenarios, where all the demand is supposed to be known in advance.  We provide a 

mathematical formulation of the problem as a mixed integer linear program and we 

aim to optimize it by finding the best schedule.  Since the problem is NP-Hard, we 

develop a set of valid inequalities to be added to the formulation in order to increase 

the lower optimality bound and speed up the search for optimality. 

 

5.1 Formulation 

The system considered consists of a single vehicle, initially associated with a 

predefined schedule along a fixed-route consisting of C checkpoints identified by 

c = 1, 2,…, C; two of them are terminals located at the extremities of the route (c = 1 

and c = C) and the remaining C-2 intermediate checkpoints are distributed along the 

route.  The vehicle is moving back and forth between 1 and C.  A ride r is defined as 

a portion of the schedule beginning at one of the terminals and ending at the other 

one after visiting all the intermediate checkpoints; the vehicle’s schedule consists of 

R rides.  Since the end-terminal of a ride r corresponds to the start-terminal of the 

following ride r+1, the total number of stops at the checkpoints is TC = (C-1)×R+1.  

Hence, the initial schedule’s array is represented by an ordered sequence of stops 

s = 1,…, TC and their scheduled departure times are assumed to be constraints on the 

system which can not be violated. 
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The service area is represented by a rectangular region defined by L×W, 

where L (on the x axis) is the distance between terminals 1 and C and W/2 (on the y 

axis) is the maximum allowable deviation from the main route in either side (see 

Figure 11). 

 

Figure 11 – MAST system 

 

Each checkpoint c is scheduled to be visited by the vehicle R times.  The stop 

indexes sk(c) identifying them in the schedule (stop index s of the kth occurrence of 

checkpoint c in the schedule) are computed by the following sequence: 
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Note that for terminal checkpoints c = 1 and c = C the ending checkpoint of a 

ride r coincides with the starting checkpoint of the following ride r+1.  For example: 
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with C = 5, R = 4 and r = 1, 2, 3, 4, checkpoint c = 2 will have sr(2) = 2, 8, 10, 16; 

while terminal checkpoint c = 5 will have sr(5) = 5, 5, 13, 13. 

While checkpoints are identified by s = 1,…, TC, non-checkpoint customer 

requests (NP or ND) are identified by s = TC+1,…, TS where TS represents the 

current total number of stops.  The problem is to minimize a properly defined 

objective function by finding the optimal sequence of stops identified by the integer 

index α(s), s = 1,…, TS, representing the position of any stop s in the vehicle’s 

schedule, with α(1) = 1 and α(TC) = TS being respectively the first and last 

checkpoints of the service. 

To simplify the problem we assume no capacity constraint and a deterministic 

environment, with one customer per request. 

We define the following notation for the system: 

 

• v = the vehicle speed 

• R = number of rides 

• RD = {1,…,R} = set of rides 

• C = number of checkpoints 

• TC = (C-1)×R+1 = total number of stops at the checkpoints in the 

schedule 

• N0 = {1,…, TC} = set of stops at the checkpoints 

• tdci, ∀i∈N0 = departure times from checkpoints [tdc1 = 0] 

• pd = number of PD requests 
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• pnd = number of PND requests 

• npd = number of NPD requests 

• npnd = number of NPND requests 

• PD = {1,…, pd} = set of PD requests 

• PND = {pd+1,…, pd+pnd} = set of PND requests 

• NPD = {pd+pnd+1,…, pd+pnd+npd} = set of NPD requests 

• NPND = {pd+pnd+npd+1,…, pd+pnd+npd+npnd} = set of NPND 

requests 

• HYB = PND ∪ NPD = set of hybrid requests (PND and NPD types) 

• K = PD ∪ HYB ∪ NPND = set of all requests 

• τk, ∀k∈K = ready times of requests 

• TS = TC+pnd+npd+2×npnd = total number of stops 

• Nn = {TC+1,…, TS} = set of non-checkpoint stops 

• cs(i)∈K, ∀i∈Nn = corresponding request of each non-checkpoint stop 

• N = N0 ∪ Nn = set of all stops 

• di,j, ∀i,j∈N = rectilinear distance between i and j 

• bi, ∀i∈N/{1} = service time for boardings and disembarkments at 

stop i 

 

PD customers are guaranteed to be served at their chosen service checkpoints 

identified by their index s∈N0, since we assume no capacity constraint on the 
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vehicle.  NPND customers have their own stops placed somewhere in the schedule 

and identified by their index s∈Nn.  Hybrid customers (PND and NPD) instead do 

not have a priori a uniquely identified stop for their checkpoint service point.  In fact, 

they will be served at one of the occurrences of their chosen checkpoint (either a P or 

a D) identified by Equation (5.1), depending on where their non-checkpoint stop 

(either a ND or a NP) is positioned in the schedule.  For example, consider a MAST 

system with C = 5 and R = 4 and assume that a NPD request would like to be picked 

up at its NP stop (s*) as soon as possible and dropped off at the checkpoint c = 4 in 

the first ride r = 1 identified by s1(4) = 4, from Equation (5.1).  It could occur that, 

because of lack of slack time due to other requests, the NP stop s* can not be placed 

in the schedule before s1(4) = 4, so that α(s*) > α(4).  As a result the customer will 

have to be dropped off at one of the successive occurrence of c = 4 in the schedule 

(sr(4) = 6, 12, 14, for r = 2, 3, 4).  A similar example could be developed for PND 

customers. 

Therefore, we can further identify the following: 

 

• pu(k)∈N, ∀k∈K ∩ PND = pick-up of all requests except PND 

• do(k)∈N, ∀k∈K ∩ NPD = drop-off of all requests except NPD 

• PU(k,r)∈N0, ∀k∈PND, ∀r∈RD = set of possible pick-up checkpoints 

for each PND request, obtainable from the sequence sk(c) in Equation 

(5.1), where c ≤ C represents their pick-up checkpoint. 
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• DO(k,r)∈N0, ∀k∈NPD, ∀r∈RD = set of possible drop-off 

checkpoints for each NPD customer, obtainable from the sequence 

sk(c) in Equation (5.1), where c ≤ C represents their drop-off 

checkpoint. 

 

We also note that not all the occurrences of a checkpoint c are feasible 

candidates to be selected as P or D checkpoint of a hybrid request, depending on 

their ready times τk.  Therefore, we define the following sets: 

 

• HYBR(k) ⊂ RD, ∀k∈HYB = set of feasible rides (depending on τk) 

for each hybrid request to be picked-up or dropped-off at their 

checkpoint.  Formally: 

∀k∈PND, HYBR(k) includes all r∈RD s.t.: τk ≤ tdci, ∀i∈PU(k,r) 

∀k∈NPD, HYBR(k) includes all r∈RD s.t.: 

max(τk,tdc1) + di,j/v + bj ≤ tdcj, ∀j∈DO(k,r), with i = pu(k) 

 

The problem is represented by a network and the sets of arcs are defined as 

follows: 
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• A0 = arcs in N0, including only arcs (i,i+1), with i = 1,…, TC-1, 

because the checkpoints are already ordered sequentially in the 

schedule. 

• An = arcs in Nn, including all arcs (i,j), ∀i,j∈Nn, with i ≠ j. 

• A0,n = arcs from N0 to Nn, including all arcs (i,j), ∀i∈N0/{TC}, 

∀j∈Nn. 

• An,0 = arcs from Nn to N0, including all arcs (i,j), ∀i∈Nn, ∀j∈N0/{1}. 

• A = A0 ∪ An ∪ A0,n ∪ An,0 = set of all arcs 

 

The variables of the system are the following: 

 

• xi,j = {0,1}, ∀(i,j)∈A = binary variables indicating if an arc (i,j) is 

used (xi,j = 1) or not (xi,j = 0). 

• tai, ∀i∈N/{1} = arrival time at stop i. 

• tdi, ∀i∈N = departure time from stop i. 

• zk,r = {0,1}, ∀k∈HYB, ∀r∈HYBR(k) = binary variable indicating 

whether customer k is picked-up (k∈PND) or dropped-off (k∈NPD) 

in ride r (in this case zk,r = 1, otherwise zk,r = 0). 

• TDk, ∀k∈PND = departure time of customer k. 

• TAk, ∀k∈NPD = arrival time of customer k. 

• iti, ∀i∈N/{1} = idle time spent at node i. 
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We note that once a feasible solution of the problem is found the indexes 

α(i), ∀i∈N are trivially determined either by the x, the td or the ta variables. 

Finally, we propose the following mixed integer linear programming 

formulation for the MAST system, where ω1, ω2 and ω3 are weights: 
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 (5.2) 

subject to: 

1, =∑
i

jix  ∀j∈N/{1} (5.3) 

1, =∑
j

jix  ∀i∈N/{TC} (5.4) 

tdi = tdci ∀i∈N0 (5.5) 

( )
1

HYBR
, =∑

∈ kr
rkz  ∀k∈HYB (5.6) 

TDk ≥ tdPU(k,r) – M(1-zk,r) ∀k∈PND, ∀r∈HYBR(k)  (5.7) 

TDk ≤ tdPU(k,r) + M(1-zk,r) ∀k∈PND, ∀r∈HYBR(k)  (5.8) 

TAk ≥ taDO(k,r) – M(1-zk,r) ∀k∈NPD, ∀r∈HYBR(k)  (5.9) 

TAk ≤ taDO(k,r) + M(1-zk,r) ∀k ∈ NPD, ∀r ∈ HYBR(k)  (5.10) 

tdpu(k) ≥ τk ∀k∈K ∩ PND (5.11) 
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TDk ≥ τk ∀k∈PND (5.12) 

tado(k) > tdpu(k) ∀k∈NPND (5.13) 

tado(k) > TDk ∀k∈PND (5.14) 

TAk ≥ tdpu(k) ∀k∈NPD (5.15) 

taj ≥ tdi + xi,jdi,j/v – M(1–xi,j) ∀(i,j)∈A (5.16) 

tdi = tai + bi + iti ∀i∈N/{1} (5.17) 

iti ≥ 0 ∀i∈N/{1} (5.18) 

( )
( ) { }

1TC
1/NA,

,, tdctdcbvd −=++ ∑∑
∈∈ i

i
ji

ijiji itx   (5.19) 

 

The objective function (5.2) minimizes the weighted sum of three different 

factors, namely the total miles driven by the vehicle, the total ride time of all 

customers and the total waiting time of all customers, defined as the time interval 

between the ready time and pick-up time.  This definition allows optimizing in terms 

of both the vehicle variable cost (first term) and the service level (the last two terms); 

modifying the weights accordingly we can emphasize one factor over the others as 

needed. 

Network constraints (5.3) and (5.4) allow each stop (except node 1 and TC) 

to have exactly one incoming arc and one outgoing arc equal to 1, so that all stops 

will be visited once. 

Constraint (5.5) forces the departure times from the checkpoint to be fixed, 

since they are prescheduled like in a fixed-route line. 
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Constraints (5.6) allow exactly one z variable to be equal to 1 for each hybrid 

customer, meaning that a unique ride will be chosen for their pick-up or drop-off 

checkpoint. 

Constraints (5.7) and (5.8) fix the value of the TD variables for each customer 

k∈PND depending on the chosen z variable.  Constraints (5.9) and (5.10) do the 

same for NPD requests.  M represents a number large enough to cause the constraints 

to become irrelevant when zk,r = 0.  An M = tdcTC-tdc1 is big enough to serve this 

purpose. 

Constraints (5.11) and (5.12) prevent the departure times of each customer 

from being earlier than its ready time. 

Equations (5.13), (5.14) and (5.15) are the precedence constraints for each 

request.  Pick-up must be scheduled before the corresponding drop-off. 

Constraint (5.16) is the key constraint in the formulation.  It defines that for 

each xi,j = 1 the arrival time at j should be no less than the departure time from i plus 

the time needed to travel between i and j.  The last term with the M (also in this case 

an M = tdcTC-tdc1 is large enough to be effective) assures that for any xi,j = 0 the 

constraints become irrelevant.  This constraint also guarantees that every feasible 

solution does not contain inner loops, but a single path from node 1 to node TC. 

Constraint (5.17) links together arrival time, departure time and idle time for 

each stop i in the network.  Constraint (5.18) ensures no negative idle times. 

Constraint (5.19) is a balance equation and prevents the system from finding 

unrealistic solutions having idle time in between stops and not only at stops. 
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The following constraint can also be added to the formulation, in case we 

would like to allow idling only at the checkpoints: 

 

iti = 0 ∀i∈Nn (5.20) 

 

The problem is a special case of the Pick-up and Delivery Problem (PDP) that 

is known to be NP-Hard and unsolvable in reasonable time for large enough 

instances. 

 

5.2 Elimination of infeasible arcs 

In order to reduce the size of the problem we can exclude from the network 

several infeasible arcs and therefore many of the x variables from the formulation.  

Specifically we can redefine the sets of arcs An, A0,n, An,0 as follows: 

 

• An = arcs in Nn, including all arcs (i,j), ∀i,j∈Nn, with i ≠ j and 

excluding the following infeasible arcs: 

a. arcs (i,j) s.t. i = do(k) and j = pu(k), ∀k∈NPND 

b. arcs (i,j) s.t.: 

(dk,i+di,j+dj,k+1)/v + (bi+bj+bk+1) > tdck+1-tdck, ∀k∈N0/{TC}. 

These arcs are infeasible because the vehicle does not have 

sufficient time to go from checkpoint k to i to j to checkpoint 
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k+1, for any pair of consecutive checkpoints k and k+1.  This 

is not acceptable, since the vehicle must pass by all 

checkpoints k∈N0 and has to meet the departure deadline tdck. 

c. arcs (i,j) with k∈NPD = cs(j) or cs(i) and h = DO(k,R) be the 

last possible drop-off checkpoint in the schedule for k.  Arcs 

(i,j) are infeasible if the vehicle would not be able to arrive at 

h in time to meet the departure time tdch, because of too high 

ready times τk.  Formally arc (i,j) is infeasible if one of the 

following five conditions is verified: 

cs(i) = k∈NPD, h = DO(k,R) and 

τk + (di,j+dj,h)/v + (bj+bh) > tdch 

cs(i) = k∈NPD, h = DO(k,R), j = pu(cs(j)) and 

τcs(j) + dj,h/v + bh > tdch 

cs(i) = k∈NPD, h = DO(k,R), j = do(cs(j)) and 

τcs(j) + (dpu(cs(j)),i+di,j+dj,h)/v + (bi+bj+bh) > tdch 

cs(j) = k∈NPD, h = DO(k,R), i = pu(cs(i)) and 

τcs(i) + (di,j+dj,h)/v + (bj+bh) > tdch 

cs(j) = k∈NPD, h = DO(k,R), i = do(cs(i)) and 

τcs(i) + (dpu(cs(i)),i+di,j+dj,h)/v + (bi+bj+bh) > tdch 
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• A0,n = arcs from N0 to Nn, including all arcs (i,j), ∀i∈N0/{TC}, ∀j∈Nn 

and excluding the following infeasible arcs: 

a. arcs (i,j) s.t. (di,j+dj,i+1)/v + (bj+bi+1) > tdci+1–tdci, 

∀i∈N0/{TC}. 

These arcs are infeasible because the vehicle does not have 

sufficient time to go from checkpoint i to j to checkpoint i+1, 

for any pair of consecutive checkpoints i and i+1.  This is not 

acceptable, since the vehicle must pass by all checkpoints 

i∈N0 and has to meet the departure deadline tdci. 

b. arcs (i,j) s.t. cs(j) = k∉PND, i < TC, τk + dj,i+1/v + bi+1 > tdci+1. 

These arcs are infeasible because they would not allow the 

vehicle to reach checkpoint i+1 on time for its departure time 

tdci+1. 

c. arcs (i,j) s.t. cs(j) = k∈PND, τk > tdci or PU(k,1) > i. 

These arcs are infeasible because the earliest possible pick-up 

checkpoint for k is later in the schedule compared to i.  The 

vehicle leaving i must pass by the checkpoint pick-up of k 

before going to j. 

d. arcs (i,j) s.t. cs(j) = k∈NPD, i ≥ DO(k,R). 

These arcs are infeasible because i must be earlier in the 

schedule compared to DO(k,R), the last possible drop-off 

checkpoint for k, in order to allow the vehicle to go from i to j. 
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e. arcs (i,j) s.t. i = 1, j = do(k) and k∈NPND. 

These arcs are infeasible because the vehicle needs to pass by 

pu(k) first. 

f. arcs (i,j) s.t. j = do(k), k∈NPND, τk + dpu(k),i/v + bi > tdci. 

These arcs are infeasible because τk does not allow the vehicle 

to go from pu(k) to i on time for its departure time tdci (pu(k) 

must be scheduled before j = do(k)). 

 

• An,0 = arcs from Nn to N0, including all arcs (i,j), ∀i∈Nn, ∀j∈N0/{1} 

and excluding the following infeasible arcs: 

a. arcs (i,j) s.t. (dj-1,i+di,j)/v + (bi+bj) > tdcj–tdcj-1, ∀j∈N0/{1}. 

These arcs are infeasible because the vehicle would not be 

able time wise to go from checkpoint j-1 to i to checkpoint j, 

for any pair of consecutive checkpoints j-1 and j.  This is not 

acceptable, since the vehicle must pass by all checkpoints 

j∈N0 and has to meet the departure deadline tdcj. 

b. arcs (i,j) s.t. cs(i) = k∉PND, τk + di,j/v + bj > tdcj. 

These arcs are infeasible because they would not allow the 

vehicle to reach checkpoint j on time for its departure time 
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c. arcs (i,j) s.t. i = do(k), k∈NPND, τk + (dpu(k),i+di,j)/v + (bi+bj) > 

tdcj. 

These arcs are infeasible because τk does not allow the vehicle 

to go from pu(k) to i to j on time for its departure time (pu(k) 

must be before i = do(k)). 

d. arcs (i,j) s.t. cs(i) = k∈PND, τk > tdcj-1 or PU(k,1) ≥ j. 

These arcs are infeasible because the earliest possible pick-up 

checkpoint for k is later (or equal) in the schedule compared to 

j. 

e. arcs (i,j) s.t. cs(i) = k∈NPD, j > DO(k,R). 

These arcs are infeasible because j is later in the schedule 

compared to the last possible drop-off checkpoint for k. 

f. arcs (i,j) s.t. j = TC, i = pu(k), k∈NPND. 

These arcs are infeasible because the vehicle needs to pass by 

do(k) first. 

 

• A = A0 ∪ An ∪ A0,n ∪ An,0 = set of all arcs 

 

5.3 Valid inequalities 

The purpose of this section is to identify valid inequalities linking together 

some of the variables of the MAST system formulation in order to reduce the 
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feasible region identified by constraints from (5.3) to (5.20) and possibly speed up 

the search for the optimal solution of the problem.  The challenge is to make sure 

that these new constraints will only remove feasible but not optimal solutions from 

the problem. 

In order to develop some of the inequalities we assume ω2 > ω3, giving a 

higher weight to the travel time term vs. the waiting time term in the objective 

function (5.2).  This means that we assume that customers would rather wait for their 

pick-up instead of spending time onboard the vehicle.  This is generally not true if 

customers do not know the schedule and face random arrivals of buses at their 

pick-up locations; in fact, they would probably rather spend the time onboard instead 

of waiting at their pick-up stop, especially when facing bad weather conditions 

and/or unsafe areas.  However, a MAST system provides a door-to-door 

transportation service built on reservations with prescheduled departure times from 

checkpoints.  Therefore, customers know in advance the expected departure times 

from their pick-up locations (either a P or a NP) and in this case this assumption is 

rather reasonable.  In fact most customers, given that the arrival time at destination is 

fixed, would reasonably prefer to have their scheduled pick-up times as late as 

possible to make the ride shorter and consequently the wait longer.  This is 

particularly true for NPD and NPND customers that would spend their waiting time 

at their NP stop (home or office or other convenient locations) and not at an outdoor 

bus stop. Auth
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The underlying concept behind all the inequalities developed in this section is 

that hybrid customers will be choosing their P or D checkpoints as close as possible 

to their ND or NP stop, once these are placed in the schedule.  In fact NPD 

customers will disembark the vehicle as early as possible after being picked up to 

minimize their ride time.  A PND request will instead board the vehicle as late as 

possible to minimize their ride time and consequently maximize their waiting time, 

since we assume ω2 > ω3.  More formally we can develop and prove the following 

propositions. 

 

Proposition 2.  If ω2 > ω3, a necessary condition for optimality is that PND 

customers must board the vehicle at the last occurrence of their P checkpoint prior 

to their scheduled ND drop-off stop. 

 

Proof.  Suppose that in the optimal solution we have α(PU(k,r*)) < α(do(k)) 

< α(PU(k,r*+1)) and that τk ≤ tdPU(k,r°), with r° ≤ r*, for a request k∈PND.  The 

objective function value can be written as Z = ∆ + ω2(tado(k)-TDk) + ω3(TDk-τk), 

where ∆ includes all the terms in Z except the ride time and the waiting time terms of 

k.  TDk could be equal to tdPU(k,r°), tdPU(k,r°+1),…, tdPU(k,r*), depending on zk,r indicating 

at which occurrence of the pick-up checkpoint the customer boards the vehicle.  

Rearranging the terms we have Z = ∆ + ω2tado(k) - ω3τk + TDk(ω3-ω2).  Since tdPU(k,r°) 

≤ tdPU(k,r°+1) ≤…≤ tdPU(k,r*), ω3-ω2 < 0 by assumption and Z is optimal, TDk must be 
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the largest possible, thus equal to tdPU(k,r*).  This means that PND customers get 

onboard at the last occurrence of their pick-up checkpoint preceding their do(k), 

minimizing their ride time.   

 

Proposition 3.  A necessary condition for optimality is that NPD customers 

must disembark the vehicle at the first occurrence of their D checkpoint following 

their scheduled NP pick-up stop. 

 

Proof.  Suppose that in the optimal solution we have α(DO(k,r*-1)) < 

α(pu(k)) < α(DO(k,r*)) for a request k∈NPD.  The objective function value can be 

written as Z = ∆ + ω2(TAk-tdpu(k)), where ∆ includes all the terms in Z except the ride 

time term of k.  TAk could be equal to taDO(k,r*), taDO(k,r*+1),…, taDO(k,R), depending on 

zk,r indicating at which occurrence of the drop-off checkpoint the customer 

disembarks the vehicle.  Since taDO(k,r*) ≤ taDO(k,r*+1) ≤…≤ taDO(k,R) and Z is optimal, 

TAk must be the smallest possible, thus equal to taDO(k,r*).  This means that NPD 

customers disembark at the first occurrence of their drop-off checkpoint following 

their pu(k).   

We are now able to develop three different groups of valid inequalities 

described in the following sections. 
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5.3.1 Group #1 

The first group of valid inequalities includes constraints linking the z 

variables to the td variables (departure times) of non-checkpoint stops of hybrid 

customers and constraints linking the z variables to some of the x variables. 

For a PND request a valid set of inequalities is represented by 

 

tddo(k) < zk,rtdcj + M(1-zk,r), (5.21) 

with j = PU(k,r+1), ∀k∈PND, ∀r∈HYBR(k)/{R} 

 

Because of Proposition 2 these inequalities force the ND stop of each PND 

request to be scheduled before the next occurrence in the schedule of the checkpoint 

chosen as pick-up.  If zk,r = 1 the PND customer is picked up at his/her checkpoint 

PU(k,r) in ride r and the constraint imposes that the do(k) has to be scheduled before 

PU(k,r+1) by setting an upper bound on the departure time tddo(k).  If zk,r = 0 the 

constraint becomes irrelevant because of the M. 

Symmetrically for NPD requests a valid inequality is represented by 

 

tdpu(k) > zk,rtdci - M(1-zk,r), (5.22) 

with i = DO(k,r-1), ∀k∈NPD, ∀r∈HYBR(k)/{1} 

 

Because of Proposition 3, these inequalities force the NP stop of each NPD 

request to be scheduled after the previous occurrence in the schedule of the 
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checkpoint chosen as drop-off.  If zk,r = 1 the NPD customer is dropped off at his/her 

checkpoint DO(k,r) in ride r and the constraint imposes that the pu(k) has to be 

scheduled after DO(k,r-1) by setting a lower bound on the departure time tdpu(k).  If 

zk,r = 0 the constraint becomes irrelevant because of the M. 

We can also include the following inequalities for PND requests: 

 

xdo(k),j ≤ zk,r, (5.23) 

∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(do(k),j)∈An,0 s.t. PU(k,r) < j ≤ PU(k,r+1) 

 

By Proposition 2, do(k) must be scheduled in between PU(k,r) and PU(k,r+1) 

and all arcs originating from do(k) and ending at a checkpoint j can not exist 

whenever j is not included in that interval.  These arcs would in fact unfeasibly 

require the vehicle to go from do(k) to a checkpoint scheduled before its pick-up 

PU(k,r) or to skip PU(k,r+1) going directly from do(k) to a checkpoint scheduled 

after PU(k,r+1). 

Similarly we have: 

 

xi,do(k) ≤ zk,r, (5.24) 

∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(i,do(k))∈A0,n s.t. PU(k,r) ≤ i < PU(k,r+1) 
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All arcs originating from a checkpoint i and ending at do(k) are eliminated 

whenever i is not included in the interval [PU(k,r), PU(k,r+1)) identified by zk,r = 1. 

Symmetrically for NPD requests we have that 

 

xi,pu(k) ≤ zk,r, (5.25) 

∀k∈NPD, ∀r∈HYBR(k)/{1}, ∀(i,pu(k))∈A0,n s.t. DO(k,r-1) ≤ i < DO(k,r) 

 

xpu(k),j ≤ zk,r, (5.26) 

∀k∈NPD, ∀r∈HYBR(k)/{1}, ∀(pu(k),j)∈An,0 s.t. DO(k,r-1) < j ≤ DO(k,r) 

 

5.3.2 Group #2 

A second group of valid inequalities links z and x variables making use of the 

ready times τ of the customers involved.  For PND customers we have that 

 

τcs(i) + di,j/v + bj ≤ zk,rtdcj + M(2-zk,r-xdo(k),i), (5.27) 

j = PU(k,r+1), ∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(do(k),i)∈An, s.t. i = pu(cs(i)) 

 

Since by Proposition 2 do(k) must be scheduled in between PU(k,r) and 

PU(k,r+1), these constraints impose that any arc originating from the do(k) of a PND 

customer to any non-checkpoint pick-up i is not allowed if the vehicle would not be 

able to reach checkpoint PU(k,r+1) on time by passing through i, because of too high 
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τcs(i), even using the quickest way possible.  The M causes these constraints to 

become irrelevant if either zk,r or xdo(k),i are not equal to 1. 

Similarly, 

 

τcs(i) + (dpu(cs(i)),do(k)+ddo(k),i+di,j)/v + (bdo(k)+bi+bj) ≤ 

 zk,rtdcj + M(2-zk,r-xdo(k),i), (5.28) 

j = PU(k,r+1), ∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(do(k),i)∈An, s.t. i = do(cs(i)) 

 

Any arc originating from the do(k) of a PND customer k to any 

non-checkpoint drop-off i is not allowed if the vehicle is not able to go from the 

pick-up point pu(cs(i)) to do(k) to i to checkpoint PU(k,r+1) on time, because of too 

high τcs(i), even using the quickest way possible.  The M causes these constraints to 

become irrelevant if either zk,r or xdo(k),i are not equal to 1. 

Similar constraints can be developed for arcs (i,do(k)) as follows: 

 

τcs(i) + (di,do(k)+ddo(k),j)/v + (bdo(k)+bj)≤ zk,rtdcj + M(2-zk,r-xi,do(k)), (5.29) 

j = PU(k,r+1), ∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(i,do(k))∈An, s.t. i = pu(cs(i)) 

 

τcs(i) + (dpu(cs(i)),i+di,do(k)+ddo(k),j)/v +(bi+bdo(k)+bj) ≤ 

 zk,rtdcj + M(2-zk,r-xi,do(k)), (5.30) 

j = PU(k,r+1), ∀k∈PND, ∀r∈HYBR(k)/{R}, ∀(i,do(k))∈An, s.t. i = do(cs(i)) 
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For NPD customers the four constraints above can be similarly developed: 

 

τcs(i) + di,j/v + bj ≤ zk,rtdcj + M(2-zk,r-xpu(k),i), (5.31) 

j = DO(k,r), ∀k∈NPD, ∀r∈HYBR(k), ∀(pu(k),i)∈An, s.t. i = pu(cs(i)) 

 

τcs(i) + (dpu(cs(i)),pu(k)+dpu(k),i+di,j)/v + (bpu(k)+bi+bj) ≤ 

 zk,rtdcj + M(2-zk,r-xpu(k),i), (5.32) 

j = DO(k,r), ∀k∈NPD, ∀r∈HYBR(k), ∀(pu(k),i)∈An, s.t. i = do(cs(i)) 

 

τcs(i) + (di,pu(k)+dpu(k),j)/v + (bpu(k)+bj) ≤ zk,rtdcj + M(2-zk,r-xi,pu(k)), (5.33) 

j = DO(k,r), ∀k∈NPD, ∀r∈HYBR(k), ∀(i,pu(k))∈An, s.t. i = pu(cs(i)) 

 

τcs(i) + (dpu(cs(i)),i+di,pu(k)+dpu(k),j)/v + (bi+bpu(k)+bj) ≤ 

 zk,rtdcj + M(2-zk,r-xi,pu(k)), (5.34) 

j = DO(k,r), ∀k∈PND, ∀r∈HYBR(k), ∀(i,pu(k))∈An, s.t. i = do(cs(i)) 

 

5.3.3 Group #3 

A third group of valid inequalities is represented by linking z and x variables 

of pairs of hybrid customers.  The following relationships can be written: 
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zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xdo(k),do(h)), (5.35) 

i = PU(h,s), j = PU(k,r+1), ∀k,h∈PND, ∀r∈HYBR(k)/{R}, ∀s∈HYBR(h) 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xdo(h),do(k)), (5.36) 

i = PU(h,s), j = PU(k,r+1), ∀k,h∈PND, ∀r∈HYBR(k)/{R}, ∀s∈HYBR(h) 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xpu(k),pu(h)), (5.37) 

i = DO(h,s-1), j = DO(k,r), ∀k,h∈NPD, ∀r∈HYBR(k), ∀s∈HYBR(h)/{1} 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xpu(h),pu(k)), (5.38) 

i = DO(h,s-1), j = DO(k,r), ∀k,h∈NPD, ∀r∈HYBR(k), ∀s∈HYBR(h)/{1} 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xpu(k),do(h)), (5.39) 

i = PU(h,s), j = DO(k,r), ∀k∈NPD, ∀h∈PND, ∀r∈HYBR(k), ∀s∈HYBR(h) 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xdo(h),pu(k)), (5.40) 

i = PU(h,s), j = DO(k,r), ∀k∈NPD, ∀h∈PND, ∀r∈HYBR(k), ∀s∈HYBR(h) 

 

zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xdo(k),pu(h)), (5.41) 

i = DO(h,s-1), j = PU(k,r+1), 

∀k∈PND, ∀h∈NPD, ∀r∈HYBR(k)/{R}, ∀s∈HYBR(h)/{1} 
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zh,stdci - zk,rtdcj < M(3-zh,s-zk,r-xpu(h),do(k)), (5.42) 

i = DO(h,s-1), j = PU(k,r+1), 

∀k∈PND, ∀h∈NPD, ∀r∈HYBR(k)/{R}, ∀s∈HYBR(h)/{1} 

 

We know by Proposition 2 (3) that the non-checkpoint stop of a PND (NPD) 

request must be included in the interval between the chosen pick-up (drop-off) 

checkpoint and its next (previous) occurrence in the schedule.  The above constraints 

say that given any pair of hybrid requests, the direct path connecting together their 

non-checkpoint stops identified by the appropriate x variable is not allowed if the 

intervals where the non-checkpoint stops are supposed to be included in, identified 

by the corresponding z variables, do not overlap.  For example in constraints (5.35) if 

zh,s = 1 and zk,r = 1 we know that do(h) must be scheduled between PU(h,s) and 

PU(h,s+1); similarly do(k) must be scheduled between PU(k,r) and PU(k,r+1).  

Therefore, the direct path from do(k) to do(h), identified by xdo(k),do(h), can not be 

allowed if checkpoint PU(h,s) is not scheduled earlier than PU(k,r+1) and the 

intervals do not overlap because the vehicle would have to pass by those checkpoints 

first, not allowing a direct path that would skip them.  The M causes these constraints 

to become irrelevant if either zh,s, zk,r or xdo(k),do(h) are equal to 0. 
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5.3.4 Other valid inequalities 

We note that it would be possible to develop several other valid inequalities 

similar to the ones already described.  Equations from (5.23) to (5.42) reduce the 

feasible region by eliminating direct arcs from some stop i to some stop j, identified 

by xi,j.  Utilizing the same logic, we could forbid any path beginning at i, passing 

through one or more other non-checkpoint stops and ending at j.  However, the 

number of constraints added to the formulation would be too high, slowing down the 

solution search instead of being effective. 

 

5.4 Experimental results 

In this section we evaluate the effectiveness of the inequalities defined above 

by solving different instances of the problem, including none, one or all of them in 

the formulation.  All the runs are performed utilizing CPLEX 9.0 with default 

settings in a 3.2 GHz CPU with 2GB RAM.  We refer to Figure 11 for the geometry 

of the MAST system considered and the following Table 4 summarizes the assumed 

parameters, common to all cases. 
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Table 4 – System parameters, common to all cases 

L 10 miles 
W 1 mile 
C 3 
ds,s+1 (s = 1,…, TC-1) 5 miles 
v 25 miles/hr 
bs (s = 1,…, TS) 18 sec 
ω1 / ω2 / ω3 0.4 / 0.4 / 0.2

 

The above data are consistent with the real data of the MTA line 646 in Los 

Angeles. 

We run two sets of experiments: in set A we assume a difference between the 

scheduled departure times of two consecutive checkpoints (tdcs+1-tdcs, s = 1,…, 

TC-1) of 17.5 minutes; in set B we assume 25 minutes instead.  As a result the slack 

time is approximately 25% in set A and 50% in set B, since the direct time among 

two consecutive checkpoint is about 12.5 minutes. 

In each set we consider two different subsets of runs.  In subset A2 (and B2) 

we assume larger number of rides (R) compared to subset A1 (and B1).  In each 

subset we assume four cases (i.e., for subset A1: A1a, A1b, A1c and A1d) so that 

moving from the smallest (A1a) to the largest (A1d) case we have a 5 unit increase 

in the total number of stops in the network (TS).  We assume a different number of 

requests of each type, as shown in the following Table 5.  The NP and ND locations 

are sampled from a spatial uniform distribution over the whole service area (W×L); 

while the ready times are sampled from a uniform distribution starting from half an 

hour before the beginning of the service to the end of it. 
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Table 5 – System parameters specific to each case 

Cases
Parameters 

A1a
B1a

A1b
B1b

A1c
B1c

A1d
B1d

A2a
B2a

A2b
B2b

A2c 
B2c 

A2d 
B2d 

R 2 4 4 4 6 6 6 6 
TC 5 9 9 9 13 13 13 13 
PD 1 1 1 2 1 1 1 1 
PND 2 2 5 6 1 3 5 8 
NPD 1 2 4 6 1 2 5 7 
NPND 1 1 1 2 0 1 1 1 
TS 10 15 20 25 15 20 25 30 

 

As a result we have TS going from 10 to 25 for subsets A1 (and B1) and from 

15 to 30 for subsets A2 (and B2). 

We tried to maintain the ratio between the different types of requests as close 

as possible to the real data of MTA line 646 in Los Angeles, which have a 

distribution described in the following Table 6. 

 

Table 6 – Customer type distribution of MTA line 646 

Type PD PND NPD NPND 
% 10% 40% 40% 10% 

 

The results are shown in the following tables.  Each table includes four cases.  

In each case we solve the problem with five different formulations:  without adding 

any groups of inequalities (none), adding only one group at a time (#1, #2 or #3) or 

adding all the groups together (all).  For each run we show the size of the problem 

solved (after the presolve routine in CPLEX): total variables (var), divided into 

binary (bin) and linear (lin) and total number of constraints (con).  The following 
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columns show the time to reach optimality in seconds (sec), the number of nodes 

visited in the branch and bound tree (n), the number of simplex iterations performed 

(i), the relaxed optimal value (rel) and the real optimum (opt).  We stopped CPLEX 

after a maximum solving time of 10 hours (36,000 seconds), recording the upper (ub) 

and lower (lb) bounds and the gap reached at that time.  The results for subset A1, 

A2, B1 and B2 are shown in Table 7, Table 8, Table 9 and Table 10 respectively. 
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Table 7 – CPLEX runs, subset A1 

Case: A1a TS=10: R=2; PD=1; PND=2; NPD=1; NPND=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 52 29 23 64 0.03 35 156 60.8 84.9 / / 0.0%
#1 52 29 23 67 0.02 21 98 60.9 84.9 / / 0.0%
#2 52 29 23 66 0.01 24 118 60.8 84.9 / / 0.0%
#3 52 29 23 66 0.02 24 118 60.8 84.9 / / 0.0%
all 52 29 23 71 0.03 26 185 60.9 84.9 / / 0.0%

Case: A1b TS=15: R=4; PD=1; PND=2; NPD=2; NPND=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 93 58 35 119 0.10 126 1.14 90.7 117.2 / / 0.0%
#1 92 57 35 139 0.08 110 0.94 90.7 117.2 / / 0.0%
#2 93 58 35 137 0.09 128 1.22 90.7 117.2 / / 0.0%
#3 93 58 35 131 0.13 194 1.55 90.7 117.2 / / 0.0%
all 92 57 35 169 0.09 94 1.06 90.7 117.2 / / 0.0%

Case: A1c TS=20: R=4; PD=1; PND=5; NPD=4; NPND=1 

cuts var bin lin con sec 103 n 103 i rel opt ub lb gap 
none 190 140 50 241 8.10 16.1 97 142.9 220.7 / / 0.0%
#1 184 135 49 278 2.41 3.0 30 142.9 220.7 / / 0.0%
#2 190 140 50 298 7.13 12.2 90 142.9 220.7 / / 0.0%
#3 190 140 50 429 10.16 14.5 117 142.9 220.7 / / 0.0%
all 184 135 49 441 1.71 2.2 18 142.9 220.7 / / 0.0%

Case: A1d TS=25: R=4; PD=2; PND=6; NPD=6; NPND=2 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 279 216 63 343 419 327 3.80 154.1 242.4 / / 0.0%
#1 273 211 62 390 81 64 0.77 154.1 242.4 / / 0.0%
#2 279 216 63 416 186 131 1.69 154.1 242.4 / / 0.0%
#3 279 216 63 503 269 192 2.20 154.1 242.4 / / 0.0%
all 273 211 62 563 80 53 0.73 154.1 242.4 / / 0.0%
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Table 8 – CPLEX runs, subset A2 

Case: A2a TS=15: R=6; PD=1; PND=1; NPD=1; NPND=0 

cuts var bin lin con sec n i rel opt ub lb gap 
none 65 32 33 77 0.01 1 117 92.5 97.6 / / 0.0%
#1 65 32 33 100 0.01 0 102 92.6 97.6 / / 0.0%
#2 65 32 33 83 0.01 0 89 92.5 97.6 / / 0.0%
#3 65 32 33 99 0.01 0 94 92.5 97.6 / / 0.0%
all 65 32 33 128 0.01 0 69 92.6 97.6 / / 0.0%

Case: A2b TS=20: R=6; PD=1; PND=3; NPD=2; NPND=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 147 101 46 189 0.15 20 503 116.0 138.8 / / 0.0%
#1 144 99 45 229 0.15 7 401 116.0 138.8 / / 0.0%
#2 147 101 46 201 0.20 53 752 116.0 138.8 / / 0.0%
#3 147 101 46 265 0.21 27 565 116.0 138.8 / / 0.0%
all 144 99 45 311 0.16 7 420 116.0 138.8 / / 0.0%

Case: A2c TS=25: R=6; PD=1; PND=5; NPD=5; NPND=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 257 196 61 326 1.32 849 9.49 138.7 174.7 / / 0.0%
#1 253 193 60 407 0.68 160 2.83 138.7 174.7 / / 0.0%
#2 257 196 61 478 1.25 626 9.21 138.7 174.7 / / 0.0%
#3 257 196 61 748 1.70 698 9.50 138.7 174.7 / / 0.0%
all 253 193 60 927 0.92 196 3.36 138.7 174.7 / / 0.0%

Case: A2d TS=30: R=6; PD=1; PND=8; NPD=7; NPND=1 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 418 342 76 503 36,000 14.3 242 186.7 ? 294.1 274.7 6.6%
#1 409 334 75 604 10,316 3.8 60 186.7 293.9 / / 0.0%
#2 418 342 76 671 36,000 12.1 227 186.7 ? 295.2 267.4 9.4%
#3 418 342 76 1,377 36,000 5.1 138 186.7 ? 295.3 257.8 12.7%
all 409 334 75 1,428 12,273 3.7 65 186.7 293.9 / / 0.0%
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Table 9 – CPLEX runs, subset B1 

Case: B1a TS=10: R=2; PD=1; PND=2; NPD=1; NPND=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
#1 67 43 24 91 0.03 27 221 81.8 114.7 / / 0.0%
#2 67 43 24 87 0.04 50 324 81.2 114.7 / / 0.0%
#3 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0%
all 67 43 24 93 0.03 25 217 81.8 114.7 / / 0.0%

Case: B1b TS=15: R=4; PD=1; PND=2; NPD=2; NPND=1 

cuts var bin lin con sec n i rel opt ub lb gap 

none 90 55 35 114 0.06 31 351 93.8 132.3 / / 0.0%
#1 90 55 35 135 0.05 37 312 93.8 132.3 / / 0.0%
#2 90 55 35 132 0.05 27 267 93.8 132.3 / / 0.0%
#3 90 55 35 126 0.06 75 457 93.8 132.3 / / 0.0%
all 90 55 35 165 0.05 32 302 93.8 132.3 / / 0.0%

Case: B1c TS=20: R=4; PD=1; PND=5; NPD=4; NPND=1 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 242 192 50 294 2,190 2.27 20.1 174.2 278.4 / / 0.0%
#1 239 190 49 357 155 0.14 1.5 174.2 278.4 / / 0.0%
#2 242 192 50 369 2,174 2.21 19.0 174.2 278.4 / / 0.0%
#3 242 192 50 578 1,459 1.12 11.7 174.2 278.4 / / 0.0%
all 239 190 49 669 116 0.09 1.1 174.2 278.4 / / 0.0%

Case: B1d TS=25: R=4; PD=2; PND=6; NPD=6; NPND=2 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3%
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7%
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2%
#3 397 335 62 590 36,000 14.4 215 193.0 ? 312.8 295.6 5.5%
all 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1%
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Table 10 – CPLEX runs, subset B2 

Case: B2a TS=15: R=6; PD=1; PND=1; NPD=1; NPND=0 

cuts var bin lin con sec n i rel opt ub lb gap 
none 86 53 33 107 0.03 4 144 92.6 103.3 / / 0.0%
#1 86 53 33 146 0.02 0 129 92.7 103.3 / / 0.0%
#2 86 53 33 113 0.03 4 115 92.6 103.3 / / 0.0%
#3 86 53 33 129 0.02 0 156 92.6 103.3 / / 0.0%
all 86 53 33 174 0.01 0 82 92.7 103.3 / / 0.0%

Case: B2b TS=20: R=6; PD=1; PND=3; NPD=2; NPND=1 

cuts var bin lin con sec 103 n 103 i rel opt ub lb gap 
none 190 144 46 229 1.27 1.44 13.3 123.3 168.1 / / 0.0%
#1 187 142 45 281 1.23 0.82 12.3 123.3 168.1 / / 0.0%
#2 190 144 46 269 1.56 1.67 18.0 123.3 168.1 / / 0.0%
#3 190 144 46 363 1.53 1.45 15.0 123.3 168.1 / / 0.0%
all 187 142 45 449 1.19 0.80 11.1 123.3 168.1 / / 0.0%

Case: B2c TS=25: R=6; PD=1; PND=5; NPD=5; NPND=1 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 327 266 61 393 589 388 5.49 143.5 222.1 / / 0.0%
#1 327 266 61 518 64 41 0.62 143.5 222.1 / / 0.0%
#2 327 266 61 593 489 314 4.36 143.5 222.1 / / 0.0%
#3 327 266 61 1,004 1,007 501 6.57 143.5 222.1 / / 0.0%
all 327 266 61 1,329 51 27 0.46 143.5 222.1 / / 0.0%

Case: B2d TS=30: R=6; PD=1; PND=8; NPD=7; NPND=1 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 567 491 76 654 36,000 12.0 198 196.6 ? 332.8 278.7 16.3%
#1 566 490 76 839 36,000 7.5 168 196.6 ? 332.8 298.3 10.4%
#2 567 491 76 908 36,000 7.4 161 196.6 ? 334.9 283.3 15.4%
#3 567 491 76 1,826 36,000 4.5 136 196.6 ? 333.2 270.8 18.7%
all 566 490 76 2,157 36,000 7.1 150 196.6 ? 332.8 305.6 8.2%
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In Table 7 (subset A1) cuts #1 and cuts #2 are always effective, with cut #1 

consistently improving its efficacy when increasing the problem size.  Cut #3 is 

effective for the smallest (A1a) and largest (A1d) instances, but not for the 

intermediate cases.  Cuts #1 perform better than the others for most cases, but the 

synergetic effect of including all inequalities at ones (all) is even better for the larger 

cases (A1c and A1d), where the solving time is reduced approximately by a factor of 

5. 

Table 8 (subset A2) shows that cuts #1 are always effective and improve their 

efficacy with increasing size of the problem.  In A2d CPLEX is able to reach the 

optimum in less than 3 hours when including cuts #1 in the formulation, while in the 

“none” case the gap is still 6.6% after 10 hours.  Cuts #2 and cuts #3 are instead not 

useful for this subset: they worsen the CPLEX performance in each case and they do 

not help synergistically in the “all” runs, as they did for subset A1. 

In Table 9 (subset B1) the results are similar to the ones for subset A1.  All 

cuts are effective in all cases, with cuts #1 being the best and with a good synergistic 

effect in the “all” run in case B1c, where the solving time is reduced by a factor of 

almost 20.  However, the “all” run does not perform better than the “#1” run in B1d, 

showing that cuts #2 and #3 are not useful in this instance when added to cuts #1. 

In Table 10 (subset B2) the results show that cuts #1 are consistently the best, 

cuts #2 slightly improve the performance in all cases, while cuts #3 worsen it in each 

instance except the smallest one.  In the heavier case B2d CPLEX is not able to reach 

optimality in any of the cases after 10 CPU hours, but the effect of cuts #1 is clear 
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from the tightened gap due to higher lower bounds.  The “all” runs show a good 

synergistic effect of the cuts and the solving time is reduced by a factor of 11 in the 

B2c case and the gap is the smallest in the B2d case. 

We note that increasing the slack time from 25% (Set A) to 50% (Set B) 

expands the feasible region, because more stops could be placed between any pair of 

consecutive checkpoints in the schedule.  As a result, the solving time is consistently 

larger in all instances.  For example in case A1d CPLEX is able to reach the solution 

in each run relatively fast, while in case B1d CPLEX can not find the optimal 

solution in any run after the 10 hours maximum solving time allowed.  Similarly A2d 

can be solved faster than B2d and so forth. 

In conclusion, the developed valid inequalities are effective in most cases 

considered either allowing the solver to reach the optimal solution faster or 

tightening the optimality gap by producing higher lower bounds.  Specifically, cuts 

#1 are consistently effective in almost all cases and their performance improves 

when applied to larger instances.  Cuts #2 show good results in several cases.  Cuts 

#3 are effective only for a few instances.  The synergistic effect of including all cuts 

in the formulation (“all” runs) is positive for most of the cases in subsets A1, B1 and 

B2. 
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6 Dynamic operating scenario: scheduling algorithm 

In this chapter we look at the problem from a dynamic operational point of 

view and we develop an insertion heuristic scheduling algorithm for the MAST 

system.  The challenge mainly resides in defining the logic to best operate the 

vehicle under a dynamic and multi-criteria environment.  In particular we need to set 

the insertion feasibility rules for any given customer at any point in time because 

inserting a new request in the vehicle’s schedule even if feasible at that time, might 

not be best overall.  The algorithm should decide in real time whether accepting a 

request and provide customers with time windows for their pick-up and/or drop-off 

service points.  An insertion heuristic approach is used because it is computationally 

fast and it can easily handle complicating constraints in a dynamic environment 

(Campbell and Savelsbergh, 2003) such as the MAST system. 

 

System 

The MAST system considered is the same as described at the beginning of 

Chapter 5 and represented by Figure 11, consisting of a single vehicle moving along 

the route back and forth between 1 and C for a total of R rides.  The total number of 

stops at the checkpoints is TC = (C-1)×R+1 and the initial schedule’s array is 

represented by an ordered sequence of stops s = 1,…, TC at the checkpoints; their 

scheduled departure time tds = tdcs are assumed to be constraints of the system which 

can not be violated. 
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At any moment before or during the ride a customer (PD, PND, NPD or 

NPND) may call in (or show up at the checkpoints), specifying the locations of both 

pick-up and drop-off points.  We assume that customers will be ready to be picked 

up at the moment of their request.  However, the system could easily handle 

reservations for future pick-ups by limiting the search for insertion in the portion of 

the schedule following the ready time specified by the customer. 

As mentioned we identify checkpoints by s = 1,…, TC and non-checkpoint 

stops by s = TC+1,…, TS.  The index α(s), s = 1,…, TS represents the current 

position of any stop s in the schedule.  The problem is then to determine the indexes 

α(s) ∀s and the departure times tds for non-checkpoint stops, while not violating tds 

for checkpoint stops. 

 

Slack time 

In order to allow deviations from the main route to serve NP and ND requests 

between two consecutive checkpoints, identified by s and s+1, there should be a 

certain amount of slack time in the schedule.  Let ( )0
1, +ssst  be the slack given by the 

schedule and is computed as follows: 

 

( )0
1, +ssst  = tds+1 - tds - ds,s+1/v - bs+1 s = 1,…, TC-1 (6.1) 
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As more pick-ups and drop-offs occur off the base route, the slack is reduced.  Let 

sts,s+1 be the available slack that can be used to route the vehicle off the base route.  

Initially (no requests made yet), 

 

sts,s+1 = ( )0
1, +ssst  s = 1,…, TC-1 (6.2) 

 

Idle policy 

We assume that the vehicle, driving from checkpoint s to s+1, follows a 

no-idle policy until all the requests in between them have been satisfied.  The unused 

slack time sts,s+1 possibly still available when arriving to checkpoint s+1 is spent as 

idle time (note that while the vehicle is idle at s+1, new upcoming customer requests 

can still be inserted in the schedule before s+1 using sts,s+1 if feasible and best at the 

moment, meaning that the vehicle leaves s+1 to serve the new requests and comes 

back to s+1 before tds+1). 

 

Arrival times 

While tds represents the scheduled departure time at stop s, we define tas as 

the arrival time at stop s.  Because of the idle policy, we have for non-checkpoint 

stops (s > TC) tds = tas + bs and for checkpoint stops (s ≤ TC), tds ≥ tas + bs and their 

initial values are: 

 

tas+1 = tds+1 - sts,s+1 - bs s = 1,…, TC-1 (6.3) 
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Bus motion 

We assume that the vehicle follows a rectilinear motion, allowing the vehicle 

to move only along the horizontal or vertical direction; this is a good approximation 

of the real world, since vehicles ride along streets, which often form a grid. 

Furthermore, whenever a horizontal or vertical direction can be equally 

chosen to reach the next scheduled stop, the vehicle prefers the one that keeps it 

closer to the central x axis of the service area.  This behavior guarantees a better 

service to the future expected demand under the assumption of uniform distribution 

of non-checkpoint requests. 

 

6.1 Control parameters 

In order to improve the insertion algorithm effectiveness we define and make 

use of control parameters that are a function of the future expected demand (usable 

slack time) and the relative position of the new request with respect to the current 

position of the vehicle (backtracking distance).  In order to define the former we first 

need to introduce the concept of bucket. 

 

6.1.1 Buckets 

The MAST insertion algorithm does not explicitly add a constraint to limit 

the maximum allowable ride time of each customer as the Dial-a-Ride algorithms 

generally do.  Instead, it obtains a similar result working with “buckets”.  The 
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underlying concept is that for PND and NPD type of customers one of the service 

points (either a P or a D checkpoint) is already part of the schedule; therefore, the 

algorithm attempts to insert the corresponding ND and NP stops in the “vicinity” of 

the first occurrence of those checkpoints in the schedule’s array.  If not feasible, the 

algorithm checks for insertion in the “vicinity” of the following occurrences of the 

checkpoint of interest, one by one, till feasibility is found.  Clearly, this 

postponement causes a delay for the entire trip, but the ride time will be upper 

bounded.  This logic is consistent with Proposition 1 and 2, stating that customers 

would minimize their ride time by boarding or disembarking the vehicle at the 

checkpoint as close as possible time wise to their inserted non-checkpoint stop. 

In order to define buckets, let’s consider the schedule’s array as shown in 

Table 11, illustrating the checkpoints only with their corresponding stop index s.  We 

know by Equation (5.1) that each checkpoint c is scheduled to be visited by the 

vehicle a number of times, with different stop indices sk(c) (stop index of the kth 

occurrence of checkpoint c in the schedule), depending on how many rides (R) are 

planned. 

 

Definition: For every checkpoint c, we define a bucket of c, in general, as a 

portion of the schedule delimited by two successive occurrences of c, namely all the 

stops s in the schedule’s array such that α[sk(c)] ≤ α(s) < α[sk+1(c)] for any allowable 

k. 
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Table 11 – Schedule’s array and buckets 

ride s Checkpoints c
1 1 
2 2 
3 3 
… … 
c c 

… … 
C-1 C-1 

 
 
 
1 

C C 
C+1 C-1 
… … 

2(C-1)+1-(c-1) c 
… … 

2C-2 2 

2 

2C-1 1 
2C 2 
… … 

2(C-1)+1+(c-1) c 
… … 

3 

3C-2 C 
… … … 

r(C-1)+1-(c-1) c 
… … r 

r(C-1)+1 1 
… … 

r(C-1)+1+(c-1) c 
… … r+1

(r+1)(C-1)+1 C 
… … … 
R TC=R(C-1)+1 1 or C 

 

For PND customers the buckets of their checkpoints of interests are defined 

by all the stops s such that α(PU(k,r)) ≤ α(s) < α(PU(k,r+1)), ∀r∈RD/{R}. 

For NPD customers the buckets of their checkpoints of interests are defined 

by all the stops s such that α(DO(k,r-1)) ≤ α(s) < α(DO(k,r)), ∀r∈RD/{1}. 

1st bucket of c=1 

 

bucket of c=2

 another bucket of c=2
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The buckets’ definition for NPND type customers needs to be revised since 

they do not rely on checkpoints for pick-ups and drop-offs; so we identify the 

buckets with the rides.  More formally, let’s characterize the sequence representing 

the occurrences of any terminal checkpoint (c = 1 or C): 

 

( ) ( )( )11C1Cor1 −−+= ksk  k = 1,…, R+1 (6.4) 

 

We have that, for NPND type customers, a bucket represents all the stops s such that 

α[sk(1 or C)] ≤ α(s) < α[sk+1(1 or C)] for any allowable k as described in Equation 

(6.4). 

 

6.1.2 Usable slack time 

The slack time is a crucial resource needed to serve customers.  When this 

resource is scarce, the system is not able to properly satisfy new requests and it is 

forced to postpone or reject them.  Therefore, a MAST service needs to be 

particularly careful about accepting customer requests that require a lot of slack time 

consumption preventing future requests from being fully satisfied.  In fact, an 

insertion that appears to be good at the time of its placement in the schedule may not 

be so, if we consider future expected customer requests.  We therefore need to define 

a parameter that properly controls the consumption of slack time. Auth
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sts,s+1 represents the current available unused slack time between two 

consecutive checkpoints s and s+1; while ( )0
1, +ssst  is the slack time initially available 

before any insertion has been performed.  We define the usable slack time u
ssst 1, +  as 

the maximum amount of slack time that any customer request is allowed to consume 

for its insertion between s and s+1.  It represents an upper bound on the usable 

amount of slack time and it prevents a single insertion from consuming too much of 

it.  u
ssst 1, +  is defined as a function of the future expected demand between s and s+1 

and is not related to the actual unused slack time sts,s+1 and therefore u
ssst 1, +  can be 

greater or lower than sts,s+1 depending on the circumstances.  As we will see in the 

insertion feasibility Section 6.2.1, a request will be allowed to consume the minimum 

value among u
ssst 1, +  and sts,s+1 for its insertion. 

We assume that the demand rate λ (# of requests per unit time in the service 

area L×W) of non-checkpoint’s requests (NP and ND) is uniformly distributed in the 

service area and constant over time.  The time interval between two checkpoints s 

and s+1 is defined by tds+1-tds, while the ratio between the area covered by the 

segment of the route from s and s+1 and the total service area is given by 
L

xx 1+− ss  

(where xs and xs+1 are the x coordinate values of s and s+1 with respect to the service 

area).  Consequently, the expected demand between s and s+1 (total # of insertion 

requests) arising during tds+1-tds, Λs,s+1, is estimated as follows (see Figure 12): 
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Λs,s+1 = λ
L

xx 1+− ss (tds+1-tds) (6.5) 

 

Figure 12 – Portion of service area covered by the segment between s and s+1 

 

As soon as the vehicle departs from s at tds, the expected residual demand 

drops linearly until reaching the zero value at tds+1.  Hence, the expected residual 

demand as a function of the current clock time tnow, ( )nowt
ss 1, +Λ , may be expressed as (see 

Figure 13): 
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Figure 13 – Expected residual demand between s and s+1 as a function of tnow 

 

We define the parameter πs,s+1 as a function of the expected demand as follows: 

 

( )
( )nowt

ss
ss

ss
ss 1,

1,

0
1,

1,

1
1 +

+

+
+ Λ











Λ
−

+=
π

π  with 0 ≤ ( )0
1, +ssπ  ≤ 1 (6.7) 

 

Since 0 ≤ ( )nowt
ss 1, +Λ  ≤ Λs,s+1, we have that ( )0

1, +ssπ  ≤ πs,s+1 ≤ 1 and ( )0
1, +ssπ  can be set 

accordingly.  We finally define the usable slack time, u
ssst 1, + , as follows: 

 

( )0
1,1,1, +++ = ssss

u
ss stst π  (6.8) 

 

If the residual expected demand ( )nowt
ss 1, +Λ →0, then πs,s+1→1 and u

ssst 1, + → ( )0
1, +ssst .  

Whereas, when ( )nowt
ss 1, +Λ  attains its maximum (Λs,s+1), πs,s+1 reaches its minimum value, 

( )0
1, +ssπ , and so does u

ssst 1, +  = ( )0
1, +ssπ ( )0

1, +ssst . 

tnow

( )nowt
ss 1, +Λ

Λs,s+1

ts ts+1 tnow

( )nowt
ss 1, +Λ

Λs,s+1

ts ts+1
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Combining Equations (6.6), (6.7) and (6.8) we finally derive the expression 

for the usable slack time, u
ssst 1, + , as a function of tnow (see Figure 14): 
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 (6.9) 

 

Figure 14 – Usable slack time 

 

Let’s now consider a non-checkpoint request q located at the edge of the 

service area, such that yq = 0 or yq = W and xs ≤ xq ≤ xs+1 and let’s assume that the 

schedule between s and s+1 is empty (no previously inserted stops).  In order to be 

inserted, the q request would require an amount of slack time stq given by the time 

needed by the vehicle to deviate from the x axis, serve the q request and come back 

to the x axis (stq = W/v+bq).  Since the minimum amount of usable slack time from 

tnow
ts ts+1

u
ssst 1, +

( )0
1, +ssst

( ) ( )0
1,

0
1, ++ ssss stπ

tnow
ts ts+1

u
ssst 1, +

( )0
1, +ssst

( ) ( )0
1,

0
1, ++ ssss stπ
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Equation (6.9) is given by u
ssst 1, +  = ( )0

1, +ssπ ( )0
1, +ssst , we need to have u

ssst 1, +  ≥ stq to 

prevent the q request from being rejected.  Hence we define: 

 

( )min0
1, +ssπ  = (W/v+bq)/ ( )0

1, +ssst  (6.10) 

 

as the minimum value of ( )0
1, +ssπ  that guarantees every non-checkpoint request q to be 

considered for insertion between s and s+1 with empty schedule, regardless of the 

location of q as long as xs ≤ xq ≤ xs+1. 

Setting ( )0
1, +ssπ  < ( )min0

1, +ssπ  would prevent the algorithm from working properly, 

because some customers would be rejected not because of system saturation or end 

of service, but because of improper parameter setting.  Clearly, setting ( )0
1, +ssπ  = 0 

would result in having u
ssst 1, +  = 0 for tnow < tds, preventing any requests before tds 

from being considered for insertion.  On the contrary, ( )0
1, +ssπ  = 1 causes 

u
ssst 1, +  = ( )0

1, +ssst  at any time and customers requests would have no limit on the amount 

of slack time allowed to be consumed for their insertion. 

A proper value of ( )0
1, +ssπ  in between ( )min0

1, +ssπ  and 1 allows the system to control 

the consumption of slack time.  Any request occurring before tds can use at most the 

minimum value of u
ssst 1, +  = ( )0

1, +ssπ ( )0
1, +ssst  because there is an expected demand of 

future customers that should be properly served with the remaining slack time.  

Whereas, if a customer request occurs towards the end of the ride from s to s+1, it is 
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allowed to consume a bigger portion of the slack time until a maximum of ( )0
1, +ssst  

because the chance of having additional requests before the vehicle reaches the next 

checkpoint s+1 is very low. 

 

6.1.3 Backtracking distance 

The insertion procedure can cause the vehicle to drive back and forth with 

respect to the direction of a ride r, not only consuming the extra slack time, but also 

having a negative impact on the customers already onboard, which may perceive this 

behavior as an additional delay.  Therefore, we limit the amount of backtracking in 

the schedule.  The backtracking distance indicates how much the vehicle drives 

backwards on the x axis while moving between two consecutive stops to either pick 

up or drop off a passenger at a non-checkpoint stop with respect to the direction of 

the current ride.  More formally, as shown in Figure 15, given any two consecutive 

stops identified by a and b [such that α(a)+1 = α(b)] and the vector bad ,
ˆ  representing 

the distance from a to b, the backtracking distance bda,b is defined as the negative 

component of the projection of bad ,
ˆ  along the unit vector rd̂ , representing the 

direction of the current ride r (1→C or vice versa, parallel to the x axis) as follows: 

 

bda,b = −min(0, rd̂ ⋅ bad ,
ˆ ) (6.11) 
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Figure 15 – Backtracking distance 

 

The backtracking parameter (BACK > 0) is defined as the maximum 

allowable backtracking distance that the vehicle can ride between any two 

consecutive stops.  BACK is a parameter and can be set accordingly; clearly with 

BACK ≥ L any backtracking is allowed. 

 

6.2 Algorithm description 

6.2.1 Feasibility 

While evaluating a customer request, the algorithm needs to determine the 

feasibility of the insertion of a new stop (let’s identify it by s = q) between any two 

consecutive stops a and b already scheduled.  The extra time needed for the insertion 

is computed as follows: 

 

∆ta,q,b = (da,q+dq,b-da,b)/v - bq (6.12) 

 

rd̂rd̂

bda,b>0 bda,b=0

bad ,
ˆ

bad ,
ˆ
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Let m and m+1 be the checkpoints prior and after stops a and b in the schedule.  The 

algorithm computes also the backtracking distances bda,q and bdq,b by Equation 

(6.11).  Finally, it is feasible to insert q between a and b if (see Figure 16): 

 

∆ta,q,b ≤ min(stm,m+1, u
mmst 1, + ) (6.13) 

bda,q ≤ BACK (6.14) 

bdq,b ≤ BACK (6.15) 

 

The algorithm does not need to check feasibility with respect to the vehicle capacity 

because we assume it to be infinite. 

 

Figure 16 – Insertion feasibility of q 

 

6.2.2 Cost function 

When searching for the best insertion among the feasible ones, the algorithm 

computes a COST for each of them and selects the one with the minimum value.  

Let’s assume that the insertion of a stop q between a and b is feasible and we need to 

compute its COST.  The system’s entities affected by an insertion are: 

a b

q
da,q

da,b

dq,b

m m+1a b

q
da,q

da,b

dq,b

m m+1
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• The vehicle, in terms of how many extra miles it has to drive. 

• The customer requesting the insertion, in terms of how long the ride 

time is. 

• The passengers already onboard and waiting to be dropped off, in 

terms of how much longer they have to stay onboard. 

• The previously inserted customers in the schedule waiting to be 

picked up at the NP stops, in terms of how much longer their pick-up 

time is delayed and also in terms of how much their expected ride 

time changes. 

 

Thus, the algorithm computes the following quantities: 

 

• ∆PT: the sum over all passengers of the extra ride time, including the 

ride time of the customer requesting the insertion. 

• ∆PW: the sum over all passengers of the extra waiting time at the 

already inserted NP stops. 

 

Finally, the cost function is defined as: 

 

COST = w1×∆ta,q,b + w2×∆PT + w3×∆PW (6.16) 
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where w1, w2 and w3 are the weights, which can be modified as needed to emphasize 

one factor over the others.  ∆ta,q,b corresponds to the consumption of the slack time 

(the resource needed by the system to serve more customers).  During heavy demand 

periods, we should assign a higher value to this scarce resource by increasing w1 

with respect to w2 and w3.  In contrast, during low demand periods, the opposite is 

true and the COST function should emphasize more the service quality for the 

customers rising w2 and w3 over w1. 

We note that w1, w2 and w3 are comparable but not equal to ω1, ω2 and ω3 

defined in Section 5.1.  In fact the cost function (6.16) evaluates the incremental cost 

brought by a new insertion, while the objective function (5.2) measures the whole 

cost of the system.  In addition, the third term in (6.16) includes only the total extra 

time that already inserted customers would have to wait at their NP stops, being their 

pick-up delayed because of the new insertion.  Whereas the third term in 5.2 

(weighted by ω3) includes the total waiting time, which is the sum over all customers 

of the time interval from the ready time to the departure time.  In the global 

optimization of the system (Chapter 5) we assume a static environment and therefore 

it is not possible to identify how much of this total time is extra waiting time, which 

is anyhow small compared to the total. 

 

 

 

 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 101

6.2.3 Insertion procedure 

PD type 

PD type requests do not need any insertion procedure since both pick-up and 

drop-off points are checkpoints and they are already part of the schedule.  However, 

once the PD type customers are onboard, they are important in evaluating the COST 

of any other insertion. 

 

PND type 

PND type customers need to have their ND stop q inserted in the schedule.  

The algorithm checks for insertion’s feasibility in the buckets of the P checkpoint.  

Since the ND stop can not be scheduled before P, the first bucket to be examined is 

the one starting with the first occurrence of P following the current position of the 

vehicle (bucket delimited by sk’(P) and sk’+1(P) with ( ) ( ) nowskk
ttdsk

k
≥= Ps.t.,Pmin' ).  

Among the feasible insertions between all pairs of consecutive stops a, b in the first 

bucket, the algorithm selects the one with the minimum COST and then stops.  The 

customer is therefore scheduled to be picked up at sk’(P) and dropped off at the ND 

inserted stop q.  If no feasible insertions are found in the first bucket, the algorithm 

repeats the procedure in the second bucket (assuming that the customer will be 

picked up at the beginning of the second bucket corresponding to the following 

occurrence of P, sk’+1(P)).  The process is repeated bucket by bucket until at least one 

feasible insertion is found. 
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NPD type 

NPD type customers need to have their NP stop q inserted in the schedule.  

Similarly, the algorithm checks for insertion’s feasibility in the buckets of the D 

checkpoint.  The first bucket to be examined is the one delimited by the current 

position of the vehicle (xb, yb) and the first occurrence of D following the current 

position of the vehicle (sk’(D) with ( ) ( ) nowskk
ttdsk

k
≥= D' s.t.,Dmin' ).  In general, (xb, 

yb) does not correspond to a stop.  Therefore, the first pair of points between which 

the algorithm checks for feasibility is represented by (xb, yb) and the first stop to be 

visited afterwards, as shown in Figure 17. 

 

Figure 17 – Insertion from current vehicle position 

 

Among the feasible insertions in the first bucket, the algorithm selects the one 

with the minimum COST and then stops.  The customer is therefore scheduled to be 

picked up at the inserted NP stop q and dropped off at sk’(D).  If no feasible 

insertions are found in the first bucket, the algorithm repeats the procedure in the 

second bucket (forcing the customer to be dropped off at the end of the second 

α(s) (xb,yb)

q

α(s)+1α(s) (xb,yb)

q

α(s)+1
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bucket, corresponding to the following occurrence of D, sk’+1(D)).  This process is 

repeated bucket by bucket until at least one feasible insertion is found. 

 

NPND type 

A NPND type customer requires the insertion of two new stops q and q’; 

therefore, the insertion procedure will be performed by a O(TS2) procedure, meaning 

that for each feasible insertion of the NP stop q, the algorithm checks feasibility for 

the ND stop q’. A NPND feasibility is granted when both NP and ND insertions are 

simultaneously feasible.  The search for NPND feasibility is performed with the 

additional constraint of having q scheduled before q’. 

Recall that buckets correspond to the rides for a NPND type customer.  The 

search for NPND feasibility is performed in at most two consecutive buckets 

meaning that when checking for NP insertion feasibility in bucket i and i+1, the 

algorithm looks for ND insertion feasibility only in bucket i and i+1. 

The algorithm starts checking the NPND feasibility in the first bucket 

delimited by the current position of the vehicle (xb, yb) and the end of the current ride 

r.  This is the first occurrence in the schedule of one of the terminal checkpoints s = 1 

or s = C, namely ( ) ( ) ( ) nowskkk ttdss
k

≥= Cor1' s.t.,Cor1minCor1 .  Among all feasible 

NPND insertions in the first bucket, the algorithm selects the one with the minimum 

COST.  If no NPND feasibility is found, the algorithm will then check pairs of two 

consecutive buckets at a time, increasing the “checking-range” by one bucket at each 

step (buckets 1/2, then buckets 2/3, …, i/i+1, etc.).  While checking buckets i/i+1, we 
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already know that NPND insertion is infeasible in bucket i (because it has been 

already established before in the procedure while checking buckets i-1/i).  Therefore, 

while NP insertion feasibility needs to be considered in both buckets (since NPND 

insertion infeasibility in bucket i does not prevent NP insertion to be feasible in i), 

ND insertion needs to be checked only in bucket i+1.  The procedure will continue 

till at least one NPND feasible insertion is found. 

 

Rejection policy 

The general assumption while performing the insertion procedure is a 

no-rejection policy from both the MAST service and the customers.  Thus, the 

algorithm attempts to insert the customer requests checking if necessary the whole 

existing schedule bucket by bucket and rejection may occur only if there is no 

feasibility at all.  It may occur, for example with a very high demand rate or when a 

customer request arrives towards the end of the service.  On the other hand, the 

customers are assumed to never reject the insertion proposed by the algorithm and 

there is no negotiation between the MAST system and the customers. 

 

6.2.4 Update procedure 

Once a minimum COST feasible insertion is selected, a new stop q (either a 

NP or a ND request) has been successfully scheduled between two points a and b in Auth
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a portion of the schedule delimited by checkpoints m and m+1, and the variables of 

the system need to be updated. 

The slack time will be updated as follows: 

 

stm,m+1 = stm,m+1 - ∆ta,q,b (6.17) 

 

The departure and arrival times will also be updated (delayed) as follows: 

 

tds = tds + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)) (6.18) 

tas = tas + ∆ta,q,b ∀s s.t. α(s)∈[α(b), α(m+1)] (6.19) 

 

Since the departure times tds of checkpoints (s ≤ TC) are constraints of the 

system and act as “time-barriers”, all the stops that are not in the portion of the 

schedule where the insertion takes place (between m and m+1) are not affected.  We 

can therefore identify six different cases: 

 

• Customers having both pick-up and drop-off stops scheduled before q 

are not affected by the insertion. 

• Customers having their pick-up stop before q and their drop-off stop 

in between q and m+1 will have their ride time increased because their 

drop-off stop will be delayed as given by Equation (6.19). 
Auth

or'
s P

ers
on

al 
Cop

y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 106

• Customers having their pick-up stop before q and their drop-off stop 

after m+1 will not be affected by the insertion because the departure 

time tm+1 will remain unchanged. 

• Customers having both their pick-up and drop-off stops in between q 

and m+1 will have both of them delayed by the same amount as given 

by Equations (6.18) and (6.19).  Therefore, their waiting time at the 

pick-up stop will be increased but their ride time will remain 

unchanged. 

• Customers having their pick-up stop in between q and m+1 and their 

drop-off stop after m+1 will have their waiting time at the pick-up 

stop increased as given by Equation (6.18) and their ride time 

decreased by the same amount because their drop-off stop will not be 

affected. 

• Customers having both their pick-up and drop-off stops after m+1 will 

not be affected. 

 

Time windows 

The algorithm provides customers at the time of the request with time 

windows for their pick-up and drop-off locations.  To do so, it computes the earliest 

departure time from q, etdq, as follows: 

 

etdq = tda + da,q/v + bq (6.20) 
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where tda represents the current departure time from stop a.  Also the departure time 

of q is initialized likewise: 

 

tdq = tda + da,q/v + bq = etdq (6.21) 

 

It can easily be shown that etdq is a lower bound for any further updates of tdq. 

The algorithm then computes the latest departure time from q, ltdq, as 

follows: 

 

ltdq = etdq + stm,m+1 (6.22) 

 

We prove that ltdq is an upper bound for tdq by the following contradiction 

argument.  Let’s use the superscript β (with β = 0,…, f) to indicate the βth update of a 

variable and suppose that tdq
(f) > ltdq, we have tdq

(f)-tdq
(0) > ltdq-tdq

(0).  We also know 

by Equation (6.18) that: 

 

tdq
(f)-tdq

(0) = (tdq
(f)-tdq

(f-1))+…+(tdq
(β)-tdq

(β-1))+…+(tdq
(1)-tdq

(0))= 

             = ∆tf+…+ ∆tβ+…+∆t1 = ∑
=

∆
f

k
kt

1
 (6.23) 
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and from Equations (6.21) and (6.22), ltdq-tdq
(0) = ltdq-etdq = stm,m+1, but this would 

imply ∑
=

∆
f

k
kt

1
 > stm,m+1, meaning that the sum of the extra time needed for insertions 

after the insertion of q had exceeded the total slack time available after the insertion 

of q and this is a contradiction since the feasibility check would have prevented this 

from happening.  Therefore, Equation (6.22) says that future possible insertions 

between m and q will delay tdq to a maximum total amount of time bounded by the 

currently available slack time. 

In a similar fashion, the earliest and latest arrival times, etaq and ltaq, are 

computed.  As a result, the customer, once accepted, is provided with etdq, ltdq, etaq 

and ltaq knowing that their actual times tdq and taq will be bounded by these values: 

 

etdq ≤ tdq ≤ ltdq (6.24) 

etaq ≤ taq ≤ ltaq (6.25) 

 

While a P request has etdP = tdP = ltdP because the departure time from a 

checkpoint is a constant in a MAST system, a D request will have etaD ≤ taD ≤ ltaD.  

Clearly NP and ND requests will also have etdNP ≤ tdNP ≤ ltdNP and 

etaND ≤ taND ≤ ltaND. 
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6.3 Experimental results 

In this section we discuss the results obtained by simulation analysis.  The 

target is to show that the insertion heuristic developed in this paper can be a used as 

an efficient scheduling tool for real MAST systems.  We test its performance on a 

simulation model of the actual MAST service represented by MTA Line 646 in Los 

Angeles.  In order to perform this task, we first need to define the MAST system’s 

performance measures. 

 

6.3.1 Performance measures 

We define the following performance parameters for a MAST system: 

 

• MI: total miles driven by the vehicle 

• PT: average ride time per passenger 

• PW: average extra waiting time (tdNP - etdNP) over NP requests only 

 

These three indicators are directly related to the corresponding terms of the COST 

function in Equation (6.16): ∆ta,q,b, ∆PT, ∆PW.  Thus, we can similarly define the 

overall performance Z of a MAST system as: 

 

Z = w1×MI/v + w2×PT×NCT + w3×PW×NCNP (6.26) 
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where NCT and NCNP stand respectively for the total number of customers and the 

total number of NP customer requests (NPD and NPND types) served by the system.  

Z is in time units. 

In addition, let’s define: 

 

• PI: average time interval between request/show up and earliest 

pick-up time (etdP or etdNP) per passenger 

• PST: percentage of the total initial slack time (= ( )∑
−

=
+

1TC

1

0
1,

s
ssst ) consumed 

 

Given a total demand rate θ (customers/hour), we define the saturation level 

as the maximum demand that a system configuration can satisfy without becoming 

unstable.  This level can be estimated by looking at the PI values.  Given that the 

demand is uniform over time, for systems well below their saturation level, the PI 

values should be around half the headway of the system.  A slightly larger value of 

PI, but constant over the simulation time, shows that the system is near the saturation 

level, but still below it.  Even if a few customers have to wait longer to be picked up 

due to temporary congestions created by the randomness of the demand, the system 

on average is stable.  If instead the PI value increases over the simulation time, then 

the system is unstable and the demand rate is above the saturation level.  An 

indication of how much the demand rate is below the saturation level is given by the 

PST; values around 90% indicate that the demand rate is more or less at saturation 
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level.  In addition, since the slack time consumption is directly proportional to the 

miles driven, the PST and MI values are related to each other.  Therefore, bigger 

values of MI also indicate a higher level of saturation. 

 

6.3.2 Algorithm performance 

As earlier noted, a MAST service already exists in San Pedro in Los Angeles 

County, Line 646.  San Pedro is one of Los Angeles County's busiest commercial 

hubs, consisting of several warehouses, factories and offices.  Bus lines offer regular 

fixed-route service in the area during the daytime.  However, for safety reasons, 

employees of local firms working on night shifts have been finding it extremely 

inconvenient to walk to and wait at a bus stop.  Therefore, MTA Line 646 offers a 

MAST service during nighttime, transporting passengers between one of the business 

areas in San Pedro to a nearby bus terminal. 

The MAST system represented by Line 646 consists of a single vehicle 

covering a service area with L = 10 miles and W = 1 mile, with two terminal 

checkpoints and one intermediate checkpoint located in the middle.  The duration of 

each ride is 30 minutes and the headway is 1 hour.  The service operates for 4.5 

hours (9 rides) each night.  Given that v = 25 miles/hour, the system has very little 

slack time ( ( )0
1, +ssst  = 2.5 minutes, for s = 1,…, TC-1; therefore, about 6 minutes per 

ride), allowing very few insertions of non-checkpoint requests, but this is justified by 

the very low actual demand (4-5 customers/hour, most of them being of type PND 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 112

and NPD).  These “light” conditions allow the bus operator to easily make all the 

decisions concerning accepting/rejecting customer requests and routing the vehicle 

since the system needs to deal with only 2-3 insertion requests per ride. 

MTA is interested in testing the MAST concept for higher demand levels.  

However, at the current slack level, the system will not be able to accommodate 

more demand.  Therefore, in order to evaluate the performance of the insertion 

algorithm for the higher demand cases we perform the simulation experiments 

assuming a larger slack time.  A summary of the parameters values that are used in 

the experiments are shown in Table 12. 

 

Table 12 – System parameters 

L 10 miles 
W 1 mile 
C 3 
ds,s+1 (s = 1,…, TC-1) 5 miles 
tds+1 - tds (s = 1,…, TC-1) 25 min (t1 = 0) 
v 25 miles/hour 
bs (s = 1,…, TS) 18 sec 
w1 / w2 / w3 0.25 / 0.25 / 0.5 

 

From Equation (6.1) we compute the values of the initial slack times ( )0
1, +ssst  = 12.7 

minutes (s = 1,…, TC-1) that are about 50% of the time intervals between two 

consecutive checkpoints’ departure times (tds+1 - tds = 25 minutes). 

In setting the COST function’s weights, we assume that customers perceive 

the extra waiting time at stops (w3) with more discomfort than the ride time on the 
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vehicle (w2) and that slack time consumption (w1) and passengers’ ride time (w2) are 

equally weighted.  This is the inverse of what we assumed in Section 5.1 for ω3, 

compared to ω1 and ω2 (see Table 4), but as we noted earlier the waiting time 

weighted by w3 and ω3 are different in nature. 

Given a total demand rate θ (customers/hour) constant over time, we also 

assume that the customer types are distributed as shown in Table 13, like assumed 

earlier (Table 6): 

 

Table 13 – Customer type distribution 

Type PD PND NPD NPND 
% 10% 40% 40% 10% 

 

We further assume that the checkpoint requests (P and D) are uniformly 

distributed among the C checkpoints and that non-checkpoint requests (NP and ND) 

are uniformly distributed in the service area.  The simulation is run for 50 hours.  We 

verified that this length of simulation time was sufficiently long to have all the 

performance parameters converge to their steady-state values for stable systems. 

According to the parameter values shown in Table 12, the total number of rides 

R = 60. 

We first perform a set of runs setting the control parameters BACK = L and 

( )0
1, +ssπ  = 1 (for all s = 1,…, TC-1) allowing any backtracking and any slack time 

consumption if available, thus giving the most freedom to the algorithm when 
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checking for insertion feasibility.  At these parameter settings (configurations A) we 

seek the saturation level of the system, by examining the PI and PST values for 

different values of the demand θ.  The results are shown in Table 14. 

 

Table 14 – Saturation level for configurations A 

Configuration A1 A2 A3 
θ (customers/hour) 15 20 25 
BACK (miles) L L L 

( )0
1, +ssπ  1 1 1 

PI (min) 56.52 61.67 236.74 
PST (%) 81.3% 91.3% 98.9% 
saturation level? below yes above 
PW (min) 1.07 1.23 1.75 
PT (min) 23.86 25.86 30.39 
MI (miles) 1012.7 1051.4 1083.8 

 

The findings show that the saturation level is around θ = 20 customers/hour 

(configuration A2).  While A1 is a stable system relatively far from saturation 

(PST = 81.3%), A2 is right at the boundary because the PI value is higher than half 

the headway (50 minutes), but it does not increase over time.  Hence, the system is 

stable, but since the slack time consumption is very high (PST = 91.3%), it is near 

the demand limit.  Anything above θ = 20 would lead to system instability as shown 

by the results from A3, where the PI value is very high and keeps increasing along 

with the simulation run time and the PST is close to 100%. Auth
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Therefore, by allowing more slack time in the schedule ( ( )0
1, +ssst  = 12.7 minutes 

instead of 2.5, for s = 1,…, TC-1) and setting BACK = L and ( )0
1, +ssπ  = 1 

(configurations A), MTA Line 646 would be able to serve a demand θ with up to 20 

customers/hour assuming the customer type distribution of Table 13. 

Now, keeping the demand at the saturation level (configuration A2), we want 

to observe the effect of modifying the usable slack time u
ssst 1, + .  For this purpose, 

maintaining BACK = L, we vary the values of ( )0
1, +ssπ  (for all s = 1,…, TC-1) in the 

range from 1 to ( )min0
1, +ssπ  (configurations B) to observe the effect of this control 

parameter.  We compare the performances of each case by means of the object 

function Z, as defined in Equation (4.29).  The simulation run time is again 50 hours.  

Each configuration is tested with exactly the same demand using CNR (Common 

Random Numbers).  The results are summarized in Table 15.  From Equation (4.13), 

( )min0
1, +ssπ  is approximately equal to 0.22. 
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Table 15 – Effect of ( )0
1, +ssπ  - configurations B 

Configuration B1 = A2 B2 B3 B4 B5 B6 
θ (customers/hour) 20 20 20 20 20 20 
BACK (miles) L L L L L L 

( )0
1, +ssπ  1 0.75 0.5 0.4 0.3 ( )min0

1, +ssπ =0.22
PI (min) 61.67 55.87 54.59 51.56 52.26 51.60 
PST (%) 91.3% 87.4% 82.3% 79.2% 76.6% 72.0% 
saturation level? yes below below below below below 
PW (min) 1.23 1.15 1.25 1.32 1.41 1.37 
PT (min) 25.86 24.68 24.13 23.09 22.60 22.76 
MI (miles) 1051.4 1021.7 989.0 968.2 951.5 921.7 
Z 7149 6987 6853 6624 6533 6551 

 

The figures reveal the positive effect of decreasing ( )0
1, +ssπ  from 1 to almost 

( )min0
1, +ssπ .  All the performance parameters significantly improve their values, with the 

exception of PW, showing initially a progress, but then a progressive worsening.  

Also the Z values gradually drop and reach their minimum value with configuration 

B5 at ( )0
1, +ssπ  ≅ 0.3, slightly greater than ( )min0

1, +ssπ .  Due to the increased efficiency of the 

algorithm, all the configurations drop well below their saturation levels.  Note that 

configuration B6 has lower PST and MI values, indicating a better performance in 

terms of the slack time consumption, but the overall performance Z shows a 

worsening of the service quality with respect to B5.  These results show the benefit 

of controlling the consumption of slack time and saving some of it for future 

insertions. 

Now, starting from configuration B5, we would like to observe the effect of 

limiting the backtracking distance.  We perform another set of simulations 
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(configurations C), keeping θ = 20 and ( )0
1, +ssπ  = 0.3 and varying the BACK parameter 

from L to 0.  The results are shown in Table 16. 

 

Table 16 – Effect of BACK - configurations C 

Configuration C1 = B5 C2 C3 C4 C5 C6 C7 C8 
θ (customers/hour) 20 20 20 20 20 20 20 20 
BACK (miles) L 1.5 0.8 0.5 0.3 0.2 0.1 0 

( )0
1, +ssπ  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

PI (min) 52.26 52.26 52.35 51.70 52.19 52.23 51.28 51.84
PST (%) 76.6% 76.6% 75.8% 74.2% 72.8% 72.4% 71.2% 70.9%
saturation level? below below below below below below below below
PW (min) 1.41 1.41 1.39 1.38 1.37 1.37 1.42 1.43 
PT (min) 22.60 22.60 22.62 22.46 22.34 22.28 22.36 22.94
MI (miles) 951.5 951.5 946.4 936.1 927.2 924.2 916.8 914.5
Z 6533 6533 6528 6478 6435 6419 6451 6596 

 

There are no changes in the performance by lowering the value of the BACK 

parameter from L (configuration C1) down to about 1.5 miles (C2).  This means that 

in the simulation there are no cases of an insertion with a backtracking distance 

bigger than 1.5 miles.  Therefore, setting BACK to a value larger than 1.5 has no 

effect on the schedule.  On the contrary, improvements in all the performance 

measures can be progressively seen in cases C3, C4, C5 and C6 (BACK = 0.8, 0.5, 

0.3 and 0.2) while C7 and C8 (BACK = 0.1 and 0) show better values for PST and 

MI, but the overall performance Z slightly worsens due to the increasing values of 

PW and PT.  All the cases are well below their saturation level and the best 

configuration according to Z is found by setting BACK = 0.2 miles, corresponding to 
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case C6.  These experiments illustrate the positive effect of limiting to a certain 

degree the amount of backtracking that the vehicle is allowed to do. 

Case C6 represents a better configuration than A2 with respect to the overall 

performance Z and almost all the other parameters (with the exception of PW, 

slightly increased).  In particular, the improved efficiency of the algorithm causes the 

MI and PST values to drop and the system is now well below saturation.  We 

therefore look for the new saturation level for these more efficient parameter settings 

by performing another set of runs (configurations D, see Table 17) starting from 

configuration C6 and progressively increasing θ. 

 

Table 17 – New saturation level - configurations D 

Configuration D1 = C6 D2 D3 
θ (customers/hour) 20 25 30 
BACK (miles) 0.2 0.2 0.2 

( )0
1, +ssπ  0.3 0.3 0.3 

PI (min) 52.23 55.98 77.58 
PST (%) 72.4% 86.8% 95.9% 
saturation level? below yes above 
PW (min) 1.37 1.72 1.92 
PT (min) 22.28 23.93 29.00 
MI (miles) 924.2 983.4 1020.6 

 

As done for configurations A, we can estimate the saturation level for 

configurations D by looking at the stability of the PI value over the simulation time.  

The figures show that θ = 25 customers/hour (D2) approximately represent the limit 

for the system.  Anything above this value would cause instability.  Therefore, the 
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adjustments made on the control parameters allow the insertion heuristics to handle a 

demand rate 25% larger than the initial configuration A2. 

 

6.3.3 Comparison vs. optimality 

We now provide an evaluation of the insertion heuristic algorithm by 

comparing its performance against optimality found by CPLEX, as described in 

Chapter 5. 

In order to perform this task we need to slightly revise the COST function 

defined in Equation (6.16); in particular we need to modify the waiting time term so 

that it matches the corresponding term in the objective function given in the Equation 

(5.2), in order to have w3 and ω3 weighing the same thing.  Thus, we have that 

 

COST = w1×∆ta,q,b + w2×∆PT + w3×∆PWT (6.27) 

 

where ∆PWT now represents the sum over all passengers of the total waiting time, 

defined as the time interval between the ready time and the pick-up time.  We also 

have that Equation (6.26) is modified accordingly as follows: 

 

Z = w1×MI/v + w2×PT×NCT + w3×PWT×NCT (6.28) 

 

where PWT now represents the average total waiting time of all customers. 
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For each subset (A1, A2, B1 and B3) solved by CPLEX in Section 5.4 we 

consider only the cases with heavier demand (A1d, A2d, B1d and B2d), since in all 

the other cases the heuristic reaches optimality.  In Table 18 for each case we 

provide the Z value obtained by the insertion heuristic and by CPLEX.  For the 

heuristic results we show the Z obtained with no control and with the best setting of 

the control parameters found for each case (if any).  The CPLEX results presented 

are the best ones for each case depending on whether and which valid inequalities 

are added to the formulation. 

 

Table 18 – Heuristic vs. optimality 

Heuristic 

 no control 
( ( )0

1, +ssπ  = 1; 
BACK = L) 

best control 
CPLEX 

case Z Z ( )0
1, +ssπ BACK

(miles) cuts opt ub lb gap 

A1d 242.4 already optimal any 242.4 / / 0.0%
A2d 294.1 no improvement #1/all 293.9 / / 0.0%
B1d 323.1 314.1 0.3 0.2 #1 ? 312.8 304.4 2.7%
B2d 344.1 332.8 0.9 5 all ? 332.8 305.6 8.2%

 

The figures show that in the A1d case the heuristic reaches the optimal value 

242.4 even with the default values of the control parameters ( ( )0
1, +ssπ  = 1 and 

BACK = L).  In the A2d case, the heuristic reaches a Z value of 294.1 very close to 

optimality (293.9) with the default values of the control parameters and we could not 

improve the result by modifying them.  In cases B1d and B2d the heuristic with no 
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control reaches the Z values of 323.2 and 344.1 respectively that are higher than the 

upper optimality bound found by CPLEX (312.8 and 332.8 correspondingly); a 

proper setting of the control parameters allows to improve the solutions substantially 

respectively down to 314.1 and 332.8. 

In conclusion, the heuristic obtains results that are very close to optimality for 

the instances considered especially by properly modifying the values of the control 

parameters. 

 

6.4 Sensitivity over service area 

We now perform a simulation analysis to observe the behavior of the system 

when modifying the shape of the service area, maintaining constant the total square 

mileage.  In particular we want to observe the effect of the control parameters in 

each configuration over their saturation level. 

The assumed parameters of the systems are shown in the following Table 19 

and are the same as the ones in Table 12, excluding L and W that are objects of our 

analysis.  We note that the initial slack time available between any pair of 

consecutive checkpoints will vary depending on the assumed proportion between W 

and L: the smaller L, the larger the amount of slack time, because the checkpoints are 

closer. 
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Table 19 – System parameters 

C 3 
ds,s+1 (s = 1,…, TC-1) 5 miles 
tds+1 - tds (s = 1,…, TC-1) 25 min (t1 = 0) 
v 25 miles/hour 
bs (s = 1,…, TS) 18 sec 
w1 / w2 / w3 0.25 / 0.25 / 0.5 

 

Configuration A: W=1; L=12 

The first analysis is done within a slim service area with L = 12 and W = 1, 

both in miles.  The distance between checkpoints is 6 miles and the slack time 

available between any consecutive pair of them is therefore about 10.5 minutes.  We 

first look for the saturation level of this system configuration setting the control 

parameters BACK = L and ( )0
1, +ssπ  = 1, allowing any backtracking and any slack time 

consumption if available, thus giving the most freedom to the algorithm when 

checking for insertion feasibility.  The results are shown in Table 20. 

 

Table 20 – Saturation level for Configuration A, BACK = L, ( )0
1, +ssπ  = 1 

θ (customers/hour) 18 
BACK (miles) L 

( )0
1, +ssπ  1 

PW (min) 0.99 
PT (min) 25.33
MI (miles) 1049.8

 

The system becomes unstable with a demand θ > 18 customers/hour, that is 

approximately the saturation level of this configuration. 
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We now look for the new capacity of the system with a proper setting of the 

control parameters, namely: BACK = 0.2 and ( )0
1, +ssπ  = 0.3.  The results summarized 

in Table 21 show that the saturation level is increased up to 21 customers/hour. 

 

Table 21 – Saturation level for Configuration A, BACK = 0.2, ( )0
1, +ssπ  = 0.3 

θ (customers/hour) 21 
BACK (miles) 0.2 

( )0
1, +ssπ  0.3 

PW (min) 1.43 
PT (min) 25.42
MI (miles) 1018.2

 

The improvement on the capacity of the system is only 3 customers/hour 

(about 15% increase), but it shows the positive effect of the control parameters also 

on the total mileage MI, that has decreased by approximately 30 miles despite the 

increased demand, demonstrating an improved efficiency of the algorithm.  The ride 

time (PT) remains about the same, while the extra waiting time at NP stops (PW) 

slightly increases, due to the heavier demand that leads to an increased number of 

insertions and postponement of pick-ups. 

 

Configuration B: W=2; L=6 

A similar analysis is performed over a service area with W = 2 and L = 6.  

The total square mileage is still equal to 12 and all the other parameters of the system 

are kept the same.  However, given the different shape of the area, checkpoints are 
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closer to each other and therefore the initial slack time available between any two 

pair of consecutive checkpoints is larger, about 18 minutes. 

The next two tables show the figures for the saturation levels of this 

configuration.  Table 22 shows the results with the maximum freedom given to the 

insertion procedure (BACK = L and ( )0
1, +ssπ  = 1).  Table 23 illustrates the findings 

with a proper setting of the control parameters, namely BACK = 0.3 and ( )0
1, +ssπ  = 0.3. 

 

Table 22 – Saturation level for Configuration B, BACK = L, ( )0
1, +ssπ  = 1 

θ (customers/hour) 12 
BACK (miles) L 

( )0
1, +ssπ  1 

PW (min) 1.36 
PT (min) 20.59
MI (miles) 1054.5

 

Table 23 – Saturation level for Configuration B, BACK = 0.3, ( )0
1, +ssπ  = 0.3 

θ (customers/hour) 20 
BACK (miles) 0.3 

( )0
1, +ssπ  0.3 

PW (min) 1.94
PT (min) 22.81
MI (miles) 933.5

 

In this case the improvement due to control parameter adjustment is more 

significant: the saturation level jumps from 12 to 20 customers/hour (66% increase) 
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and the mileage (MI) is reduced by about 120 miles, even with the increased 

demand.  The values of PT and PW increase slightly. 

 

Configuration C: W=3; L=4 

We now consider a service area with W = 3 and L =4.  The total square 

mileage is again still equal to 12 and all the other parameters of the system are kept 

the same, but checkpoints are even closer to each other and the initial slack time 

available between any two pair of consecutive checkpoints is now about 20 minutes. 

Table 24 shows the saturation level for this configuration with the maximum 

freedom given to the insertion procedure (BACK = L and ( )0
1, +ssπ  = 1) and Table 25 

shows the saturation level with a proper setting of the control parameters for this 

system (BACK = 0.5 and ( )0
1, +ssπ  = 0.5). 

 

Table 24 – Saturation level for Configuration C, BACK = L, ( )0
1, +ssπ  = 1 

θ (customers/hour) 12 
BACK (miles) L 

( )0
1, +ssπ  1 

PW (min) 1.73 
PT (min) 17.37
MI (miles) 1047.3
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Table 25 – Saturation level for Configuration C, BACK = 0.5, ( )0
1, +ssπ  = 0.5 

θ (customers/hour) 18 
BACK (miles) 0.5 

( )0
1, +ssπ  0.5 

PW (min) 1.68
PT (min) 22.17
MI (miles) 964.0

 

The increase in the saturation level due to control parameter adjustments is 

significant, from 12 to 18 customers/hour (50% increase) and the mileage (MI) also 

is reduced by about 80 miles.  A more significant increase of the PT value is 

observed for this Configuration. 

The analysis shows that a proper setting of the control parameters could 

significantly improve the performance of the system for every configuration.  The 

results also show that the slim Configuration A performs better with or without the 

involvement of the control parameters, even though with different emphasis in the 

two cases. 

Without activating the control parameters (BACK = L and ( )0
1, +ssπ  = 1) 

Configuration A outperforms Configurations B and C in terms of system capacity 

(18 vs. 12 customers/hour), meaning that the insertion procedure is able to perform 

better in case of a slimmer service area and consequently a lesser amount of slack 

time.  This is due to the fact that a “wild” consumption of the slack time is less likely 

to happen when there is a smaller amount of it available to begin with and the system 

is able to control itself better. 
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When properly setting the control parameters, every configuration benefits 

from it, but the improvements shown in Configuration B and C are much more 

evident than those in Configuration A and, while the slim case still performs better, 

the three “optimized” systems are comparable in terms of capacity and performance. 

In addition we note that the longitudinal velocity V (along the x axis in 

Figure 11) of the vehicle decreases with the widening of the service area 

(Configurations B and C), because of the increased amount of time needed by the 

vehicle to serve points along the larger width.  PD customers traveling only to/from 

checkpoints could perceive this slowness unfavorably, because on average they 

would experience ride times increasingly larger than the direct time needed to travel 

between their pick-up and drop-off.  Therefore, only slimmer service areas, such as 

Configuration A would be suitable for public transportation purposes, where the 

longitudinal velocity V of the vehicle is not much slower than a fixed-route lines 

traveling between checkpoints.  However, configurations with wider service area 

could very well be appropriate for the transportation of goods instead of people. 

 

6.5 MAST/Fixed-route comparison 

We now perform a comparison between the MAST service and a fixed-route 

bus service.  For this purpose we assume the same service area (L×W = 10×1 miles) 

is served by a single vehicle fixed-route line consisting of 19 stops evenly distributed 

along the x axis (one stop every 0.5 miles).  See Figure 18.  We keep the same 
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vehicle speed (v = 25 miles/hour) and the same b = 18 sec for all stops and we 

assume no slack time for the fixed-route since it does not have to drive off route.  We 

note that in most transit systems there is also additional slack time added to the 

schedule due to random travel times.  Since in this study we consider only 

deterministic travel times, we assume the slack time for accommodating random 

travel times is zero.  Since the headway for the fixed route bus is 60 minutes, the 

scheduled/actual travel time between two consecutive stops is 1.5 minutes. 

 

Figure 18 – MAST/Fixed-route systems comparison 

 

In order to perform the comparison, we need to define an additional 

performance measure given by the average walking time per passenger (PWK) 

assuming a walking speed of 3 miles/hour.  While the MAST system serves its 

customers point to point and no walking occurs, a fixed-route system forces NP and 

ND requests to walk to/from the nearest fixed stop in order to use the service.  Note 
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that the P and D requests could have a certain amount of walking time associated 

with it, but considering the same demand it would be equivalent for both systems.  

Consequently, we assume it to be zero.  Therefore, the overall performance Z 

defined in Equation (6.26) slightly changes as follows: 

 

Z = w1×MI/v + w2×PT×NCT + w3×PW×NCNP + w4×PWK×NCT (6.29) 

 

where the new last term represents the contribution to Z of the amount of walking 

time and w4 is its weight factor that we conservatively assume to be equal to 0.5 like 

w3 (even though customers would probably perceive walking time with more 

discomfort that waiting time at a bus stop especially during nighttime for safety 

reasons). 

We ran the simulation for the fixed-route service again for 50 hours so that 

R = 100 in this case, and we compare the results with the MAST configuration D2 

using the same demand.  The results are shown in Table 26. 

 

Table 26 – MAST/fixed-route comparison 

θ (customers/hour) 25 
System MAST-D2 Fixed
PI (min) 55.98 30.21
PW (min) 1.72 0 
PT (min) 23.93 14.00
PWK (min) 0 7.5 
MI (miles) 983.4 1000 
Z 8674.2 9862.1
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We observe that the PI values (directly proportional to the headway of the 

system and not included in Z) clearly are in favor of the fixed-route system.  

However, it has been shown that for headways larger than 12-13 minutes the 

majority of the customers are aware of the schedule (Okrent, 1974) and this is true 

for all P requests showing up at bus stops (for both systems).  Furthermore, as we 

already noticed, for NP requests PI represents the waiting time incurred from the 

customer’s call (ready time τ) to the etdNP that people most likely spend at an office, 

at home or in another comfortable location, not at a bus stop.  Therefore, we do not 

consider PI as a valid parameter for this comparison. 

The other figures show that the MAST system compared to the corresponding 

fixed-route results has a smaller PW (< 2 minutes) and a PT bigger by approximately 

10 minutes, but MI is lower and there’s no walking for the customers as opposed to 

the fixed-route system where on average customers walk 7.5 minutes.  The overall 

performance Z is clearly in favor of the MAST system, confirming the validity of 

this innovative service compared to a conventional transportation system for this 

service region. 
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7 Conclusions and future research 

In this research we analyzed the Mobility Allowance Shuttle Transit (MAST) 

service, an innovative fixed and flexible type of transportation system that merges 

the flexibility of demand responsive transit (DRT) systems and the low cost 

operability of fixed-route systems. 

From a design point of view, we investigated the viability of MAST systems.  

Results show that the system is able to serve properly a reasonable demand while 

maintaining a relatively high longitudinal velocity, in order to make the service 

attractive to customers.  The relationship between velocity and demand density can 

be beneficially used in the design process to set the parameters of the MAST system, 

such as slack time, size of the service area and number of vehicles to be employed 

per line. 

From an operational point of view in static scenarios, the problem is 

mathematically formulated as a NP-Hard integer linear program and it is a special 

case of the Pickup and Delivery Problem (PDP).  We developed and added to the 

formulation a set of proper and efficient valid inequalities that sped up the search for 

the optimal solution by raising the lower optimality bound. 

The MAST scheduling problem is then examined from a dynamic operational 

perspective.  We developed a customized insertion heuristic algorithm to schedule 

the service dynamically.  Due to the dynamic nature of the environment, the 

algorithm makes effective use of a set of control parameters to reduce the 
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consumption of slack time and enhance the algorithm performance.  The results 

show the efficacy of the algorithm and its control parameters and demonstrate that 

the algorithm can be used as an effective method to automate scheduling of this line 

and other similar services.  A comparison performed by simulation shows that the 

innovative hybrid characteristics of MAST services are competitive with 

conventional fixed-route ones and perform better under certain demand distributions. 

Future research on MAST systems should focus on studying the multi-vehicle 

case and designing efficient networks of this type of service, in order to cover wider 

service areas and different demand distributions.  The combinatorial nature of the 

problem would also need to develop and analyze efficient algorithms to schedule the 

vehicles interconnected within these networks. 

 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 133

References 

Aldaihani M.M. and Dessouky, M. (2003), “Hybrid scheduling methods for 
paratransit operations”, Computers & Industrial Engineering, 45, 75-96. 

Aldaihani, M.M., Quadrifoglio, L., Dessouky, M. and Hall, R.W. (2004) “Network 
design for a grid hybrid transit service”, Transportation Research, 38A, 511-530. 

Badeau, P., Buertin, F., Gendreau, M., Potvin, J.-Y., Taillard, E. (1997) “A parallel 
tabu search heuristic for the vehicle routing problem with time windows”, 
Transportation Research, 5C, 109-122. 

Beardwood, J., Halton, J.H. and Hammersley, J.M. (1959) “The shortest path 
through many points”, Proceedings of the Cambridge Philosophical Society, 55, 
299-327. 

Bélisle, J.P. (1989) “La modélisation analytique de transport porte-à-porte et ses 
applications au transport adapté”, Cahier G-89-02, Ecole des Hautes Etudes 
Commerciales, Montreal. 

Bouwkamp C.J. (1977) “On the average distance between points in two coplanar 
non-overlapping circular disks”, J. Appl. Sci. Engng. A, 2, 183-186. 

Campbell, A. M., and Savelsbergh, M. (2004) “Efficient insertion heuristics for 
vehicle routing and scheduling problems”, Transportation Science, 38, 369-378. 

Ceder, A. and Wilson, N. H. M. (1986) “Bus network design”, Transportation 
Research, 20B, 331-344. 

Chang, S.K. and Schonfeld, P.M. (1991a) “Multiple period optimization of bus 
transit systems”, Transportation Research, 25B, 453-478. 

Chang, S.K. and Schonfeld, P.M. (1991b) “Optimization models for comparing 
conventional and subscription bus feeder services”, Transportation Science, 25, 
281-298. 

Chien, S. and Schonfeld, P.M. (1997) “Optimizing of grid transit system in 
heterogeneous urban environment”, Journal of Transportation Engineering, 123, 
28-35. 

Christofides N. and Eilon S. (1969) “Expected distances in distribution problems”, 
Operations Research Quarterly, 20, 437-443. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 134

Cordeau, J.F. and Laporte, G. (2003) “A tabu search heuristic for the static 
multi-vehicle dial-a-ride problem”, Transportation Research, 37B, 579-594. 

Crainic, T.G., Malucelli, F. and Nonato, M. (2001) “Flexible many-to-few + 
few-to-many = an almost personalized transit system”, TRISTAN IV, São Miguel 
Azores Islands, 435-440. 

Daganzo, C.F. (1978) “An approximate analytic model of many-to-many demand 
responsive transportation systems”, Transportation Research, 12, 325-333. 

Daganzo, C.F. (1980) “Network representation, continuum approximations and a 
solution to the spatial aggregation problem of traffic assignment”, Transportation 
Research, 14B, 229-239. 

Daganzo, C.F. (1984a) “The length of tours in zones of different shapes”, 
Transportation Research, 18B, 135-145. 

Daganzo, C.F. (1984b) “The distance traveled to visit N points with a maximum of C 
stops per vehicle: an analytic model and an application”, Transportation Science, 
18, 331-350. 

Daganzo, C.F. (1984c) “Checkpoint dial-a-ride systems”, Transportation Research, 
18B, 315-327. 

Daganzo, C.F. (1991) “logistic systems analysis”, Lecture notes in Economics and 
Mathematical Systems, 361, Springer-Verlag, Heidelberg, Germany. 

Desaulniers, G. et al. (2000) “The VRP with pickup and delivery”, Cahiers du 
GERARD, G-2000-25, Ecole des Hautes Etudes Commerciales, Montréal. 

Desrosiers, J., Dumas, Y. and Soumis, F. (1986) “A dynamic programming solution 
of the large-scale single-vehicle dial-a-ride problem with time windows”, 
American Journal of Mathematical and Management Sciences, 6, 301-325. 

Dessouky, M., Rahimi, M., and Weidner, M. (2003) “Jointly optimizing cost, 
service, and environmental performance in demand-responsive transit 
scheduling”, Transportation Research, 8D, 433-465. 

Dial, R.B. (1995) “Autonomous dial-a-ride transit: introductory overview”, 
Transportation Research, 3C, 261-275. 

Diana, M. and Dessouky, M. (2004) “A new regret insertion heuristic for solving 
large-scale dial-a-ride problems with time windows”, Transportation Research, 
38B, 539-557. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 135

Diana, M., Dessouky, M. and Xia, N. (2005) “A model for the fleet sizing of demand 
responsive transportation services with time windows”, Transportation Research 
B, accepted with revisions in progress. 

Dumas, Y., Desrosiers, J. and Soumis, F. (1991) “The pickup and delivery problem 
with time windows”, European Journal of Operational Research, 54, 7-22. 

Faithorne D. (1965) “Distances between pairs of points in towns of simple 
geometrical shapes”, Proceedings of the 2nd International Symposium on the 
Theory of Traffic Flow, 391-406, OECD, Paris. 

Feuerstein, E. and Stougie, L. (2001) “On-line single-server dial-a-ride problems”, 
Theoretical Computer Science, 268, 91-105. 

Fischetti, M., Toth, P. (1989) “An additive bounding procedure for combinatorial 
optimization problems”, Operations Research, 37, 319-328. 

Fu, L. (2002) “A simulation model for evaluating advanced dial-a-ride paratransit 
systems”, Transportation Research, 36A, 291-307. 

Gosh B. (1951) “Random distances within a rectangle and between two rectangles”, 
Bulletin of the Calcutta Mathematical Society, 43, 17-24. 

Hall R.W. (1986) “Discrete models/continuous models”, Omega International 
Journal of Management Science, 14, 213-220. 

Healy, P. and Moll, R. (1995) “A new extension of local search applied to the 
dial-a-ride problem”, European Journal of Operational Research, 83, 83-104. 

Hickman, M. and Blume, K. (2000) “A method for scheduling integrated transit 
service”, 8th International Conference on Computer-Aided Scheduling of Public 
Transport (CASPT), Berlin, Germany. 

Holroyd, E.M. (1965) “The optimum bus service: a theoretical model for a large 
uniform urban area”, Proceedings 3rd International Symposium Transportation 
Traffic Theory, 303-328. 

Horn, M.E.T. (2002a) “Multi-modal and demand-responsive passenger transport 
systems: a modeling framework with embedded control systems”, Transportation 
Research, 36A, 167-188. 

Horn, M.E.T. (2002b) “Fleet scheduling and dispatching for demand-responsive 
passenger services”, Transportation Research, 10C, 35-63. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 136

Ioachim, I. et al. (1995) “A request clustering algorithm for door-to-door 
handicapped transportation”, Transportation Science, 29, 63-78. 

Jacobson, J. (1980) “Analytical models for comparison of alternative service options 
for the transportation handicapped”, Transportation Research, 14A, 113-118. 

Jaillet P. (1988) “A priori solution of a traveling salesman problem in which a 
random subset of the customers are visited”, Operations Research, 36, 929-936. 

Jaw, J.J. et al. (1986) “A heuristic algorithm for the multi-vehicle advance request 
dial-a-ride problem with time windows”, Transportation Research, 20B, 243-257. 

Kalantari, B., Hill, A.V., Arora, S.R. (1985) “An algorithm for the traveling 
salesman problem with pickup and delivery customers”, European Journal of 
Operational Research, 22, 377-386. 

Koshizuka, T. and Kurita, O. (1991) “Approximate formulas of average distances 
associated with regions and their applications to location problems”, 
Mathematical Programming, 52, 99-123. 

Kuah, G.K. and Perl, J. (1988) “Optimization of feeder bus routes and bus-stop 
spacing”, Journal of Transportation Engineering, 114, 331-354. 

Landrieu, A., Mati, Y. and Binder, Z. (2001) “A tabu search heuristic for the single 
vehicle pickup and delivery problem with time windows”, Journal of Intelligent 
Manufacturing, 12, 497-508. 

Langevin, A., Mbaraga, P. and Campbell, J.F. (1996) “Continuous approximation 
models in freight distribution: an overview”, Transportation Research, 30B, 163-
188. 

LeBlanc, L.J. (1988) “Transit system network design”, Transportation Research, 
22B, 383-390. 

Lesley L.J.S. (1976a) “Optimum bus-stop spacing: Part 1”, Traffic Engineering 
Control, 17, 399-401. 

Lesley L.J.S. (1976b) “Optimum bus-stop spacing: Part 2”, Traffic Engineering 
Control, 17, 472-473. 

Liaw, C.F., White, C.C. and Bander, J.L., (1996) “A decision support system for the 
bimodal dial-a-ride problem”, IEEE Transactions on Systems, Man, and 
Cybernetics, 26(5), 552-565. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 137

Liu, F.-H., Shen, S.-Y. (1999) “The fleet size and mix vehicle routing problem with 
time windows”, Journal of the Operational Research Society, 50, 721-732. 

Lu, Q. and Dessouky, M. (2004) “An exact algorithm for the multiple vehicle pickup 
and delivery problem”, Transportation Science, 38, 503-514. 

Lu, Q. and Dessouky, M. (2005) “A new insertion-based construction heuristic for 
solving the pickup and delivery problem with hard time windows,” European 
Journal of Operations Research, to appear. 

Madsen, O.B.G., Raven, H.F. and Rygaard, J.M. (1995) “A heuristic algorithm for a 
dial-a-ride problem with time windows, multiple capacities, and multiple 
objectives”, Annals of Operations Research, 60, 193-208. 

Mandl, C.E. (1980) “Evaluation and optimization of urban public transport 
networks”, European Journal of Operational Research, 6, 31-56. 

Malucelli, F., Nonato, M. and Pallottino, S. (1999) “Demand adaptive systems: some 
proposals on flexible transit”, Operations Research in Industry, T. Ciriani, E. 
Johnson, R. Tadei (eds.), 157-182, McMillian. 

Min, H. (1989) “The multiple vehicle routing problem with simultaneous delivery 
and pick-up points”, Transportation Research, 23A, 377-386. 

Nanry, W.P. and Barnes, J.W. (2000) “Solving the pickup and delivery problem with 
time windows using reactive tabu search”, Transportation Research, 34B, 107-
121. 

Newell, G.F. (1979) “Some issues relating to the optimal design of bus routes”, 
Transportation Science, 13, 20-35. 

Okrent, M.M. (1974) “Effect of transit service characteristics on passenger waiting 
time”, MS Thesis, Department of Civil Engineering, Northwestern University, 
Evanston, IL. 

Potvin, J.-Y., Rousseau, J.-M. (1993) “A parallel route building algorithm for the 
vehicle routing and scheduling problem with time windows”, European Journal 
of Operational Research, 66, 331-340. 

Psaraftis, H.N. (1980) “A dynamic programming solution to the single vehicle 
many-to-many immediate request dial-a-ride problem”, Transportation Science, 
14, 130-154. 

Psaraftis, H.N. (1983a) “An exact algorithm for the single vehicle many-to-many 
dial-a-ride problem with time windows”, Transportation Science, 17, 351-357. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 138

Psaraftis, H.N. (1983b) “k-interchange procedures for local search in a 
precedence-constrained routing problem”, European Journal of Operational 
Research, 13, 391-402. 

Psaraftis, H.N. (1983c) “Analysis of an O(N2) heuristic for the single vehicle 
many-to-many Euclidean dial-a-ride problem”, Transportation Research, 17B, 
133-145. 

Rhee, W.T. (1993) “On the stochastic traveling salesperson problem for distributions 
with unbounded support”, Mathematics of Operations Research, 18, 252-259. 

Rochat, Y., Taillard, E. (1995) “Probabilistic diversification and intensification in 
local search for vehicle routing”, Journal of Heuristics, 1, 147-167. 

Ruben H. (1978) “On the distance between points in polygons”, Lecture Notes in 
Biomathematics, No 23 (Miles R. and Serra, J. Eds.), Springer-Verlag, Berlin. 

Ruland, K.S. and Rodin, E.Y. (1997) “The pickup and delivery problem: faces and 
branch-and-cut algorithm”, Computers and Mathematics with Applications, 33, 1-
13. 

Savelsbergh, M.W.P. and Sol, M. (1995) “The general pickup and delivery 
problem”, Transportation Science, 29, 17-29. 

Savelsbergh, M.W.P. and Sol, M. (1998) “Drive: dynamic routing of independent 
vehicles”, Operations Research, 46, 474-490. 

Schweitzer P.A. (1968) “Moments of distances of uniformly distributed points”, 
American Mathematical Monthly, 75, 802-804. 

Sexton, T.R. and Bodin, L.D. (1985a) “Optimizing single vehicle many-to-many 
operations with desired delivery times: 1. Scheduling”, Transportation Science, 
19, 378-410. 

Sexton, T.R. and Bodin, L.D. (1985b) “Optimizing single vehicle many-to-many 
operations with desired delivery times: 2. Routing”, Transportation Science, 19, 
411-435. 

Sexton, T.R. and Choi, Y. (1986) “Pickup and delivery of partial loads with soft time 
windows”, American Journal of Mathematical and Management Sciences, 6, 369-
398. 

Stadje W. (1995) “Two asymptotic inequalities for the stochastic traveling salesman 
problem”, Sankhya: The Indian Journal of Statistics, 57A1, 33-40. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



 139

Stein, D.M. (1978a) “An asymptotic probabilistic analysis of a routing problem”, 
Mathematics of Operations Research, 3, 89-101. 

Stein, D.M. (1978b) “Scheduling dial-a-ride transportation problems”, 
Transportation Science, 12, 232-249. 

Stone R.E. (1991) “Some average distance results”, Transportation Science, 25, 83-
91. 

Szplett, D.B. (1984) “Approximate procedures for planning public transit systems: a 
review and some examples”, Journal of Advanced Transportation, 18, 245-257. 

Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Potvin, J. (1997) “A tabu search 
heuristic for the vehicle routing problem with soft time windows”, Transportation 
Science, 31, 170-186. 

Teodorovich, D. and Radivojevic, G. (2000) “A fuzzy logic approach to dynamic 
dial-a-ride problem”, Fuzzy Sets and Systems, 116, 23-33. 

Toth, P., and Vigo, D. (1997) “Heuristic algorithm for the handicapped persons 
transportation problem”, Transportation Science, 31, 60-71. 

Van Der Bruggen, L.J J., Lenstra, J.K. and Schuur, P.C. (1993) “Variable-depth 
search for the single-vehicle pickup and delivery problem with time windows”, 
Transportation Science, 27, 298-311. 

Vaughan, R.J. (1984) “Approximate formula for average distances associated with 
zones”, Transportation Science, 18, 231-244. 

Vaughan, R.J. and Cousins, E.A. (1977) “Optimum location of stops on a bus route”, 
Proceedings 7th International Symposium Transportation Traffic Theory, 697-719. 

Verblunsky, S. (1951) “On the shortest path through a number of points” Proc. 
Amer. Math. Soc., 6, 904-913. 

Wirasinghe, S.C. and Ghoneim, N.S.A. (1981) “Spacing of bus-stops for 
many-to-many travel demand”, Transportation Science, 15, 210-221. 

Zhao, J. and Dessouky, M. (2004) “Optimal service capacity for a single-bus 
mobility allowance shuttle transit (MAST) system”, submitted for publication. 

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e




