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Abstract

Most transportation systems fall into two broad categories: fixed route
systems that are cost efficient but lack of flexibility and demand responsive transit
(DRT) systems which are flexible but costly. The Mobility Allowance Shuttle c)@

Transit (MAST) service is a new concept in transportation that merges the ﬂexE’ Elo

of DRT systems with the low cost operability of fixed route bus syste a

MAST system vehicles follow a base fixed route cdmposed by a andatory
n

checkpoints conveniently located at major coth ints; g@ appropriate
slack time, vehicles are allowed to e ﬁ within a proper
service area to pick up and drop 0 rs at thej ired locations.

The purpose of this rese@ to addre p in the research community

by studying this hybrld nd ﬂex1b f service providing insights of its

challenges and f@g its P for utilization in large scale as an
alternative ional p &\wes

Th&{system is d?@ viable if the longitudinal velocity along the primary

{I of the se 5 higher than a minimum threshold value to maintain the

ce attrictiWg to customers. By using continuous approximations we develop a

® relati ntween this velocity and the demand to assess the viability and aid in
‘ 0 Mg of the main parameters of the service.

O For the static operating scenario we provide a mathematical formulation of

Q the MAST system as an integer linear program and we aim to find the optimal

vii



schedule. Because of the combinatorial nature of the problem we develop a set of
valid inequalities to increase the lower optimality bound and efficiently speed up the
search for the optimal solution.

For the dynamic operating scenario we develop a customized insertion @
scheduling algorithm, which includes control parameters to prevent the “wild” O
consumption of the slack time and significantly improve the performance
algorithm. A comparison vs. conventional fixed route systems shows T

services are competitive with conventional ones erform bet certain

demand distributions. OQ Qg
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1 Introduction

Transit is one of the vital service sectors of the present and the future US
economy and it holds tremendous social significance. Transit systems are essential
for preserving and revitalizing the nation’s cities by minimizing congestion, urban @
sprawl, central city decline, and air pollution. Owing to their inherent ease of routi%C)

and low capital costs, bus transit systems in particular are integral to meeti

growing transportation requirements. However, today's urban transit sy cata
crossroads. On the one hand, demands on en01es roved and
extended services are increasing. Yet Nther ubhc support for

increases in fares or subsidies. Ther@fgred transit a&ies are currently seeking
ways to improve service ﬂexibil@cost efﬁcien@mer.

Most bus transit ms fall int@road categories: fixed-route and
demand responsive RT) \ ixed-route systems are typically more

cost efficient & of the pﬂ ined schedule, the large loading capacity of

)

the vehi and the cen xn of many passenger trips onto a single vehicle

(mgd ing). e general public considers them to be inconvenient

use of.
® d
the total trip time is perceived as being too long and, for longer trips,

Q Oere is often a need for transfers between vehicles. DRT systems instead provide

much of the desired flexibility with a door-to-door type of service but they are much

lack of flexibility since either the locations of pick-up and/or

O
;\

”7’0

5 or the service’s schedule do not match the individual rider’s desires.



more costly to deploy and therefore largely limited to specialized operations such as
taxicab, shuttle vans or Dial-a-Ride services mandated under the Americans with
Disabilities Act (paratransit DRT). The National Transit Summaries and Trends
(NTST) report for 2002 indicates that the average cost per passenger trip for DRT
systems is $20.8 with fares ranging from $2-3. By way of contrast, the average cost 0
per trip for fixed-route lines is $2.4 with fares being roughly 25% of the cost.

The Mobility Allowance Shuttle Transit (MAST) system is an .tlve

concept that merges the flexibility of DRT system the low CQ& bility of
t t covers a

fixed-route bus systems. A MAST serv1c
specific geographic zone, with one m mandato kpoints conveniently

located at major connection po nN r high densi nd zones; the innovative
twist is that, given an appro ack tim @s are allowed to deviate from the

fixed path to pick up a p off pas@ at their desired locations. The only

restriction on ﬂex@ that t@ons must lie within a service area designed
around Q ed- route&&omers make a reservation in order to add their
pick®up an

des1r f stops in the schedule of the service. The MAST

s ork der namic environment since the majority of the requests occur

1le t icl®is on duty. Passengers willing to use the service as a regular

® fixed- Qe traveling between checkpoints can do so without the need of going
VO through a booking process.

:O Such a system already exists in a reduced and simplified scale. The

Metropolitan Transit Authority (MTA) of Los Angeles County introduced MAST as



part of its feeder line 646. Line 646 transports passengers between a large business

hub in the San Pedro area of Los Angeles County and a nearby bus terminal. The

area served by Line 646 is located close to the Los Angeles harbor and is one of the

County's busiest commercial hubs, consisting of several warehouses, factories and

offices. However, for safety reasons, employees of local firms working on night

shifts have been finding it extremely inconvenient to walk to and wait at a bus

Therefore, Line 646 offers a MAST nightline service. During daytii ne

serves as a fixed-route service. During nighttim% line chanQ
service and allows specific deviations of &mi e @r ide of the

MAST

fixed-route. Customers may call in tdlbe pgked up, or maZsk the operator to be

dropped off at their desired locationithin the s ea.

The demand of line &renﬂ l(@ough to allow the bus operator to

make all the decisioneming a@ /rejecting requests and routing the
vehicle. Clearly, @ of hea\ﬂ@nd in a potential daytime MAST operation

and seve q for devi

efficigptly him/

the operator would not be able to handle this task

would need help from the recent developments in

utation technologies that allow real-time information about

\
Qm icatiggrand
Qck—up/ &equests and buses status to be used to re-route the vehicles
® dyna?’@y means of a scheduling algorithm.
W

hile DRT systems focus strictly on point-to-point transport services, the

E Q/brid characteristic of the MAST service adds additional and significant time and

Q space constraints to the problem mainly due to the need of having the vehicles arrive



at the checkpoints on or before their scheduled departure time. This is because

checkpoints typically represent major transfer centers and serve simultaneously as

pick-up and drop-off points, like regular fixed-route stops. Delays at the checkpoints

would result in undesirable deviations from a predetermined fixed schedule and @

passengers missing their connections in case of late arrivals. C)
Although MAST systems can be considered as a special case of the Pj 9

and Delivery Problem (PDP) with time windows and there has been cant

amount of research on DRT systems like the PD e are unaWQ y work
h

performed on specifically studying systems s Q

of this research is to address the gap@ research {h nity by studying this

hybrid fixed and flexible type of Nce from a d eoretical and operational

e purpose

points of view, providing 1@ f its cha s and foreseeing its performance
for an utilization in large as an alt xo conventional public services.
The contn% f this ré as follows

Q a desi N&of view, by utilizing a continuous approximations
mod; &Vlde insights about the relationships among the
n@ﬂ velocity of the vehicles and the main parameters of the
&ice to help in the design process (Chapter 4).

OFrom an operational perspective we develop scheduling tools. We

first look at the problem in a static scenario (Chapter 5). MAST

i QO systems are mathematically formulated as mixed integer linear



programs. Since they are NP-Hard problems, we develop a set of
effective valid inequalities.

e For a dynamic operating scenario (Chapter 6) we propose a
customized insertion heuristic scheduling algorithm that makes use of @

proper control parameters.

e Finally, we present conclusions and future research (Chapter 7). 60



2 Literature review

Hybrid types of transportation systems have been only recently approached
by researchers. Zhao and Dessouky (2004) studied the optimal service capacity
through a stochastic approach. Malucelli et al. (1999) also approached the problem @
including it in a general overview of flexible transportation systems. Crainic t0
(2001) described the MAST concept and incorporated it in a more genera
setting providing also a mathematical formulation. K

The hybrid type of service that we are sg @ g Sonsists @eQme vehicle

performing the fixed and variable porti o®tri p.

Th as'Been some work in

studying hybrid systems in WhiCl‘@ vehicles rm the fixed and variable

portions. In the latter case, lo@wice is @i by on-demand vehicles and

line-haul service is provj a ﬁxe% Passengers switch vehicles at a
transfer station. @n et al.’% elop a continuous approximation model
for designi service ]@ms been some work in developing operational

schedulin@and routing’@ for this latter type of hybrid system. Liaw et al.

i;"@velop a ng heuristic based on a system in Ann Arbor, Michigan.

an a@me (2000) develop an insertion heuristic and test it on a data set

® fro @ , Texas. Aldaihani and Dessouky (2003) develop a tabu search
‘ 0 hetgsticand test it on a data set from Antelope Valley in California. They show that

Oifting some of the demand to a hybrid service route (18.6% of the requests)

QO



reduces the on-demand vehicle distance by 16.6% without significantly increasing
the trip times.

In the first part of this thesis we make use of continuous approximations to
analyze the problem. As noted by Daganzo (1991), the main objective of this
approach is to obtain reasonable solutions with as little information as possible. Hall 0
(1986) also pointed out that continuous approximation are useful to develop
that are easy for humans to comprehend; on the other hand, he observe @hese
models should not replace but supplement t ore detaﬂ ernat1cal
programming models. There is a signiﬁc terature on
continuous approximation models for ans atlon syste ost of the work has
been developed to provide decmo&port tools fi &glc planning in the design

process. Langevin et al pr0V1 e tailed overview of the research

performed in the field. concentr te 1M¥arily on freight distribution systems,

while we focus on@ transp&@uost of the issues of interest are common to
both fiel @

cond @aﬂ of this thesis focus on finding a solution of the

\%ch 1ngem utilizing an exact and an heuristic approach. As

entio systems are related to DRT systems because they can be

® consi “Qa special case of the PDP with time windows and there is a significant
v body%ef work in the literature on routing and scheduling DRT systems. Savelsbergh

:Qd Sol (1995) and Desaulniers et al. (2000) provide detailed reviews of the PDP,

examining mathematical formulations and solutions approaches presented by



different authors. Due to the combinatorial nature of the problem (the PDP is
NP-Hard) exact optimization methods are theoretically interesting but practically
unsolvable. Therefore, most of the research efforts focus on heuristic approaches.

Here below we present a literature review of the most relevant works done in @

>

General Continuous approximations: O

the field, categorized by their research focus.

Pioneering research on continuous approxi n model dk to the
fifties. Beardwood et al. (1959) provided the roxi @ul

the length of a Traveling Salesman @1 SP) togrl compact zone with

uniform demand density. Stein (%) and Jaillet integrated their work by

to estimate

estimating the value of the ur lengt ase of Euclidean and rectilinear

metrics. In general, gecal proba@ been extensively studied to provide
estimates on the a@istanc&@ points for different shapes. We mention in

this are k of 1951), Fairthorne (1965), Schweizer (1968),

Christofides%and Eli
\



Continuous Models:

Szplett (1984) provides a review of the research performed on continuous
models specifically for public transport. In this area we cite the work of Holroyd
(1965), Newell (1979), Mandl (1980), Ceder and Wilson (1986), LeBlanc (1988),
Chang and Schonfeld (1991a, 1991b), Chien and Schonfeld (1997) and Aldaihani et C)
al. (2004) that studied the optimality of bus network systems. Lesley (1
1976b), Vaughan and Cousins (1977), Wirasinghe and Ghoneim (1981 @(uah
and Perl (1988) analyzed the optimality of spacing een bus sto work of
Daganzo (1984a) is especially related to Q s@in oduces the
concept of “strip strategy”, providing @n ap 0x1mate i 2 of the optimal width

of a corridor in order to minimiz e distance

length of the TSP tour wh@ oying a @e no-backtracking routing policy

along the strip. O 0

points and therefore the

Contmuou Is haVB\ been utilized to examine DRT systems.
Daganz d an ap te analytical model to study many-to-many DRT
syste bson Bélisle (1989) also made use of an analytical model
\r D sy& et al. (2005) provide an analytical model to determine the

Q et 3120 system.
Exact algorithms:
:O Exact approaches to solve DRT systems provide optimal solutions, but the

combinatorial nature of the problem limits the applicability of these methods to very




small instances; therefore, they provide a good theoretical insight, but practically can
not be used to solve real situations.

Psaraftis (1980) describes an exact backwards dynamic programming
solution approach for the single vehicle Dial-a-Ride problem for static and dynamic @
environments without time windows. A forward dynamic programming approach is 0
then presented in Psaraftis (1983a), to handle cases with time windows.

complexity of those algorithms is exponential and they can solve @mall
problems up to 10 customers. s Q

Another dynamic programming appr; Q{ QE@I PDP with
time windows is described in Desrosi@ 1986). The%Nadopted techniques are
very efficient and the running t&of the algo \creases slower with the
problem size if the time wy are tigh@ The increased efficiency of the

procedure allows handh@tances Wi%&() customers.

Sexton anQ (19853\ p) and Sexton and Choi (1986) describe a

Bender sition @ to solve the single vehicle PDP with time
w1nd capa nts. The latter paper introduced the concept of soft
\

i st eadof hardrtime dows, meaning that the time windows can be violated, but
Qe solygt ﬁbe arbitrarily and proportionally penalized for this gap in the

® objec Dﬁon; an infinity penalty function would transform the problem to the
VO ardNyime windows case. Note that the routing sub-problems are solved by a
Qduristic. Therefore, their optimization approach is not entirely an exact algorithm;

10



should the routing problem be solved optimally, the entire procedure would become
an exact algorithm.
Dumas et al. (1991) present a Dantzig-Wolfe approach for optimally solving

the multiple vehicles PDP with time windows and capacity constraints. The master

problem 1is iteratively solved by a column generation algorithm and a 0

branch-and-bound exploration tree, while the constrained shortest path sub-pro@

are solved by a forward dynamic programming algorithm. O
Savelsbergh and Sol (1998) propose a bravﬁld price ba r1thm to
solve the dynamic multi vehicle PDP. Thei 1c ted column

management technique and 1ncorporat@1s ics in th pr1 g procedure to allow
the algorithm to solve large instan qulckly In up to 30 customers were
successfully solved. Q @

Kalantari et al. ( . apply a @d bound algorithm to the PDP. All
the arcs that Vlolaﬂactlve p?e constraints are precluded in each branch.

FlschettQ (1989) an additive bounding procedure suitable for a
branch-and- und or the single vehicle PDP. Rulan and Rodin (1997)
rod cap hedr proach and a branch-and-cut algorithm to solve the single

it ut capacity constraints.

ct algorithm approach is described in Lu and Dessouky (2004). The
pzation procedure utilizes a branch-and-cut technique to solve the multi vehicle

op
QP. An effective application of valid equality and inequality constraints helps the

11
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algorithm to reach solutions faster. Instances with up to 5 vehicles and 17 customers

have been successfully optimized in a reasonable time.

Clustering algorithms:

Clustering approaches use the intuitive idea of merging together in a single
point requests that are physically close to each other. The problem instanc
reduced in size and therefore exact approaches can then be applied efficie t@

Ioachim et al. (1995) develop a clustering al m to solve le vehicle

PDP with time windows. The requests are g&ge hegn@lu ers and the

problem is then solved by a column gefleratign approach and ®@gmpared to an existing

parallel insertion heuristic. In aan, in order @0 the algorithm to handle

even larger problems, the /B iduatl netwo@ reduced to a sub-network by

eliminating some arcs. O 0\

Min (1989@mpose§ @ring heuristic approach to solve the vehicle
routing @n additi&&allows single nodes to serve simultaneously as
L 4 é

pickup and @elive i \

\
s 1€ arcl&lse, AST systems, checkpoints are exactly of this type.
0

\\
O D % of Daganzo (1984c) describes a checkpoint DRT system that
® comb characteristics of both fixed route and door-to-door service. In a

VO checRpoint system, a service request is still made but the pick-up and drop-off points

often happens in practice; this concept is relevant for

:Oe not at the door but at centralized locations called checkpoints. The author shows

that a checkpoint system, intermediate between fixed route and DRT systems, can be

12
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QO

useful only for a narrow range of demand density in a given service area. However,
the MAST system conceptually differs from the checkpoint only system described,
since it allows also for door-to-door requests.

Stein (1978a, 1978b) develops a probabilistic analysis of the PDP. His

analysis shows how optimal path lengths can be bounded with high probability by a C)

constant function of the service area and the amount of random requests fb

uniform distribution. Based on these findings, he proposes heuristics to ingle

and multiple vehicle problems for static and dﬁic enViron
partitioning the service area into sub-regions Q’ng). Q @

Local search techniques: \ é
Local search techni %

ose heu that start from an initial feasible

asically

solution and “move” lo@in the ne@od of the solution space. The main

drawback is that @tion fo{\@ut be a local optimum, potentially very far

from the gloBs mal. \
t .
Psaraftis (1 c) presents two heuristic approaches for the single
\ Oe%
icl&Dial ide em with no time windows. In the first one is described a

A
Qinterc@ lo®al search heuristic approach: the algorithm performs a local
® impro

of a current solution by substituting k£ arcs with new ones while

dain ining feasibility; the algorithm complexity, with N requests, is O(N*). The

cond one is based on a Minimum Spanning Tree procedure: the solution is

13
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constructed from an initial MST following a simple but effective procedure; the
complexity of this algorithm is O(N?).

Local search procedures are reported in Van Der Bruggen et al. (1993). The
single vehicle PDP with time windows is solved by an arc interchange procedure
with variable depth. In addition, a simulated annealing procedure is introduced to C)
prevent the algorithm from getting stuck into a local optimal. ¢

Healy and Moll (1995) present another local search technique for t@a -a-
Ride problem. They introduce a new procedure%d sacriﬁci@cally the

]

algorithm is allowed to proceed not only to er ¢ utions, but

also towards higher cost solutions and @dj casibility,neighborhood.

Tabu search techniques hNeen applied@( hat and Taillard (1995),

Badeau et al. (1997) and L? al. (200@ the vehicle routing problem with
hard time windows; by etal. (199 the soft windows case; by Nanry and

Barnes (2000) an @u and B@ZO%) to solve the multi vehicle PDP.

Kfleu s are probably the most popular techniques. Campbell and

Qvelsb 00%) justify their extensive use in practice, because they are very fast

\ and to handle large problems, provide good solutions compared to

:opti lity, can easily handle complicating constraints and can be simply

: plemented in dynamic environments.

14
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Jaw et al. (1986) illustrate a heuristic algorithm for the static multi vehicle
PDP with time windows. The algorithm takes in consideration one customer at a
time, evaluates all feasible insertions for pickup and delivery points and selects the
one with the minimum cost; a new vehicle is assigned if no existing routes can
accommodate a new customer. The insertion approach used in this work
demonstrates its effective applicability for large amounts of customers becauseé
computational speed.

Madsen et al. (1995) implement an inserti uristic appr a partly
dynamic multi vehicle PDP. Requests kno Qvan c@ier d as static,
while real-time requests are handled in seq 1a1 fashion. 2

Potvin and Roussean (1993 d Liu and S 9) develop parallel regret

insertion heuristic algorith e multi v@e routing problem and with time

windows. These algorl@ create ro@arallel and use a generalized regret
measure over allﬂn— ted cu?\@m order to select the next candidate for

insertio @d Desso
*
app ﬁte etric
fsyeth a

0&
lleMinsertion heuristic is proposed by Toth and Vigo (1997) to solve

the stEc 1 vehicle PDP with soft time windows. The insertion algorithm is very

04) apply the same concept for the PDP, with an

to overcome the myopic behavior that is often the

VO :fast applied to the transportation of handicapped persons. A tabu search is also

QO

oposed to improve the solution generated by the insertion heuristic. Their

15
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algorithm is tested with real life instances in the city of Bologna, Italy and their
results outperform the hand made schedules.
Teodorovich and Radivojevic (2000) use a fuzzy logic insertion approach to
solve dynamically the Dial-a-Ride problem. This approximate reasoning algorithm @
allows the insertion procedure to be executed in real time. 0
Dessouky, Rahimi, and Weidner (2003) develop an insertion procedur Q

objective function that includes both cost and environmental 1mpa 1ves

Experimental analysis on data sets representing dia e operatlonQ Angeles

County show that the best fleet compositio Q nece eet comprised
other.

exclusively of vehicles selected to optl ize ane Ob] ectlv or

Lu and Dessouky (2005) iNt a new 1nse‘ sed construction heuristic

to solve the multi-vehicle d dellv@mblem with hard time windows.

The new heuristic does y consi xasswal incremental distance measure
in the insertion n crite ﬁ@lso the cost of reducing the time window
slack du t ertlon 0 present a new non-standard measure, Crossing
Lengt Percentage, the ‘visual attractiveness’ of the route. The effect of

1n ¢ pro Qre to guide the construction heuristic in obtaining a higher

on as also been investigated. They compared the heuristic to a

stan ertion heuristic on different benchmarking problems, and the

compytational results show that the proposed heuristic performs better with respect
Oboth the standard and non-standard measures.
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Theoretical and technologically based works:

A few authors provide theoretical insights to the problem, while recent
developments in the field based on technologically advanced systems, have attracted
the attention of the researchers in the latest years.

Feuerstein and Stougie (2001) investigate the best possible competitive ratio C)
for an on-line single server dial-a-ride problem. They show that no heysistt
algorithm can have a competitive ratio better than 2, where the competi§ io is

the worst case ratio between the objective value p ed by the a and the

optimal value. Q @
Dial (1995) proposes a fully au€mat§ :routing d sCheduling system, where

i’l
the customer is the only human int&sgcting with it @ tire process of booking a
ride. The system is embedded™ centr li@ntrol strategy.

Horn (2002b) des an algorith the scheduling and routing of a fleet

of vehicles that i& dded iIfling framework for the assessment of the
Qeneral pi&&nsport system with the latter being presented in

*

Horn £200239.
\
K u (2092) presefts a simulation model to test if and how the introduction of
hnolggt®ally dvanced paratransit services can be beneficial. The results seem
0® promisy t in some cases a decline on the overall performance of the system is
v :obse d.
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3 Description of MAST systems

A Mobility Allowance Shuttle Transit (MAST) system is represented by a
fleet of vehicles serving a set of customers’ requests. Vehicles follow a fixed-route

line (back and forth between two terminal checkpoints or around a loop, see Figure c)@
1) composed by an ordered set of stops (checkpoints) associated with presche&o
departure times. O

O & Checkpoints

O Figure 1 — Possible configurations of MAST systems

Each customer’s request is defined by pick-up/drop-off service stops and a
Q

dy time for pick-up. The MAST service can respond to four different types of

Q requests: pick-up (P) and drop-off (D) at the checkpoints; non-checkpoint pick-up

18



(NP) and drop-off (ND), representing customers picked up/dropped off at any

location within a service area designed around the base fixed-route. A certain

amount of slack time between any consecutive pair of checkpoints is needed in order

to allow deviations to serve NP or ND requests. @
There are consequently four different possible types of customers’ requests: C)

6\\}

e PD (“regular”):  pick-up and drop-off at the checkpom‘i
t at the

e PND (“hybrid”): pick-up at the %om‘[ dro@n
checkpoint Q
e NPD (“hybrid”): K@t at the { int, drop-off at the

checkpoint

e NPND (“ran@ ck-up @-off not at the checkpoints

PD reques@only \ scheduled checkpoints and they use the

service I ar ﬁxe ne; therefore, they just show up at their pick-up
che % ot ne okmg or scheduling procedure. The other types of
ests ne servations instead (by phone, internet or at terminals located

QQ the ¢ nt to schedule one or both their non-checkpoint service stops.

VO Qhow p at the checkpoints) at any moment before or during the service. An

fective MAST system needs to rely on recent developments in communication and

rvice can work dynamically, so that customers may book their rides (or

Q computation technologies that allow real-time information about pick-up/drop-off

19



requests to be used to re-route the vehicle by means of a scheduling algorithm. Its
necessity becomes more evident in case a MAST system serves a heavy demand and
relies on a fleet of vehicles and/or MAST networks. Ideally after each request the
vehicles’ routes are updated in real time and customers are immediately notified
whether their request has been accepted, postponed or rejected and are provided with O

an approximate time (or time windows) for their pick-up and/or drop-off até

non-checkpoint locations. @

20



4 Design perspective

One of the factors that has to be taken into consideration in the design process
of a MAST system is its viability. In fact, in case of public transport, the main
purpose of the vehicle is to move customers along a primary direction (see Figure 2). C)@

The more customers that are served, the slower the vehicle would move alonE tl@

direction because of the deviations needed for pick-ups and drop-offs. O

Primary direction * @ 2

________
Ol
= 3
i
o
.
.t

F% i 1 on of MAST services
\ .

) «@ r@ of glis a \s to provide insights about the viability of MAST
85180 process of the main system parameters. The service is

s st%o help in, Q

&ned viawe ocity of the vehicle along this direction is kept high enough

QQ mai service attractive to customers while serving a sufficient demand. A

reshold value of the velocity can be used to set the maximum slack time

v dow le between checkpoints and to determine the maximum demand level that

an be served by one vehicle and the number of vehicles to be employed per line.
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4.1 System definition

The MAST system model considered for our analysis is described by a linear
corridor of width W and length L >> W, oriented in a horizontal direction. The
demand is assumed to be known in advance and is represented by a set of passenger @
trips that occur with density p per unit area. We do not need to know the distributi%()
of the trip length for the purpose of this Chapter. Pick-up and drop-off poil@
uniformly distributed across the width and the length of the corrido icles

follow rectilinear paths within the corridor and t %th consta:i v, except
Qo .

at pick-up/drop-off points where there is a ¢ p tigd

Vehicles serve passenger trips following a forward progression through

the corridor in either a left-righk&Nﬂ-left direct@ This means that a left-right
(right-left) vehicle rides fro@c eckpo&@ left (right) end to the checkpoint

at the right (left) en Qorridor an®only serves customers whose drop-off is to

.
the right (left) @& pick-up re 3). This is only a reasonable operating

policy, Qt necessazily%x . We also assume no mandatory checkpoints in
b{tv% \

K The eral system is represented by several vehicles riding along the

\QQ)rﬂdoe assume that p represents one cycle of the demand served by two

véim ith infinite capacity: a left-right one and a right-left one. The problem is

v Ommetrical and we analyze only the left-right case, with a demand density per unit

22



area of p/2 trips and p stops, since each trip has two service points (we are

simplifying the analysis by assuming that p includes NPND requests only).

| A %
<o
RL -
( /
- : o
LR
v -
-3 left-right customers e Pick-ups : left-right vehic
<— right-left customers e Drop-offs ight-left Veh

Figure 3 — Right-left an ht Ve@~

The longitudinal velocity Nhe vehicle i@d by the rate at which the
vehicle moves in the horizo@on whic@ the average given by

W\
O
Q@& \{\Q )

%re pis &gth a rectilinear Hamiltonian path among all the service points,
Q spect@cu omer precedence constraints (for each customer the drop-off must
\ % after the pick-up) and pWLb represents the total stop time (counting

QQ), which corresponds to maximize V (with optimal value V*).

nd drop-off stops). The problem (P) is to minimize p (with optimal value
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Because P is NP-Hard, its combinatorial nature causes it to be unsolvable in
reasonable time for a large number of stops; in addition, we do not know the exact
locations of the demand points but only their distribution. Therefore, we proceed by
generating lower and upper bounds on V*, assuming continuous approximations of @
the system parameters. We also provide an estimate of V* based on the results from
Beardwood (1959) and we perform a simulation to compute the velocity 6

utilizing an insertion heuristic algorithm. O

A summary of the system parameters and the@lon used i apter are

as follows: Q
Width of corridor :M é

"

L Length of the (miles);

v Average e speed (mail %r)

b Sto& hile Sa\@k -up/drop-off (hours)
Q @and densgi tomers/mlles )

r the left-right case (stops/miles®)

= st
\ %
ongitigfnal velocity of the vehicle (miles/hour)

QO QO imal (maximum) value of V
0\ ’S Set of all “left-right” stops (pick-ups and drop-offs)
O Xi longitudinal coordinate of i, increasing from left to right (miles)

yi lateral coordinate of 7, increasing from bottom to top (miles)
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4.2 Lower bound of V*

Let’s consider a no-backtracking policy, allowing the vehicle to move only in
the forward direction (left to right) and serve all the demand, as illustrated in Figure

4. The numbers represent the customers, where “+” is a pick-up and “-” a drop-off. @

1+

™
pn

®  Pick-ups (+) ° D@Q
Figure 4{0- trackin@%r
Since by assumptioifghe ustomer\ by a left-right vehicle have their

drop-off always OH%QH ft 'Quup, this policy guarantees feasibility

.
because all 0@&&: served(& their destination points, satisfying all the

customeQedence cQns

f(t% soluti be improved by simply removing the arbitrary

o

owever, this policy is not necessarily optimal. In

3

-backtra; ” constraint and developing a better routing strategy. Thus, this

®:simple tracking policy provides a feasible lower bound on V*, but it does not
0 pfawa timality. For our purpose it is useful because we can compute its closed

Orm solution.
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Because of the uniformity of the demand we know that the expected value of
the lateral (along the vertical direction) distance l, traveled by the vehicle between

any pair of stops is given by

E(ly)=¥ 8%0

and the expected value of the time t, spent by the wghicle while & aterally
when traveling between two consecutive points g % i:

QQ‘

" Q

E(t, )= (y)zﬂ \ O (4.3)
In a corridor LxW w; den51t are pWL stops and the expected value
of the total tim. t by the 1le driving along the corridor is given by

S %(t) pWL b+ [pW(E+bJ +l} (4.4)
& 3v v
0\' :s the time spent by the vehicle while moving longitudinally along the

v O r and b is the service time per stop.
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Finally, the lower bound on V* is formally computed by LxE(1/t) which is very well
approximated and lower bounded by L/E(t). In fact we know by the Jensen

inequality that E(1/t) > 1/E(t). Therefore, we compute the lower bound V! by

We can also verify by the following Table od esti 0V1ded by
Equation (4.5) on the true lower bo y simulation for
different values of p. The si ulaQalues are btained by averaging 30
replications for each p con51de each re hca we considered 5,000 stops
uniformly distributed in O%r of wi @ 5 miles, a v =30 miles/hour and
b = 30 seconds. K% Q
S xO
Q 6\% values: analytical vs. simulation

V' (miles/hour)

\
K p |Equation (4.5) | Simulation
O 1 24.83 24.83
Q O 5 14.69 14.69
\ 10 9.73 9.73

50 2.63 2.63

?9 : 100 1.37 1.37
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Note that V' is inversely proportional to W, b and p. With p =0 (no demand)

the vehicle would have its V' = v as expected.

4.3 Optimality of no-backtracking policy @

Before estimating the first upper bound we want to focus on the § tQC)
strategy” introduced by Daganzo (1984a). He showed that good solutions o Q
tour, for any shape of the service area, are obtained by cutting a swa Qg the
whole area and having the vehicle drive along ulfing lon ile serving
the demand uniformly distributed in t lalmQNelectmg a proper
width of the strip a simple no-bac%Qolicy pr. es good results in terms of

the total distance traveled.

We want to dete t ere exi fficient condition on the locations
of the demand p g would optimality of a no-backtracking routing
policy. Thi low us &\a subset of points that satisfy this condition so

that we caifutilize the \%rackmg routing policy to serve them optimally. The

z al Veloc~we this subset will be an upper bound on V*.

@ whether this sufficient condition exists, let’s consider a left-right
® vehigle ng a Hamiltonian path (or) among a set of demand points. Referring

‘ 0 ure 5, consider points j, & and k. We assume that x; < x; and x; < x; and that

@ backtracking sub-sequence ...-j-h-k-... is part of path a. We want to determine

Q if there exists a condition on X, with respect to X; and X; to guarantee that a
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reinsertion of 4 earlier in the schedule in a no-backtracking fashion will always lead
to a shorter total distance traveled.
It is always possible to identify two consecutive points a and b earlier in the

schedule such that x, < x;, <x, (at the limit, we can have a be the checkpoint in the

far left and/or b=j). Therefore, we have path o following the sequen@()

otebm.. ~jhoke. .. 6

Consider another path (p) that follows the sequence ...-a-h-b-.. { with

point / reinserted between a and b in a no-backtra shion. Q

Ql ant portion§of the sequences that differ between o and B. Path o yields to the

0® follog' nce lo:
O 1u:Xb_Xa+|yb_ya

+Xj_Xh+‘yj‘_Yh‘+Xk_Xh+|yk_Yh| (4.6)
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For the path B the distance Ig is given by

lﬁ :Xh_xa+|Yh_ya +Xb_Xh+|Yb_Yh|+‘Xk _Xj‘+‘Yk _Yj‘ 4.7)

<

We want to determine the minimum longitudinal distance between 4 an(%c)
and/or & and k needed to guarantee that path  will always be better than pat

terms of minimizing the total distance traveled. Thergfore, we 1mp0se ition

lg <1, and after a few passages we obtain the foll equahty@Q
X; +X, —‘Xk—Xj‘—2XhZ Q \ 49
Y5 =Yl +[ys =il -y, Y,yE@'kyh

Depending on the m latex Qof the points along the corridor, the
maximu @value for@ﬂyb Yal=|v, —¥.| is 2W when 4 is located on
the oppo 2 corridor with respect to a and b; while

yh| can be at most equal to O when # is located laterally in

min(xj,xk)—xh >W (4.9)
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that is the sufficient condition on the longitudinal position of /4, with respect to the
closest (longitudinally) point between ;j and k, that would guarantee that the
reinsertion of 4 somewhere earlier in the schedule in a no-backtracking fashion
between some points @ and b would always lead to a better solution in terms of @

shorter distance traveled.

Given the result obtained by Equation (4.9) we can state the following. 60

Proposition 1. Given a set of points randomly dist. ed along a of width
W and length L, the shortest Hamiltonian re 'pa st oint on the
far left to the last point on the far zght s the Seq enc f points ordered by
increasing longitudinal coordznaNao backtrac @ s long as the minimum

longitudinal distance betwee, ir of pou@at least W.

Proof. Consider %pomts @lby i=1,2,3,... and ordered by increasing

longitudj 0 ate (n & king) and let the minimum longitudinal distance
betw any® pair ¢ at least W. Assume that there exists an optimal
u% ollowing a no-backtracking policy; the position of each i in
1s 1d %(z). Let’s consider the smallest point iy # A(ip)e A. We can show

4 (4.9) that by reinserting iy in A such that io = A(ip) and readjusting all
Qher (i) accordingly leads to a better solution. But this is a contradiction, because

0

e supposed A to be optimal, therefore, the no-backtracking policy is optimal. [
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4.4 First upper bound on V*

To create an upper on V* we first identify a subset G[g(1), g(2), g(3),...]< N
of points such that the longitudinal distance between any pair of them is as small as
possible but at least W. By Proposition 1 we know that the optimal routing policy to @
serve the subset G is given by a no-backtracking sequence. We then assume that al C)
the points ieN, but i¢G, will be served as well, but that no additional
deviations are required to reach them. This is a subproblem P' (with iQralue

p'*) of the original problem P. We know by c n that pg Qbecause in

computing the total distance traveled @@a igne@w of the vertical

jons of thQath needed to attain p*.

Therefore, this policy guarante%\uality of theQroblem P', without assuring

feasibility of P, and represe@vwer bou&
(thus, an upper boun ; 0
ARG
To con@ e subs@ e set N, we can use the following algorithm:
Q™ .o
why QN
O I. g(l)&ﬁrst point on the far left of the corridor

® 2. @ s the longitudinally closest point to the right of g(i) after a “jump” of

0 units of length to the right of g(i); withi =1, 2, 3,...
Q O 3. Repeat step 2 until there are no more points

deviations and possible backtracking

e total minimum distance traveled
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As an example, referring to Figure 6, we first include 1+ in the subset G; then, from
its horizontal coordinate x;+ we move W units of length to its right and we include in
G the longitudinally closest point to the right of the location x;++W (point 4+); and

we proceed in this fashion including in G points 6+, 6-, etc..., until the end. @

A

02 l-o
14
5
W Q W () o
N_/

© 3+

e 2+

<J
°  Pick-ups (+) o D.QQ
Figure 6 — subset G: longi%a ance ot&t w among points.

We know from E u@iZ) that @cted lateral distance driven by the

vehicle while movin n any p, Qints is given by E(ly) = W/3. Equation
(4.3) provides @&pected ti :

along 1 Q 6

LN @e expec dmal distance E(ly) between two consecutive points in

ubset C&en by
\ 1

0 J=Wr—— (4.10)
Yo
QO

W/3v spent by the vehicle while moving
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where W is the minimum step and 1/pW is the expected longitudinal distance to be
traveled in order to find the next closest point on the right. This occurs because with
uniformly, independently and randomly scattered points on the corridor, the

positions along the side of the strip at which points lie form (locally) a Poisson @

process with rate pW. Thus, the expected number of points E(ng) in G is given by 0()

O

E(ng)= Ll - _pWL K 4.11)

2
Wi 1+pW
pW Q

We note that higher values of ng wo@d to smal&gaps between p'* and p*,
because of the smaller number %XS (and lateraQiations) ignored. Thus, the

bound is tighter for narro@rridors @ W) and sparser demand density
(lower p). 60 0
The ex gvalue f \ t;; time t' spent by the vehicle while moving

along th idor, 1ncl¢1d stop time b to serve each point in N and the time

sxr%rlng lonly, is given by
*0 ®E Lt 2
0’\' (g JE:, )+~ +pWLb = V{1+prv+W 4.12)
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Finally, the upper bound V" on V* would be given by LxE(1/t") which does not have

a closed form solution, but it is very well approximated by L/E(t') and therefore

given by

Again, we can verify the good estimate of \@e

looking at the following Table 2. The @ ues

(30 replications; 5,000 stops uniformlySdistcibuted; W (5 miles; v =30 miles/hour

and b = 30 seconds). %\ O

jitation (4.13) | Simulation

25.17 25.18
16.57 16.57
S % 10| 12.06 12.06

50 3.97 3.97
O 100 2.17 2.17
0\' é ;or V!, V" is inversely proportional to W, b and p; with p=0, V' =v.
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4.5 Second upper bound on V*

To produce the second upper bound we again remove constraints from
problem P. The Hamiltonian path among all the points requires exactly one
incoming arc and one outgoing arc at each node of the network so that all the points @
are connected to complete the tour. We remove the first assumption allowi@()
unlimited incoming arcs at any node, but we still require exactly one outgoil@
from each node. In addition, we remove the customer precedence cons @Thls

is another subproblem P” (with optimal value p’ :* original Q P. p"*is

given by the summation over all the stops any stop to its

closest neighbor. In other words, we ing that each stop the vehicle has

to travel at least to its closest nei \the sum ove tops produces p"*, which is

a lower bound on p* and WIQerefore y@n upper bound on V*.

We know t rrnly an: ly scattered points follow a spatial
u

Poisson dlstrlb®8pec1ﬁca

P01sson m Varlab]e a str1but10n is given by

'O
OK Pl(A ]Q"A)qepA q=0,1,2,3,... (4.14)

Oith expected value equal to pA.
Let D be the random variable indicating the distance of the closest neighbor

: from any stop ieN. We can say that

mber of points I'(A) within the area A is a
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F(d)=Pr(D>d)=Pr[[(A(d))=0]= ™ (4.15)

where A(d) is the area around i within rectilinear distance d falling in the corridor.

We want to calculate the expected value E(D). For the purpose of this @
analysis we assume the limiting case where L/W —>x, ignoring the effect on tlwo()
calculation given by the left and right ends of the corridor. 6

Let y be the distance of a random stop ieN from the nearest

corridor, which we suppose to be the botto @mhout Q generality.

Depending on d we can have three dlfferenl®

@ d) as shown in
Figure 7.

N

Figure 7 — A depending on d
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Case 1. A(d)=2d” 0<d<y (4.16)
Case2. A(d)=2d*—(d—-y) =d*-y*+2dy y<d<W-y (4.17)

_ 2 _ 2 _ 2:
Case 3. A@)=2d"=(d=y) -(d+y-W)

d>W-y (4.18)
=W(2d +2y-W)-2y’

>

E(D()= [ F(d)dd = [¢ ™ dd @ @Q (4.19)
BRGNS
Averaging over all values etween 0 an@ we finally obtain

\@
%.

The expected value of D depending on y is given by

(4.20)

*

te that tl X for W/2 <y <W is symmetrically the same.

&1 20Y does not have a closed form solution, but we can examine

enarios, depending on the value of the parameter W\/_ that is an

If W\/_ — oo we can approximate E(D) by considering only Case 1 and

® WO 11
0 of the effect of the edges of the strip on the calculation of E(D).

Q compute A(d) by Equation (4.16). For the majority of the points, the probability of
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finding the closest point in an area defined by Case 2 or Case 3 is negligible, either
because the edges are too far (large W) or because the density is very high.

Therefore,

<

E(D)zje‘z"dzdd=% %z@ 4.21) 0

O

If W\/_ — 0 we can approximate E(D) n51der1ng e 3 and
compute A(d) by Equation (4.18). For the of t probablhty of
finding the closest point in an area de Case 1 2 is negligible, either

Kyre we obtain

because W is very small or the de ?\s very low. ‘
o Qr

2y ] (4.22)

that aéo conpon \%ected distance of the closest point (in either direction)

_din&{(}na ¢ with all the points uniformly distributed along a line with

\N
\\Q()Aear Y
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We performed a numerical integration on Equations (4.19) and (4.20) with
W =1 for different values of p. The results are shown in the following Figure 8
along with the figures computed by simulations performed with L>>W, in

dimensionless form.

EDWp

1.5 1
1.2 1
0.9 1
0.6 1

0.3 1

0

,@

E(D){\ ation and asymptotic limits
‘Qytlcal” e\%e values computed by numerical integration; “Limit

%@imit
O

” re Equation (4.21) and (4.22) respectively. The chart shows

s the “Analytical” curve, confirming that assuming L/W -0 instead of

Q >> W did not affect the results even for lower values of p.
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OK & V*? (miles/hour)

N

Q 50 3.49 3.49
100 1.90 1.90

Y

The expected value of the time t” spent by the vehicle is given by

E(t")= pWL[b + E(D)} (4.23)

Finally, we have that the upper bound on V* is given by LxE(1/t"), Very§0

approximated by L/E(t"). Therefore the second upper bound V** on V* is g

Et") ) pW[bV‘;- E(D Q*Q‘ (4.24)
O g

As before, we can verify the g@mate of Vuzgided by Equation (4.24) by
| Q &Values are obtained as for Table 1

looking at the following 6 3. The %
(30 replications; {(@ps umf buted; W = 0.5 miles; v = 30 miles/hour

and b = 30 gec 5\&\
W

\
E; 3 — V" values: analytical vs. simulation

VuZ

1

p | Equation (4.24) | Simulation
1 42.53 42.49

5 20.29 20.30
10 12.65 12.64
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As for V! and V*, V2 is inversely proportional to W, b and p. With p— 0 or
p — 0, by applying Equation (4.21) and (4.22), the asymptotic values of V** are

given by

limV* = M . 0
e pWhv+0.63W4/p é%

imV*¥ =2v 26)
p—0 * K
4.6 Approximate value for V* Q Q~

We know by Beardwood e\(1959) and J@ 988) that the length T of

the optimal TSP tour for re Q etric vi M points distributed randomly in
d

by the Xmg formula:

‘Q
@1\7 K (4.27)
Q@ \.

K%u&de tter approximations with large values of M.

a region of area A is ap

e of this result for our case, we assume that the MAST vehicle is

0® rivin a long corridor that is shaped as a loop, having the starting and ending
E Q e ring-shaped service area A by

Qhec oints of the vehicle coincide. Since we assumed L >> W, we can approximate
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A=LW (4.28)

and estimate the optimal length of the tour by Equation (4.27) for different values of

M given by @

M =pA =pWL O
\

R

Q.

Since the total time t, spent to complete a loop is gi*
t, LV :LW\/E(E+@)
v v

(4.30)

(4.31)

&h has t\&e form as the asymptotic value of V" for p going to infinity, given
® by E u.25), with 0.97 replacing 0.63. As for V', V¥ and V*%, V* is inversely
&f;l%

pr

al to W, b and p. However, V* goes to infinity when p goes to zero,

Onﬁrming that Equation (4.31) does not provide good estimates for low p.

Y
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We need to emphasize that V* is neither an upper nor a lower bound of V*

and it does not consider the customer precedence constraints.

4.7 Insertion heuristic simulation value for V* @

In addition to the bounds and the approximation formula, we computz QC)

representing the longitudinal velocity obtained by simulation for different :
e the

p, while implementing a simple insertion heurlst*dgorlthm to

uniformly distributed demand. Insertion algori engrally pr ood feasible
solutions, but they do not guarantee her e resultlng curve
represents a lower bound for V* @s w t since &ES not have a closed form
solution it can not be qulckly co like V ent scenarios.

4.8 Viability K% QQ

‘Q able to % ower bound V', the upper bounds V* and V*2, the
c

ag)r mate value ively using Equations (4.5), (4.13), (4.24) and (4.31),

QV fromghe inseffon heuristic to analyze the results. The curves are drawn

QQﬂlzmic speed v =30 miles/hour and a service time b =30 sec for each
A\ W\ | | o

yze two different cases, with W =1 (see Figure 9), consistent with the
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V (miles/hour)
— — —_— — —
(@)} [o3] [« [\ ) I (@)Y o0
| | | | | |

[\
(=]

1 3 5 7 9 11 13 15 17 19 21 23 25 27
p (points/miles2)

Figure 10 — Longitudinal velocity (V) vs. demand density (p); W = 0.5
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We note that in both charts V' and V" converge for lower values of p (as
expected since they are both equal to v for p =0), while V" goes to 2v. V*?is a
tighter bound than V" for higher p and this is more evident for the case with W = 1.
The gap between V! and V¥/V*? does not diverge significantly with increasing p @
maintaining a reasonably narrow range. The approximate value V* falls in th
middle of this range, except for smaller p, because Equation (4.31) is no 10
good estimate for low demand density. The insertion heuristic curve \{thtle
above V'; the gap between them slightly i1 Awnh P, é@g that the
improvement provided by the insertion ?ﬂth no-backtracking
policy is more evident for denser dem is gap i maller for W =0.5, because

the narrower corridor guarantee% solutions fro e no-backtracking policy (in

accordance with Propositio.@ \@

Even thoug ser% designed to provide a comfortable

23
door-to-door s customer@ probably perceive the service as being too
slow if 1001ty alapg Xmary direction would fall below a threshold value.

toara \k of the timetables of various fixed-route bus lines in the

QaAngele&ty, regular fixed-route buses generally achieve an overall average

® velocit their routes of about 15 miles per hour, depending on the number of

v O\lck as 20 miles/hour for interurban fast lines and they can go as slow as 10

Q miles/hour for downtown services). We assume that MAST customers would be

d in the route and the number of customers to be served (they can go as

willing to sacrifice some of this velocity for the convenience of being picked up and
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dropped off at their desired locations. This might be true for NPND, NPD and PND
types of customers (as defined in Chapter 3), but MAST systems are designed serve
also the “regular” PD customers that rely only on already scheduled checkpoints for
both their service points and that clearly would not welcome any reduction on the
velocity of the service, since they do not require any deviations from the route.

As an example, we assume the minimum acceptable V of a MAST syst
be 10 miles/hour, 33% less than that of average fixed-route buses; we uo that
below this level the demand would radically dro%use it is tQ&a

o

venient.

From the charts we note that the demand dengi ponding to

can b
this value is in the range of p=4@omers/m1l (Wgen W =1 mile) and

p=10-14 customers/mile’ (whe 0.5 miles), ng to the values provided
@e

by the bounds. Recall that nts t& y of the stops served only by the
left-right vehicle, W% sponds a t e density of all customers served by
both vehicles o &r (the t vehicle and the left-right one). Therefore,

the syst oul@be able % at least 4 customers every mile of the corridor
.

((h%z I mile @ cast 10x0.5 =5 customers every mile of the corridor (when

& 0.5 milg§), not Considering “regular” PD customers being picked up and
QQoppethe checkpoints. The existing MAST line 646 currently serves a very
\ | ighttime demand of about p = 1 customers/miles; the width of the service area
QW = 1 mile that allows the system to properly serve all the customers, maintaining

relatively high longitudinal velocity of almost 20 miles/hour. Heavier demands

: would require either to lower the longitudinal velocity maintaining the same size of
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the service area or to narrow the width of the strip keeping the same longitudinal
velocity or to add more vehicles thereby reducing the cycle length.
While designing a MAST system a planner can make use of the information

provided in Figure 9 and Figure 10 to schedule the time difference between

checkpoints in order to set the velocity of the service and therefore establish the 0

maximum slack time allowed for deviations. In areas where most customers

the PD type and would use the service as a regular fixed-route line b . the

checkpoints and only a small portion of the uld take a of the
door-to-door characteristic, the demand wo ncrease for
higher values of V and it might be mofe co en1ent (a pa01ty constraints) to
design the MAST system assignin larger amou ster vehicles to the line,

S¥
@®
" \\
RS
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5 Static operating scenario: schedule optimization

In this chapter we look at the problem of scheduling MAST services in static
scenarios, where all the demand is supposed to be known in advance. We provide a
mathematical formulation of the problem as a mixed integer linear program and we 0@
aim to optimize it by finding the best schedule. Since the problem is NP-Har: 0
develop a set of valid inequalities to be added to the formulation in order tQu e

the lower optimality bound and speed up the search thmahty

5.1 Formulation < , 2

The system considered ¢ of a smgle e, initially associated with a
predefined schedule along @ute of C checkpoints identified by
c=1,2,.,C;twoo e termma ed at the extremities of the route (¢ = 1
and ¢ =C) and &m mning { ediate checkpoints are distributed along the
route. is m0V1 and forth between 1 and C. A ride r is defined as
a {0 n of the s Xglnnlng at one of the terminals and ending at the other

&after visjging all th€ intermediate checkpoints; the vehicle’s schedule consists of

Q rides the end-terminal of a ride » corresponds to the start-terminal of the
0\ ride r+1, the total number of stops at the checkpoints is TC = (C-1)xR+1.
1,..., TC and their scheduled departure times are assumed to be constraints on the

: system which can not be violated.

Qence, the initial schedule’s array is represented by an ordered sequence of stops
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The service area is represented by a rectangular region defined by LxW,
where L (on the x axis) is the distance between terminals 1 and C and W/2 (on the y

axis) is the maximum allowable deviation from the main route in either side (see

Figure 11).
y
W72
1 2 3
[ i i
W2| €« __
!

O -
o ;i}@s

Each checl@ls sched e visited by the vehicle R times. The stop

indexes s, @ymg thex&&e schedule (stop index s of the " occurrence of

checkpom in the s @e computed by the following sequence:

’& @ Y1)y €D+ED [(2C—1)—2(c—1)]} r=1,.,R (5.1
E O Note that for terminal checkpoints ¢ = 1 and ¢ = C the ending checkpoint of a

Q ride » coincides with the starting checkpoint of the following ride »+1. For example:
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with C=5, R=4 and r=1, 2, 3, 4, checkpoint ¢ =2 will have 5,(2) =2, 8, 10, 16;
while terminal checkpoint ¢ = 5 will have s,(5) =5, 5, 13, 13.
While checkpoints are identified by s = 1,..., TC, non-checkpoint customer
requests (NP or ND) are identified by s =TC+1,..., TS where TS represents the @
current total number of stops. The problem is to minimize a properly defined
objective function by finding the optimal sequence of stops identified by the i

index o(s), s=1,..., TS, representing the position of any stop s in t .cle s

schedule, with a(1)=1 and «TC)=TS bein Q%ctlvely th@t and last

checkpoints of the service.

To simplify the problem we ass@ capac1ty int and a deterministic

environment, with one customer quest

We define the follov@ tion f@tem

Q = number

RD \} = set of rides
\
K O&n er of checkpoints
QO TC
\ schedule

v O e No={l,..., TC} = set of stops at the checkpoints
Q e tdc;, VieNj = departure times from checkpoints [tdc; = 0]

e pd =number of PD requests

= (C-1)xR+1 = total number of stops at the checkpoints in the
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e pnd = number of PND requests
e npd = number of NPD requests

e npnd = number of NPND requests

e PD={l,..., pd} = set of PD requests @
e PND = {pd+1,..., pd+pnd} = set of PND requests 0

e NPD = {pd+pnd+1,..., pd+pnd+npd} = set of NPD requests 60

e NPND = {pd+pnd+npd+1,..., pd+pnd+npd+npnd} = e( ND

requests

HYB = PND U NPD = set of Qques%g NPD types)
sts

K=PDUHYBUNP ofallre

T, VhkeK = ready%\)f requests O
TS = TC+E:@+2annd\@number of stops

o

o

o

o

° on-checkpoint stops

o Vze@ondlng request of each non-checkpoint stop
Q N =Np Q@ t of all stops

e (; J,@ = rectilinear distance between i and j

O o VieN/{1} = service time for boardings and disembarkments at
FO-

O PD customers are guaranteed to be served at their chosen service checkpoints
Q identified by their index seNj, since we assume no capacity constraint on the
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vehicle. NPND customers have their own stops placed somewhere in the schedule
and identified by their index seN,. Hybrid customers (PND and NPD) instead do
not have a priori a uniquely identified stop for their checkpoint service point. In fact,
they will be served at one of the occurrences of their chosen checkpoint (either a P or
a D) identified by Equation (5.1), depending on where their non-checkpoint stop,
(either a ND or a NP) is positioned in the schedule. For example, consider a Q

system with C =5 and R =4 and assume that a NPD request would like ked

up at its NP stop (s*) as soon as possible and drop ff at the ch? c=4in

the first ride » =1 identified by s;(4) = 4, fr t10n :2 1d occur that,

because of lack of slack time due to other re uests the )P st@p s* can not be placed

in the schedule before s,(4) = 4, t a(s*) > a( s a result the customer will
ers

have to be dropped off at ucc s currence of ¢ =4 in the schedule

(s(4)=6, 12, 14, for ; 4) A s@example could be developed for PND

customers.

e can fi wntlfy the following:
u(k)e ;, VkeK m PND = pick-up of all requests except PND

do(k)eN, VkeK m NPD = drop-off of all requests except NPD

o PU(kr)eNy, VkePND, VreRD = set of possible pick-up checkpoints

v O for each PND request, obtainable from the sequence si(c) in Equation

(5.1), where ¢ < C represents their pick-up checkpoint.
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o DO(kr)eNy, VkeNPD, VreRD = set of possible drop-off
checkpoints for each NPD customer, obtainable from the sequence

si(c) in Equation (5.1), where ¢ <C represents their drop-off

checkpoint. @
We also note that not all the occurrences of a checkpoint ¢ are fe@g

candidates to be selected as P or D checkpoint of a hybrid request, (.g on

their ready times t;. Therefore, we define the follo&

e HYBR(kK) < RD, Vke@set of fe le ries (depending on Tty)

for each hybrid t to be p1 p or dropped-off at their

checkpomt

Vke R(k: inc 11 reRD s.t.: 74 < tdc;, ViePU(k,r)
D HYB des all reRD s.t.:

Q + d, /v +b; < tdc;, VjeDO(k,r), with i = pu(k)

\
é The&m is represented by a network and the sets of arcs are defined as
® followsO

54



e Ay = arcs in Ny, including only arcs (i,i+1), with i=1,..., TC-1,
because the checkpoints are already ordered sequentially in the
schedule.

e A, =arcs in N,, including all arcs (i), Vi,jeN,, with i #j. @

e Apn = arcs from Ny to N,, including all arcs (i,j), VieNy/ {TC}OC)

VjeN. 6

e Ano=arcs from N, to Ny, including all arcs (i,j), VieN,, K 1}.

e A=A)UALUAU A p=seto @Q
The variables of the system &owing: \ !

e x;=1{0,1 iJNeA = bi@ables indicating if an arc (i,j) is
used (%Q)t no@

2

. N/{1} = (Rq
Q td;, VieN \:@xure time from stop i.
\ 6 . zk,r, VkeHYB, VreHYBR(k) = binary variable indicating

O &:ther customer k is picked-up (kePND) or dropped-off (ke NPD)
® in ride 7 (in this case z;, = 1, otherwise zx, = 0).
‘ 0 e TDy;, VkePND = departure time of customer &.

O e TA, VkeNPD = arrival time of customer £.
Q e it;, VieN/{1} = idle time spent at node i.

me at stop i.
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We note that once a feasible solution of the problem is found the indexes

a(i), VieN are trivially determined either by the x, the ¢d or the fa variables.

Finally, we propose the following mixed integer linear programming

formulation for the MAST system, where ®;, ®; and w3 are weights:

Zdl}xl}

l]EA

min o,

J/

Z(tado(k)

keKNHYB

Sy

keKNPND

RS

£

kePND

subject to:

dox, =1

/<3

é > tapok,r) — M(1-zx,)

TA; < tapow,rn + M(I-Zk,,»)

tdpu(k) > Tk

o

TA, —tq (5.2)
Z @

@N/; (5.3)
VieN/{TC} (5.4)
VieN (5.5)
VkeHYB (5.6)
VkePND, Vre HYBR(k) (5.7)
VkePND, VreHYBR(k) (5.8)
VkeNPD, VreHYBR(k) (5.9)
Vk € NPD, Vr € HYBR(k)  (5.10)
VkeK m PND (5.11)
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IDy = v VkePND (5.12)

Lado(k) =~ tdpu(k) YkeNPND (5 1 3)
tadok) > TD; YkePND (5 14)
TA > tdpyp) VkeNPD (5.15) @

taj > tdi+xi,jdi,j/V—M(1—xi,j) V(l,_])GA (51%0
td; = ta; + b; + it; VieN/{1} @

it;>0 VieN/{l} K 18)
Sx,(d, /vb)+ Zit,tdcTCtdcé @Q (5.19)

(i,/)eA ieN/{1}

The objective function (S.Ninimizes the@&ed sum of three different

factors, namely the total mu en b& hicle, the total ride time of all

customers and the total n:g time o@

between the readysfimes#d pick @ This definition allows optimizing in terms

of both Qh@rariable c& st term) and the service level (the last two terms);
.

difying wel N ngly we can emphasize one factor over the others as

tomers, defined as the time interval

mo
\
Qie .

O rk @enstraints (5.3) and (5.4) allow each stop (except node 1 and TC)

® to haEDy one incoming arc and one outgoing arc equal to 1, so that all stops

VO will Bg visited once.
O Constraint (5.5) forces the departure times from the checkpoint to be fixed,
Q since they are prescheduled like in a fixed-route line.

57



Constraints (5.6) allow exactly one z variable to be equal to 1 for each hybrid
customer, meaning that a unique ride will be chosen for their pick-up or drop-off
checkpoint.

Constraints (5.7) and (5.8) fix the value of the 7D variables for each customer
kePND depending on the chosen z variable. Constraints (5.9) and (5.10) do the C)

same for NPD requests. M represents a number large enough to cause the cons@g

to become irrelevant when z;,=0. An M= tdcTC-td01 is big enough t this

purpose.

Constraints (5.11) and (5.12) preven@Q)artu@@eac customer

from being earlier than its ready time.

Equations (5.13), (5.14) QEN 15) are the@e ence constraints for each

request. Pick-up must be sc efore th sponding drop-off.

Constraint (5.16 e key co tra t 1 the formulation. It defines that for

eachx;; =1 the a fine at j ’1@ no less than the departure time from i plus

& tdcre-tde, Q ough to be effective) assures that for any x;; =0 the
str nts &e ifyglevant. This constraint also guarantees that every feasible
Q lutlo ot'®ontain inner loops, but a single path from node 1 to node TC.

?9 o
QO Constraint (5.19) is a balance equation and prevents the system from finding

ravel be and j. The last term with the M (also in this case

aint (5.17) links together arrival time, departure time and idle time for

ch'$top 7 in the network. Constraint (5.18) ensures no negative idle times.

unrealistic solutions having idle time in between stops and not only at stops.
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The following constraint can also be added to the formulation, in case we

would like to allow idling only at the checkpoints:

it;i=0 YieN, (5.20) @

The problem is a special case of the Pick-up and Delivery Problem (PD 0

is known to be NP-Hard and unsolvable in reasonable time for lugh

instances. Q* @Q

5.2 Elimination of infeasible arcs Q
In order to reduce the si@t\\e proble E Qn exclude from the network

several infeasible arcs a efore ma x variables from the formulation.

Specifically we ca@ne the s An, Aon, Anp as follows:
; A, = a&\@n, including all arcs (i), VijeN,, with i#; and
O .

e following infeasible arcs:
O a. arcs (i) s.t. i = do(k) and j = pu(k), VAeNPND

’\.\Q %O b. arcs (i) st

(dirHdiHdj e )V + (brtbtbger) > tdege-tdey, VkeNy/ {TC}.

E O These arcs are infeasible because the vehicle does not have

Q sufficient time to go from checkpoint & to i to j to checkpoint

59



k+1, for any pair of consecutive checkpoints k and k+1. This
is not acceptable, since the vehicle must pass by all
checkpoints k€N and has to meet the departure deadline tdc;.

c. arcs (i,j) with ke NPD = cs(j) or cs(i) and & = DO(k,R) be the @

last possible drop-off checkpoint in the schedule for «. Arcg()
(i,j) are infeasible if the vehicle would not be able to ar@

h in time to meet the departure time tdcy, because hlgh

ready times 1. Formally a% is 1nfeas1 one of the
following five condltln® 1ﬁedQ~
cs(i) = keNPD, O(k R) and \
?&y n)/v+ (b; +l©dch
cs() QPD, ] pu(cs(y)) and
O (>

6 Tes(j) % ) > tdcy,
L g
écs(i) = \ =DO(k,R), j = do(cs(j)) and

\ 6 @ keNPD, h = DO(k,R), i = pu(cs(i)) and
O & Tes(i) + (di,j'f‘dj,h)/V + (bj+bh) > tdCh

® cs(j) = keNPD, h = DO(k,R), i = do(cs(i)) and
?9 i Tesi) T (dpuesiy,itdijtd;n)/v + (btb+b,) > tdey,
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e Apn=arcs from Ny to Ny, including all arcs (i,j), VieNy/{TC}, VjeN,

and excluding the following infeasible arcs:

a.

b.

arcs (l,]) S.t. (dl’,j"‘dj,iﬂ)/V + (bj+bi+1) > tdCi+1—tdCi,
VieNy/{TC}.

These arcs are infeasible because the vehicle does not ha@()

sufficient time to go from checkpoint i to j to checkpoil@

for any pair of consecutive checkpoints 7 and i+1. 1@ not

acceptable, since the VehICl st pass by heckpomts

ieNp and has to meet t@ %
arcs (i,j) s.t. CS([@ND, i< T(rk N i11/v + b > tde.

These arc%nfeasible be@ they would not allow the
Vehicoeach cha@ﬂ on time for its departure time

éarcs (ij)s &kePND T > tdc; or PU(k,1) > .

re infeasible because the earliest possible pick-up

\Jomt for k is later in the schedule compared to i. The

\
é & ehicle leaving i must pass by the checkpoint pick-up of &

N o
o
QO

before going to ;.

arcs (i,)) s.t. cs(j) = keNPD, i > DO(k,R).

These arcs are infeasible because i must be earlier in the
schedule compared to DO(k,R), the last possible drop-off

checkpoint for £, in order to allow the vehicle to go from i to .
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e. arcs (i) s.t.i=1,j=do(k) and ke NPND.
These arcs are infeasible because the vehicle needs to pass by
pu(k) first.
f. arcs (i) s.t. j = do(k), keNPND, t; + dpuw), /v + b; > tdc;. @

These arcs are infeasible because t; does not allow the Vehidéc)

to go from pu(k) to i on time for its departure time tdc; @

must be scheduled before j = do(k)). O
e A, =arcs from N, to No, in gll ar@@%, VjeNy/{1}
and excluding the follo easible a

Wtdij)/v+ (b @ tde;—tdc;.;, VjeNo/{1}.

Thes@ are 1nfe@cause the vehicle would not be
%Qne wise Qom checkpoint j-1 to i to checkpoint j,

éfor any pad nsecutive checkpoints j-1 and j. This is not

Q age since the vehicle must pass by all checkpoints

\and has to meet the departure deadline tdc;.

\
é b. arcs (i) s.t. cs(i) = kgPND, 1, + d; /v + b; > tdc;.

® O These arcs are infeasible because they would not allow the

vehicle to reach checkpoint j on time for its departure time

O tde.
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arcs (i) s.t. i = do(k), keNPND, 1, + (dpuw,itdij)/v + (bitby) >
tde.
These arcs are infeasible because t; does not allow the vehicle

to go from pu(k) to i to j on time for its departure time (pu(k) @

must be before i = do(k)). 0()
d. arcs (i) s.t. cs(i) = ke PND, 14 > tdc;; or PU(k,1) >. 6
These arcs are infeasible because the earliest possi k-up

checkpoint for £ is later (or in the schempared to

arcs (i,)) s.t. cs(z@PD j>

These arc nfea51ble be@: j is later in the schedule

comp@ he last& drop-off checkpoint for .
)st ; Tqu(k) keNPND.

@ These arc@ casible because the vehicle needs to pass by

X
32 &

Ag U Ap U Apn U Ay = set of all arcs
‘ 0 S. alid inequalities
O The purpose of this section is to identify valid inequalities linking together

Q some of the variables of the MAST system formulation in order to reduce the
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feasible region identified by constraints from (5.3) to (5.20) and possibly speed up

the search for the optimal solution of the problem. The challenge is to make sure

that these new constraints will only remove feasible but not optimal solutions from

the problem. @

In order to develop some of the inequalities we assume ®, > w3, giving a 0

higher weight to the travel time term vs. the waiting time term in the obj Q
function (5.2). This means that we assume that customers would rather w, thelr
pick-up instead of spending time onboard the vehi This is gen got true if

customers do not know the schedule and Qdom buses at their

pick-up locations; in fact, they would oba rather sp nd thg time onboard instead

of waiting at their pick-up sto \mally whe bad weather conditions
a a l\&‘ stem provides a door-to-door
reserva n prescheduled departure times from

eb
checkpoints. % ustom e@v in advance the expected departure times

and/or unsafe areas.

transportation servic

from thea ocatlon i a P or a NP) and in this case this assumption is

e €aso customers, given that the arrival time at destination is

Qon prefer to have their scheduled pick-up times as late as

51b1 the ride shorter and consequently the wait longer. This is
partic e for NPD and NPND customers that would spend their waiting time

dth NP stop (home or office or other convenient locations) and not at an outdoor
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The underlying concept behind all the inequalities developed in this section is
that hybrid customers will be choosing their P or D checkpoints as close as possible
to their ND or NP stop, once these are placed in the schedule. In fact NPD
customers will disembark the vehicle as early as possible after being picked up to @
minimize their ride time. A PND request will instead board the vehicle as late as C)
possible to minimize their ride time and consequently maximize their waiting

since we assume ®, > 3. More formally we can develop and prove t ' ing

propositions. * Q
Proposition 2. If @, > w3, a cess condztz@or%tzmahty is that PND

customers must board the vehzcl e last occur@ f their P checkpoint prior

to their scheduled ND a’rop—

Proof. ahat int Qal solution we have a(PU(k,r*)) < a(do(k))

< a(PU 1)) and that U(k,o), with 7°<r* for a request kePND. The
OQG functlo \1 be written as Z = A + @ (tasom-TDi) + ©3(TDr-71),

re A inclfdes all the terms in Z except the ride time and the waiting time terms of

® s TDk e equal to tdpukr2), tdpUkro+1),- - -» Idpukr+, depending on z, indicating

occurrence of the pick-up checkpoint the customer boards the vehicle.

v Oéarrangmg the terms we have Z = A + oxtagon) - @31k + TDi(3-02). Since tdpy, )

Q < tdpugerorny <...< tdpugr, ©3-m2 <0 by assumption and Z is optimal, 7D, must be
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the largest possible, thus equal to tdpy,+. This means that PND customers get
onboard at the last occurrence of their pick-up checkpoint preceding their do(k),

minimizing their ride time. [

Proposition 3. A4 necessary condition for optimality is that NPD customers,
must disembark the vehicle at the first occurrence of their D checkpoint foll

their scheduled NP pick-up stop.

Proof. Suppose that in the opt1 %@D (kr*-1)) <
a(pu(k)) < ADO(k,r*)) for a request NP The objectivedunction value can be

written as Z = A + a)z(TAk-tdpu(k e A mcludes € terms in Z except the ride

time term of k. TA, cou d to taD O(kr*+1), ., tapo(kr), depending on

z, indicating at W% currence @e drop-off checkpoint the customer
disembarks th@e Since t{ < tapok,++1) <...< tapowr) and Z is optimal,

T4, mu the smallgst%&e, thus equal to fapo,+. This means that NPD

c&t@s disem ﬁrst occurrence of their drop-off checkpoint following

r pU(k)

now able to develop three different groups of valid inequalities

in the following sections.
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5.3.1 Group #1

The first group of valid inequalities includes constraints linking the z
variables to the td variables (departure times) of non-checkpoint stops of hybrid

customers and constraints linking the z variables to some of the x variables. @

For a PND request a valid set of inequalities is represented by 0()

tddo(k) < Zk,,tde + M(I-Zk,r), 21)

with j = PU(k,7+1), VkePND, Vre HYBR Q

Because of Proposition 2 these@htles for the KD stop of each PND

request to be scheduled before t occurrence schedule of the checkpoint
chosen as pick-up. If z, :Q ND ¢ @s picked up at his/her checkpoint
PU(k,7) in ride r and tralnt at the do(k) has to be scheduled before
PU(k,r+1) by an upper Qﬂ the departure time tdgor). If zx, =0 the

constraiomes 1rreLeV@&use of the M.
\

mmetric@ D requests a valid inequality is represented by
’&QO '&zk,tdc, M(1-z1.,), (5.22)

0 ith i = DO(k,-1), VkeNPD, Vre HYBR(%)/ {1}

Q Because of Proposition 3, these inequalities force the NP stop of each NPD
request to be scheduled after the previous occurrence in the schedule of the
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checkpoint chosen as drop-off. If z;, = 1 the NPD customer is dropped off at his/her
checkpoint DO(%,7) in ride » and the constraint imposes that the pu(k) has to be

scheduled after DO(k,7-1) by setting a lower bound on the departure time tdpux). If

z.» = 0 the constraint becomes irrelevant because of the M. @
We can also include the following inequalities for PND requests: 0()
Xdo(k))j < Zkrs 23)

VkePND, VreHYBR(k)/{R}, V(do(k),j)eAA PU(k,r) < Q%( r+1)
By Proposition 2, do(k) must b@uled in beﬁenEU(k r) and PU(k,r+1)

and all arcs originating from and ending checkpoint j can not exist
whenever j is not includedfin intery; @se arcs would in fact unfeasibly
require the vehicle t m do(k) t eckpomt scheduled before its pick-up

PU(k,r) or to % ﬂ ctly from do(k) to a checkpoint scheduled
):

after P
Sll’nl rly v@

Q @ zk M (5.24)
0\ ePND, VreHYBR(k)/{R}, V(i,do(k))eAon s.t. PU(k,r) < i <PU(k,r+1)

Y
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All arcs originating from a checkpoint i and ending at do(k) are eliminated
whenever i is not included in the interval [PU(k,7), PU(k,7+1)) identified by z;, = 1.

Symmetrically for NPD requests we have that

Xiputk) < Zkrs (5.25)OC)

VkeNPD, VreHYBR(*)/ {1}, V(i,pu(k))€Aon s.t. DO(kr-1) < i < DO(ké
Xouthy < Zirs * Q (5.26)
VkeNPD, Vre HYBR(X)/ {1}, V(pu( s.t. Q&j < DOk F)

N
53.2 Group #2 ®\ O

A second group 1nequa HQ s z and x variables making use of the

ready times 1 of t}@ners 1INy 0 or PND customers we have that

Tes(i) 2 di;/v 4 % + M(2-zi X do(k)i)» (5.27)

K & €PND, VreHYBR(k)/{R}, V(do(k),i)e Ay, s.t. i = pu(cs(i))
0® by Proposition 2 do(k) must be scheduled in between PU(k,r) and

v dj (Kw+1), these constraints impose that any arc originating from the do(k) of a PND

stomer to any non-checkpoint pick-up i is not allowed if the vehicle would not be

Q able to reach checkpoint PU(k,7+1) on time by passing through i, because of too high
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Tes(i), €ven using the quickest way possible. The M causes these constraints to

become irrelevant if either zx . or xqo4),; are not equal to 1.
Similarly,

Tes(i) T (Apuces(in.dot o, +di)/ v + (baotbitby) < C)
Zk, rtde + M(2-z, =Xdo(k), s

j=PU(k,r+1), VkePND, VreHYBR(k)/{R}, V(do(k),i)e Ay, s.t. © ‘(1))

Any arc originating from the d(@Q % er k to any
non-checkpoint drop-off i is not allm@lhe Vehlc{ ab

pick-up point pu(cs(?)) to do(k) t checkpomt 1) on time, because of too

le to go from the

high 1., even using the q ay p l@l‘he M causes these constraints to

become irrelevant if %Q OF Xdo(k) @ equal to 1.
Similar @%unts can b@ged for arcs (i,do(k)) as follows:

o) T (diao \V + (bdo(etb))< zk tde; + M(2-2k -Xi do())s (5.29)
K J P&l) VkePND, VreHYBR(k)/{R}, V(i,do(k))€ A,, s.t. i = pu(cs(i))

O

i T (dpuces).itdidowytdaow))/V H(bitbaowytby) <

E O ztde; + M(2-zk ~Xi doh)) (5.30)

Q j=PU(k,r+1), VkePND, VreHYBR(k)/{R}, V(i,do(k))e Ay, s.t. i = do(cs(7))
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For NPD customers the four constraints above can be similarly developed:

Tes(i) T diJ/V + bj < Zk,rtde + M(2-zk,r-xpu(k),,-), (5.31)

j=DO(k,r), VkeNPD, VreHYBR(k), V(pu(k),i) € Ay, s.t. i = pu(cs(i)) @

Tes(i) + (dpuces.puttyTdpudi,iTdi)/V + (bpuytbith)) < 60
Zk,rtde + M(2-zk,r-xpu(k),,-), K 32)

j=DO(kr), VkeNPD, VreHYBR(K), V(g A, s.t. @ 0))

Test) + (dipuytdpu )V + () u(k)@k Ade; + Zkr “Xipu(h)); (5.33)

j=DO(kr), YkeNPD, Y R(K), Y (i,p An, s.t. i = pu(cs(i))

Tes(i) T (dpu {%pn(k)*%&@g“ bpuyth)) <

> M2 %( ). (5.34)
j =Q O(k,r), Vké reHYBR(k) V(i,pu(k)) €Ay, s.t. i = do(cs(i))
{
Gs 3 &
% d group of valid inequalities is represented by linking z and x variables
d pai®s of hybrid customers. The following relationships can be written:
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zpstde; - zg,tde; < M(3-z, 52k r~Xdo(k).do(h))» (5.35)

i = PU(h,s), j = PU(k,r+1), Yk, hePND, VreHYBR(k)/{R}, VseHYBR(h)

zp,stde; - z tde; < M(3-zj, -z X do(h).do(k))» (5.36)

i =PU(h,s), j = PU(k,+1), Vk,hePND, Vre HYBR(%)/{R}, VseHYBR(h)

zp,stdc; - zx, rtdCJ <M@3-zp -z, rXpu(k), pu(h))

37)
i = DO(h,s-1), j = DO(k,7), Vk,heNPD, Vrsﬁ%R(k) VSEEQ%{}/{I}
ztdc - Zkrtdcj<M(3-ZhS-Zerp0) 2 (5.38)

i=DO(h,s-1),j=DO(k, r% eNPD, Vre@R(k) VseHYBR(h)/{1}
zpstdc; - zx, ,td zh s=ZkrXpu (5.39)
i= PU(@& DO(k,r), & VhePND, VreHYBR(k), Vse HYBR(%)

'Zh,s'Zk,r‘xdo(h),pu(k)) (5.40)

O(k,r), YkeNPD, VhePND, VreHYBR(k), Vse HYBR(h)

tdc; - zx,tde; < M(3-z 52k r~Xdo(k).puh))» (5.41)

i=DO(h,s-1), j = PU(k,r+1),

VkePND, VheNPD, VreHYBR(k)/{R}, VseHYBR(h)/{1}
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zp,stde; - zg tde; < M(3-zp, 52k ~Xpu(h).do(k)) (5.42)
i = DO(hs-1), j = PU(kr+1),

VkePND, VheNPD, VreHYBR(k)/{R}, VseHYBR(h)/{1}

We know by Proposition 2 (3) that the non-checkpoint stop of a PND (NPD)
request must be included in the interval between the chosen pick-up (dro
checkpoint and its next (previous) occurrence in the schedule. The abov ints
say that given any pair of hybrid requests, the dlI‘ th connectl her their

non-checkpoint stops identified by the appr& vari lowed if the
d to

intervals where the non- checkpomt st suppose b&Nincluded in, identified

by the corresponding z variables : t overlap. F' ple in constraints (5.35) if
0

=1 and z,=1 we kng (h) K scheduled between PU(A4,s) and
d

PU(h,s+1); similarly d@-nust be

Therefore, the d1 t from do(h), identified by Xqow).don)» can not be

allowed € omt PU;% not scheduled earlier than PU(k,7+1) and the

between PU(k,») and PU(kr+1).

e the vehicle would have to pass by those checkpoints

1nter%do ot ov
not all &n t path that would skip them. The M causes these constraints

SE
v
e

t if either zj 5, zi » O Xqo(k).do(r) are equal to 0.
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5.3.4 Other valid inequalities

We note that it would be possible to develop several other valid inequalities
similar to the ones already described. Equations from (5.23) to (5.42) reduce the
feasible region by eliminating direct arcs from some stop i to some stop j, identified @
by x;;. Utilizing the same logic, we could forbid any path beginning at i, passi@()
through one or more other non-checkpoint stops and ending at ;. Howeveé

number of constraints added to the formulation would be too high, slowi { the

solution search instead of being effective. :*
5.4 Experimental results Q K

In this section we evalya effectlv®s 0; the inequalities defined above

cluding none, one or all of them in

ed utilizing CPLEX 9.0 with default

by solving different ins f the prob

the formulation. ( runs,a X\

settings i . z CPU V\@ M. We refer to Figure 11 for the geometry

of the MA{ system and the following Table 4 summarizes the assumed

S0
QC)
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Table 4 — System parameters, common to all cases

L 10 miles

W 1 mile

C 3

dst1 (s=1,..., TC-1)| 5 miles

\% 25 miles/hr
by (s=1,...,TS) |18sec

(O] / ([OV)) / 03 04/04/02

The above data are consistent with the real data of the MTA line 646 @

Angeles. @
We run two sets of experiments: in set A Ane a dif&etween the
scheduled departure times of two co C\@ céckp +-tdes, s=1,...,

TC-1) of 17.5 minutes; in set B we asstge minutesQea . As a result the slack
time is approximately 25% in s‘b\d 50% in se@since the direct time among
two consecutive checkpoint@ut 12.5 r&@

In each set w, er two di ubsets of runs. In subset A2 (and B2)
we assume lar®&nber of r" compared to subset Al (and Bl). In each

subset \Qume four,ca@x.., for subset Al: Ala, Alb, Alc and Ald) so that

g om the ¢ la) to the largest (A1d) case we have a 5 unit increase
e total &r of stops in the network (TS). We assume a different number of

® requesth type, as shown in the following Table 5. The NP and ND locations

a d from a spatial uniform distribution over the whole service area (WxL);

Q Oile the ready times are sampled from a uniform distribution starting from half an
Q hour before the beginning of the service to the end of it.
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Table 5 — System parameters specific to each case

Cases|Ala|Alb|Alc|Ald|A2a|A2b|A2¢c|A2d

Parameters Bla|Blb|Blc|Bld|B2a|B2b|B2c|B2d
R 2 4 4 4 6 6 6 6
TC 5 9 9 9 |13 |13 | 13| 13
PD 1 1 1 2 1 1 1 1
PND 2 2 5 6 1 3 5 8
NPD 1 2 4 6 1 2 5 7
NPND 1 1 1 2 0 1 1 1

TS 10 [ 1512025 ] 152025730 6
As aresult we have TS going from 10 to 25 foxbsets Al (an an; from

15 to 30 for subsets A2 (and B2).

We tried to maintain the ratio b 1 eren requests as close
as possible to the real data of 646 1 Angeles, which have a
distribution described in the foll able 6.

%Custo 1str1but10n of MTA line 646
P PND NPD NPND
A 40% 40% 10%
\ er lts@wn in the following tables. Each table includes four cases.

@ each we lve the problem with five different formulations: without adding

® 1nequalities (none), adding only one group at a time (#1, #2 or #3) or
VQ ad all the groups together (all). For each run we show the size of the problem

leed (after the presolve routine in CPLEX): total variables (var), divided into

Q binary (bin) and linear (lin) and total number of constraints (con). The following
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columns show the time to reach optimality in seconds (sec), the number of nodes

visited in the branch and bound tree (n), the number of simplex iterations performed

(1), the relaxed optimal value (rel) and the real optimum (opt). We stopped CPLEX

after a maximum solving time of 10 hours (36,000 seconds), recording the upper (ub) @
and lower (Ib) bounds and the gap reached at that time. The results for subset Al, O

A2, Bl and B2 are shown in Table 7, Table 8, Table 9 and Table 10 respectivelb
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Table 7 — CPLEX runs, subset Al

Case: Ala TS=10: R=2; PD=1; PND=2; NPD=1; NPND=1

cuts | var |bin [lin|con| sec n 1 rel | opt |ub|lb| gap @
none | 52| 29]23| 64| 0.03] 35| 156| 60.8| 84.9

#1 52| 29|23 67| 0.02| 21| 98| 60.9| 84.9
#2 521 29]23] 66| 0.01| 24| 118] 60.8| 84.9
#3 521 29(23] 66| 0.02] 24| 118 60.8| 84.9
all 521 29(23] 71| 0.03] 26| 185 60.9| 84.9

Case: Alb TS=15: R=4; PD=1; PND=2; NRD=2; NPND=

~ |~~~
~ |~~~

cuts | var | bin |lin|con| sec n | 10° 4T opt

none | 93| 58|35|/119| 0.10] 126 0. /
#1 92| 57[35/139] 0.08 0%.0. 0.7 Q1 /
#2 93| 58(35]137| 0.09 |§ 128¢1'22| 90.7|1 / 1/
#3 93| 58|35|131 13 1.55] 90%|117.2 /
all 92| 57|35]169 94| 1.06 [(O0y™117.2| / |/

; NPD=4; NPND=1

rel | opt |ub|lb| gap

142.91220.7| / | / [0.0%
142.9(220.7| / | / [0.0%
142.91220.7| / | / [0.0%
142.9(220.7| / | / [0.0%
142.91220.7| / | / [0.0%
NPD=6; NPND=2

rel | opt |ub|lb| gap
154.1(242.4| / |/ 0.0%
154.11242.4| / | / [0.0%
154.11242.4| / |/ 10.0%
154.1(242.4| / |/ [0.0%
154.11242.4| / | / 10.0%
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Table 8 — CPLEX runs, subset A2

Case: A2a TS=15: R=6; PD=1; PND=1; NPD=1; NPND=0

cuts | var|bin [lin| con | sec n 1 rel | opt | ub 1b

none | 65| 32|33 77| 0.01 1| 117 92.5| 97.6| / /

#1 65| 32|33] 100| 0.01 0| 102] 92.6| 97.6| / /

#2 65| 3233 83| 0.01 0| 89| 92.5| 97.6| / /

#3 65| 3233 99| 0.01 0 94| 92.5| 97.6| / / |

all 65| 32(33] 128 0.01] 0] 69| 92.6| 97.6] / /90

Case: A2b TS=20: R=6; PD=1; PND=3; NPD=24NPND=1

cuts | var | bin |lin| con sec gap

none | 147|101|46| 189 0.15 0.0%

#1 144| 99(45| 229| 0.15 / 0.0%
/ 0.0%
/ 0.0%
/ 0.0%
1b gap
/ 0.0%
/ 0.0%
/ 0.0%
/ 0.0%
/ 0.0%
b gap
274.7] 6.6%
/ 0.0%
267.4| 9.4%
257.8112.7%
/ 0.0%
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Table 9 — CPLEX runs, subset B1

Case: Bla TS=10: R=2; PD=1; PND=2; NPD=1; NPND=1

cuts | var |bin [lin|con| sec n 1 rel | opt | ub Ib | gap
none | 67| 43|24| 85| 0.04| 64| 403| 81.2|114.7| / /10.0%
#1 67| 43]24] 91| 0.03] 27| 221| 81.8(114.7| / /10.0%
#2 67| 43]24| 87| 0.04] 50| 324| 81.2|114.7| / /0.
#3 67| 43]24| 85| 0.04] 64| 403| 81.2|114.7| / / 100%
all 67| 4324 93| 0.03] 25| 217| 81.8[114.7| /

G

Case: Blb TS=15: R=4; PD=1; PND=2; NPD=¢; NPND=1
cuts | var | bin |li i opt gap

none | 90 8113

" 10.0%
4 | 90 B8[132% / |/ [0.0%
0 | % 70 93883231 / | / |0.0%
43 | 90 9 307 | 7 [0.0%
all 302] OMM323| 7 |/ [0.0%

)- ®D=4; NPND=1

cuts rel | opt | ub Ib | gap
none 174.21278.4| / / 10.0%
#1 174212784 / / 10.0%
#2 1742|2784 / / 10.0%
#3 1742|2784 / /10.0%
all 174212784 / /10.0%
C =2; PND=6; NPD=6; NPND=2

uts | va sec |10°n[10°i] rel | opt | ub Ib | gap

2021 2491193.0] ? [312.8|293.0/6.3%

17.5| 235[193.0 312.81304.4|2.7%

17.0| 246|193.0 312.81293.416.2%

14.4] 215]193.0 312.81295.6|5.5%

N [N |0 |~

15.3] 219(193.0 312.81299.814.1%




Table 10 — CPLEX runs, subset B2

Case: B2a TS=15: R=6; PD=1; PND=1; NPD=1; NPND=0

cuts | var|bin [lin| con | sec n 1 rel | opt | ub 1b

none | 86| 53|33 107| 0.03 4| 144| 92.6/103.3| / /

#1 86| 53|33| 146| 0.02 0| 129] 92.71103.3| / /

#2 86| 53133 113] 0.03 4] 115] 92.61103.3| / /

#3 86| 53|33| 129| 0.02 0| 156] 92.6/103.3| / / |

all 86| 53/33| 174| 0.01] 0| 82| 92.7/103.3| / /90

Case: B2b TS=20: R=6; PD=1; PND=3; NPD=24NPND=1

cuts |var |bin|lin| con | sec [10°n|10’i gap

none | 190|144 46| 229| 1.27| 1.44]|1 0.0%

#1 187142145 281| 1.23] 0. 1 301 / 0.0%

#2 190[144|46| 269| 1.56| 1§67 | 18€.07123.3|168. / / 0.0%

#3 190|144|46| 363| 1.53] 1. 0]123.3W68.1] / / 0.0%

all 187 [142(45| 449 / / 0.0%

Case: B2¢ TS=25: R=6;
ub 1b gap
/ / 0.0%
/ / 0.0%
/ / 0.0%
/ / 0.0%
/ / 0.0%
ub b gap
332.8(278.7|16.3%
332.81298.3/10.4%
334.9(283.3|15.4%
333.21270.8 | 18.7%
332.8305.6| 8.2%
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In Table 7 (subset Al) cuts #1 and cuts #2 are always effective, with cut #1
consistently improving its efficacy when increasing the problem size. Cut #3 is
effective for the smallest (Ala) and largest (Ald) instances, but not for the
intermediate cases. Cuts #1 perform better than the others for most cases, but the @
synergetic effect of including all inequalities at ones (all) is even better for the larger 0

cases (Alc and Ald), where the solving time is reduced approximately by a fac@

5. O
Table 8 (subset A2) shows that cuts #1 are aﬁeffectlve ove their

efficacy with increasing size of the problen& @e o reach the

optimum in less than 3 hours when indludingcuts #1 in e ulatlon while in the

“none” case the gap is still 6. 6% 10 hours. Cl@ d cuts #3 are instead not

useful for this subset: they w 6 e CPLE ormance in each case and they do
17’

runs, a xdld for subset A1.

not help synergisticall
In Table % B1) t are 51mllar to the ones for subset Al. All
cuts are Q all case &&uts #1 being the best and with a good synergistic
effectin thc¥ all” "@lc, where the solving time is reduced by a factor of
& cﬁ) H Q “all” run does not perform better than the “#1” run in B1d,
Qowm &IZ and #3 are not useful in this instance when added to cuts #1.

\ e 10 (subset B2) the results show that cuts #1 are consistently the best,
VQ cuts # slightly improve the performance in all cases, while cuts #3 worsen it in each
Ostance except the smallest one. In the heavier case B2d CPLEX is not able to reach

Q optimality in any of the cases after 10 CPU hours, but the effect of cuts #1 is clear

82



from the tightened gap due to higher lower bounds. The “all” runs show a good
synergistic effect of the cuts and the solving time is reduced by a factor of 11 in the
B2c case and the gap is the smallest in the B2d case.

We note that increasing the slack time from 25% (Set A) to 50% (Set B)
expands the feasible region, because more stops could be placed between any pair of C)
consecutive checkpoints in the schedule. As a result, the solving time is consis
larger in all instances. For example in case Ald CPLEX is able to reach @ tion
in each run relatively fast, while in case Bld C‘% can not optimal
solution in any run after the 10 hours maxim g tim St 11arly A2d
can be solved faster than B2d and so f

In conclusion, the develo i\ahd mequal.\e effective in most cases

considered either allowin ver to the optimal solution faster or

tightening the optlmaht p by produ, 1nx1er lower bounds. Specifically, cuts

#1 are con51stent tlve 1n’®all cases and their performance improves
when ap ger insta uts #2 show good results in several cases. Cuts
#3 ar effec e onl instances. The synergistic effect of including all cuts
\

Qle rmw(“ ns) is positive for most of the cases in subsets A1, B1 and
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6 Dynamic operating scenario: scheduling algorithm

In this chapter we look at the problem from a dynamic operational point of
view and we develop an insertion heuristic scheduling algorithm for the MAST
system. The challenge mainly resides in defining the logic to best operate the 0@
vehicle under a dynamic and multi-criteria environment. In particular we need @
the insertion feasibility rules for any given customer at any point in tim 6
inserting a new request in the vehicle’s schedule everpif feasible at t e, mlght

not be best overall. The algorithm should decQ regl time @ accepting a
. o 3

r theMg@ck®ip and/or drop-off

request and provide customers with ti
service points. An insertion heuristic ap chisu :&ause it is computationally

fast and it can easily handle catlng @tral in a dynamic environment
(Campbell and Savelsbe 3)sucha K ST system.
ST sys 1dered is the same as described at the beginning of
{ and repr by Figure 11, consisting of a single vehicle moving along
chroute ba k- agd forth between 1 and C for a total of R rides. The total number of

® stop aheckpoints is TC=(C-1)xR+1 and the initial schedule’s array is
‘ 0 repigsented by an ordered sequence of stops s =1,..., TC at the checkpoints; their

Qheduled departure time td, = tdc, are assumed to be constraints of the system which

Q can not be violated.
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At any moment before or during the ride a customer (PD, PND, NPD or
NPND) may call in (or show up at the checkpoints), specifying the locations of both
pick-up and drop-off points. We assume that customers will be ready to be picked
up at the moment of their request. However, the system could easily handle @
reservations for future pick-ups by limiting the search for insertion in the portion of

the schedule following the ready time specified by the customer.

As mentioned we identify checkpoints by s =1,..., TC and non- ~@ point

stops by s=TC+1,..., TS. The index ofs), s= TS repre ® current
position of any stop s in the schedule. The p S th ne the indexes
a(s) Vs and the departure times #d; fo non- eckpomt hlle not violating #d;

for checkpoint stops. 2\
In order t @CVIMIO he main route to serve NP and ND requests
betwee %

Slack time

cutive
*

nts, identified by s and s+1, there should be a

cgt #? amount of, 1 1n the schedule. Let sts ., be the slack given by the

:
‘&edule an&mpu ed as follows:
e
v O

Q

tds+l - td dS,S+1/V - bS+l S = 1,..., TC-1 (61)

s+l
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As more pick-ups and drop-offs occur off the base route, the slack is reduced. Let
st;s+1 be the available slack that can be used to route the vehicle off the base route.

Initially (no requests made yet),

Stss+1 Sti s)+1

Idle policy

We assume that the vehicle, driving fro:%kpomt S toQ follows a

no-idle policy until all the requests in betwe

% . The unused
slack time st 441 possibly still availabl@ arriving Kche point s+1 is spent as
'Xidle at s+1, @Jpcoming customer requests

e befor @lg st, s+ 1f feasible and best at the

can still be inserted in the
moment, meaning t e hicle lea@ to serve the new requests and comes
back to s+1 bef & K\
rrival tim, \
1%
K Whi&epr ents the scheduled departure time at stop s, we define fa, as
Q rri

e arri e at stop s. Because of the idle policy, we have for non-checkpoint

idle time (note that while the ve

S ) td; = ta; + b, and for checkpoint stops (s < TC), td; > ta; + b, and their

Oitial values are:
: tas+] = tderl - Sts,s+1 - bs s = 1,..., TC'I (6.3)
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Bus motion
We assume that the vehicle follows a rectilinear motion, allowing the vehicle
to move only along the horizontal or vertical direction; this is a good approximation
of the real world, since vehicles ride along streets, which often form a grid.
Furthermore, whenever a horizontal or vertical direction can be equally C)
chosen to reach the next scheduled stop, the vehicle prefers the one that ke
closer to the central x axis of the service area. This behavior guarant e@etter

service to the future expected demand under the awmn of uni tribution

of non-checkpoint requests. OQ Q @

6.1 Control parameters O

In order to impro&emon a effectiveness we define and make
use of control para at ar of the future expected demand (usable
slack time) an@ lative %&'\0 the new request with respect to the current

position e vehicle G) ing distance). In order to define the former we first

I&@troduce ’ept of bucket.

® 6.1.1 @s
VO The MAST insertion algorithm does not explicitly add a constraint to limit
Q

maximum allowable ride time of each customer as the Dial-a-Ride algorithms

Q generally do. Instead, it obtains a similar result working with “buckets”. The
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underlying concept is that for PND and NPD type of customers one of the service
points (either a P or a D checkpoint) is already part of the schedule; therefore, the
algorithm attempts to insert the corresponding ND and NP stops in the “vicinity” of

the first occurrence of those checkpoints in the schedule’s array. If not feasible, the

algorithm checks for insertion in the “vicinity” of the following occurrences of the C)

checkpoint of interest, one by one, till feasibility is found. Clearly
postponement causes a delay for the entire trip, but the ride time w @ per

bounded. This logic is consistent with Propositio nd 2, stath stomers
would minimize their ride time by boardi em Ve icle at the
checkpoint as close as possible time w@elr inserted nomgheckpoint stop.

In order to define bucketh consider t @ dule’s array as shown in
Table 11, illustrating the che %

only wit ir corresponding stop index s. We

know by Equation (5. 1@ each ch XC is scheduled to be visited by the

vehicle a numbe es witlt d t stop indices si(c) (stop index of the K"

occurreQ @(pomt c N&chedule) depending on how many rides (R) are
pla

&For every checkpoint ¢, we define a bucket of ¢, in general, as a

0\ portio chedule delimited by two successive occurrences of ¢, namely all the

O in the schedule’s array such that ofsi(c)] < a(s) < afsk+1(c)] for any allowable
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1* bucket of =1

Table 11 — Schedule’s array and buckets

Checkpoints ¢

ride S
1 1
2 2
3 3 \
1
c c
C-1 C-1
C C
C+1 C-1
) 2(C-1)+1-(c-1) C,
2C-2
2C-1
2C
3 12(C-O+1

(C-1)+1

TC=R(C-1)+1

bucket of ¢

<

r bucket of ¢=2

@ D customers the buckets of their checkpoints of interests are defined

b stops s such that o(PU(k,7)) < afs) < a(PU(k,r+1)), VreRD/{R}.

For NPD customers the buckets of their checkpoints of interests are defined

Q:y all the stops s such that a(DO(k 1)) < afs) < a(DO(k ), VreRD/{1}.
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The buckets’ definition for NPND type customers needs to be revised since
they do not rely on checkpoints for pick-ups and drop-offs; so we identify the
buckets with the rides. More formally, let’s characterize the sequence representing

the occurrences of any terminal checkpoint (¢ = 1 or C):
s,(lor C)=1+(C—1)k-1) k=1,.., R+l

We have that, for NPND type customers, a bucket \%cnts all the @ s such that

asi(1 or C)] < afs) < afsi+1(1 or C)] for a lee l@@ed in Equation
(6.4). Qrg K

> O
6.1.2 Usable slack timeOQ \f)\'g

The slack tj a crucia needed to serve customers. When this

¢
resource 1 cz@ e syste@able to properly satisfy new requests and it is

forced to“Qostpone o?@them. Therefore, a MAST service needs to be

ﬁ@ly carefuccepting customer requests that require a lot of slack time

umptio venting future requests from being fully satisfied. In fact, an

® inse 'oppears to be good at the time of its placement in the schedule may not
‘ 0 be8g, 1T We consider future expected customer requests. We therefore need to define

@arameter that properly controls the consumption of slack time.

Y
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Stgs+1 represents the current available unused slack time between two

(0)

s,5+1

consecutive checkpoints s and s+1; while sz, ., is the slack time initially available

before any insertion has been performed. We define the usable slack time st ., as

the maximum amount of slack time that any customer request is allowed to consume

<

for its insertion between s and s+1. It represents an upper bound on the u al%C)

amount of slack time and it prevents a single insertion from consuming too m

5,5+

it. st! ., is defined as a function of the future expectgd demand betwe@l s+1

and 1s not related to the actual unused slack t1 stidand @ .5+ Can be
greater or lower than st;,; dependingfon t Qumstance As we will see in the
insertion feasibility Section 6.2.1, wuest will be @& to consume the minimum
value among st/ ., and st S@semon
’\07 requests per unit time in the service

We assume t % mand rat
area LxW) of ec 01nt s (NP and ND) is uniformly distributed in the

service 4 - an constant e The time interval between two checkpoints s
a&l %m eﬁne@- d,, while the ratio between the area covered by the
- X
&\ent of ute from s and s+1 and the total service area is given by L s
® (wWhe Xg+1 are the x coordinate values of s and s+1 with respect to the service

VQ area)¥, Consequently, the expected demand between s and s+1 (total # of insertion

Oquests) arising during tdy:1-td;, A1, 1S estimated as follows (see Figure 12):
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Xs - Xs-%—l

Assi1 = A (tdy:1-tdy) (6.5)

W E As,s+1 s+1 E 0:

1 C O
Figure 12 — Portion of service area cover@Q @@n s and s+1
As soon as the vehicle de from s at t xpected residual demand
drops linearly until reachin @ Value e Hence the expected residual

demand as a function o urrent clo® Lrows A(’ ) may be expressed as (see

e
cz} {\Q

¢, <td
\ 6 now K
s s+ s ,5+1 nOW _ td tds < tnow < tds+1 (66)

Figure 13):
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A(tnow ) A

s,5+1

As,s+1

c@
! lort >t

Figure 13 — Expected residual demand between s and s+1 as a function b

We define the parameter 7,1 as a function of t@d dema@@
=1 Q
7, =1 J{”W JA%;Q itho< 7%, <1 (6.7)
5 AS,S+1 ,® O >
Q ha@)ﬂ < o1 < 1 and ”S(,Os)ﬂ can be set
accordlb\@]a ly defi &\able slack time, st ., as follows:

ts s-&ﬂ 4 (6.8)

ual expected demand A% 50, then ysr1—1 and st m—)sts( s)+1

s, s+1

Since 0< A

Ohereas when AS o +'1 attains its maximum (A1), 7%.s+; reaches its minimum value,

Q 7Z'S( S)H, and so does st = 7Z'S( s)+l st£ s)+l

93



Combining Equations (6.6), (6.7) and (6.8) we finally derive the expression

for the usable slack time, st"

s,5+1 2

as a function of #,,,, (see Figure 14):

70

s S+ s s+ now

st t<td,

st"

s,5+1 = 1 + ( s(s)+l _1 1 - M St£2)+l tds S Z‘now S tds+l (69 0
’ tds+1 - tds ’

s,5+1

ORI

s s+1S s,5+1

& Flgum@e slack time

Qnow con on checkpoint request g located at the edge of the

s&v@ea such@ 0 or y, =W and x; <x, <X, and let’s assume that the
O&dule b s and s+1 is empty (no previously inserted stops). In order to be

® inserged @ request would require an amount of slack time sz, given by the time
0 nedge the vehicle to deviate from the x axis, serve the g request and come back

O the x axis (st, = W/v+b,). Since the minimum amount of usable slack time from

Y
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— 20 0

s,5+1 s,5+1 s,5+1 2

Equation (6.9) is given by st we need to have st ., >st, to

prevent the g request from being rejected. Hence we define:

2O = (W) st (6.10) @

considered for insertion between s and s+1 with em schedule, r ss of the

as the minimum value of 7r£ )

5+l

that guarantees every non-checkpoint reque

location of ¢ as long as X, <x, <Xg+1.

Setting 72'( ) L < 72O would @Q algorithmSgom working properly,

s,8+1

because some customers would chted not bec@gf system saturation or end
of service, but because of & para@ttlng. Clearly, setting ﬂ-g,s)ﬂ =0

would result in haV =0 for st, preventing any requests before td;

from bein @&red f@lg On the contrary, ﬁs( s)+1 =1 causes

st . = sl atany tll‘ﬂ\ ustomers requests would have no limit on the amount
{sl@ime aldowe e consumed for their insertion.
O er walue of ;z§ s)+1 in between zrs( s)fl““ and 1 allows the system to control

1on of slack time. Any request occurring before td; can use at most the

(0)

s,5+1

inintum value of st ,, =7 st .., because there is an expected demand of

uture customers that should be properly served with the remaining slack time.

Whereas, if a customer request occurs towards the end of the ride from s to s+1, it is
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(0)

s,5+1

allowed to consume a bigger portion of the slack time until a maximum of st

because the chance of having additional requests before the vehicle reaches the next

checkpoint s+1 is very low.

6.1.3 Backtracking distance QC)

The insertion procedure can cause the vehicle to drive back and Q
ut also

respect to the direction of a ride », not only consuming the extra slac
bo

having a negative impact on the customers alre d, wh1 erceive this
behavior as an additional delay. Ther@ mit the f backtrackmg in
the schedule. The backtracking«dista ndicate much the vehicle drives

nsecutive stops to either pick

backwards on the x axis while 1@;\ betwee

up or drop off a passen@ non-chec op with respect to the direction of

the current ride. rmally‘ n Figure 15, given any two consecutive
stops ide Q@ and b [s\& oa)+1 = a(b)] and the vector da , representing
the distanceNrom acktrackmg distance bd, , is defined as the negative

mpo ent offfthe pragection of dab along the unit vector d , representing the

\QQ rectlo‘ current ride 7 (1—C or vice versa, parallel to the x axis) as follows:

?“ O bd,, =-min(0,d, -d,,) (6.11)
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A 2

-« - >
bd,,>0 bd, , =0

Figure 15 — Backtracking distance E 0

The backtracking parameter (BACK > 0) is defined as th

allowable backtracking distance that the Ve ride any two
consecutive stops. BACK is a paramet gly; clearly with

BACK > L any backtracking is allowe

6.2 Algorithm descn@Q 0\
6.2.1 Feas1b111t}@

atlng &Xr request, the algorithm needs to determine the

fe asi 1t of the i 1 a new stop (let’s identify it by s = ¢) between any two

secutlve &sa an® b already scheduled. The extra time needed for the insertion

® com follows:

?\0 O Atygp = (dagtd,p-das)/v - b, (6.12)
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Let m and m+1 be the checkpoints prior and after stops a and b in the schedule. The
algorithm computes also the backtracking distances bd,, and bd,, by Equation

(6.11). Finally, it is feasible to insert g between a and b if (see Figure 16):

u

<
N\t
S

res vehicle capacity

Aty g < Min(sty, pm+1, St

bd,, <BACK

bd,, < BACK

The algorithm does not need to check feasi
because we assume it to be infinite. G

.;e 16 — Insertion feasibility of ¢
%
2 &ion

0\ $ en searching for the best insertion among the feasible ones, the algorithm
?\ m

Q putes a COST for each of them and selects the one with the minimum value.
et’s assume that the insertion of a stop g between a and b is feasible and we need to

: compute its COST. The system’s entities affected by an insertion are:
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e The vehicle, in terms of how many extra miles it has to drive.
e The customer requesting the insertion, in terms of how long the ride
time is.

o The passengers already onboard and waiting to be dropped off, in @

terms of how much longer they have to stay onboard. QC)

e The previously inserted customers in the schedule waiting

picked up at the NP stops, in terms of how much longer { k-up

time is delayed and also in terms ﬁv much the pected ride

time changes. Qg

Thus, the algorithm com%e following 1 es:

o APT:t ver all p rs of the extra ride time, including the

of the c equesting the insertion.

Q @ the S x all passengers of the extra waiting time at the

A 6 \ed NP stops.

\?O ’ the cost function is defined as:

v O COST = wixAty g + WoxAPT + w3xAPW (6.16)
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where wi, w, and w3 are the weights, which can be modified as needed to emphasize
one factor over the others. At,,; corresponds to the consumption of the slack time
(the resource needed by the system to serve more customers). During heavy demand
periods, we should assign a higher value to this scarce resource by increasing w; @

with respect to w, and ws. In contrast, during low demand periods, the opposite is C)

true and the COST function should emphasize more the service quality f@g
customers rising w, and ws over wj. SO

We note that w;, w, and w3 are comparabl not equal t > and m3
defined in Section 5.1. In fact the cost funct@ cremental cost
brought by a new insertion, while th obje ive functi { .%) measures the whole

cost of the system. In addition, includes only the total extra

\rd term in (

time that already inserted c woul a@wait at their NP stops, being their
the new@wn. Whereas the third term in 5.2

pick-up delayed bec %
(weighted by ® JudCs the to g time, which is the sum over all customers

of the nt al fro %\6 dy time to the departure time. In the global
o&tn%atlon of th ap

s not possifle to idefitify how much of this total time is extra waiting time, which

Q anyh@ll compared to the total.

ter 5) we assume a static environment and therefore
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6.2.3 Insertion procedure

PD type
PD type requests do not need any insertion procedure since both pick-up and
drop-off points are checkpoints and they are already part of the schedule. However, @

once the PD type customers are onboard, they are important in evaluating the COSTQC)

of any other insertion. 6
PND type

PND type customers need to have tl&top rtdd#fn the schedule.

The algorithm checks for insertion’s sibi ty in the of the P checkpoint.
Since the ND stop can not be s % d before P, st bucket to be examined is
rre

the one starting with the fi nce @owmg the current position of the

vehicle (bucket deln%@ se(P) an(QP) with k'—mkin s, (P),s.t.td, 0 Zho):
Among the fe sertio b& all pairs of consecutive stops a, b in the first
bucket, t gorlthm sole@e one with the minimum COST and then stops. The
mt% is there duled to be picked up at sx(P) and dropped off at the ND
O&ned st f no feasible insertions are found in the first bucket, the algorithm

® repe ts ocedure in the second bucket (assuming that the customer will be
0 at the beginning of the second bucket corresponding to the following

; Ocurrence of P, si+1(P)). The process is repeated bucket by bucket until at least one
Q feasible insertion is found.
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NPD type

NPD type customers need to have their NP stop ¢ inserted in the schedule.
Similarly, the algorithm checks for insertion’s feasibility in the buckets of the D
checkpoint. The first bucket to be examined is the one delimited by the current

position of the vehicle (xp, y5) and the first occurrence of D following the current 0
position of the vehicle (s;(D) with k'= mkinsk.(D), stid, i 21,,). In genera@

yp) does not correspond to a stop. Therefore, the first pair of points be thlch

the algorithm checks for feasibility is represente y») and ?@ stop to be
visited afterwards, as shown in Figure 17. O Q~

Q gure 17 ﬁon from current vehicle position

> %mon he e 1nsertions in the first bucket, the algorithm selects the one
0&. the imuig COST and then stops. The customer is therefore scheduled to be
® pick the inserted NP stop ¢ and dropped off at si(D). If no feasible
VQ insefgions are found in the first bucket, the algorithm repeats the procedure in the

Qcond bucket (forcing the customer to be dropped off at the end of the second

Y
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bucket, corresponding to the following occurrence of D, s;41(D)). This process is

repeated bucket by bucket until at least one feasible insertion is found.

NPND type

A NPND type customer requires the insertion of two new stops ¢g and ¢
therefore, the insertion procedure will be performed by a O(TS?) procedure, m 69
that for each feasible insertion of the NP stop ¢, the algorithm checks fe
the ND stop ¢’. A NPND feasibility is granted wheg,b@th NP and 1ons are

simultaneously feasible. The search for N si 111 d with the

additional constraint of having ¢ sched@ ore q’.

Recall that buckets corresi to the rides @ ND type customer. The

rformed most two consecutive buckets

search for NPND feasibili Q
meaning that when che or NP i xfeamblhty in bucket i and i+1, the

algorithm looks sertlo ‘F\*ty only in bucket i and i+1.
Q@am start mg the NPND feasibility in the first bucket

deh\%d bysthe cu n of the vehicle (x;, y») and the end of the current ride
st ocAwfence in the schedule of one of the terminal checkpoints s = 1
Q = sk lor C) mkinsk (1 or C), S.t.0d, (15c) 2 1,,,- Among all feasible
\ ertlons in the first bucket, the algorithm selects the one with the minimum

?‘0

QOS . If no NPND feasibility is found, the algorithm will then check pairs of two
: step (buckets 1/2, then buckets 2/3, ..., i/i+1, etc.). While checking buckets i/i+1, we

onsecutive buckets at a time, increasing the “checking-range” by one bucket at each
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already know that NPND insertion is infeasible in bucket i (because it has been
already established before in the procedure while checking buckets i-1/i). Therefore,
while NP insertion feasibility needs to be considered in both buckets (since NPND

insertion infeasibility in bucket i does not prevent NP insertion to be feasible in i),

ND insertion needs to be checked only in bucket i+1. The procedure will continue C)

till at least one NPND feasible insertion is found. 6

Rejection policy Q
The general assumption while per the 1 @ro edure is

no-rejection policy from both the rvice and the ustomers. Thus, the
algorithm attempts to insert the aner requests g if necessary the whole
existing schedule bucket b and rej®\ may occur only if there is no

feasibility at all. It m T, for exa x&. a very high demand rate or when a
6towar($\$ d of the service. On the other hand, the

ed to Ject the insertion proposed by the algorithm and

customer request

\ the MAST system and the customers.

QZA procedure

ce a minimum COST feasible insertion is selected, a new stop g (either a

OP or a ND request) has been successfully scheduled between two points @ and b in

104
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a portion of the schedule delimited by checkpoints m and m+1, and the variables of
the system need to be updated.

The slack time will be updated as follows:

Stm,m+1 = Stm,m+1 - Ata,q,b (617)00

The departure and arrival times will also be updated (delayed) as @

td, = td, + Aty s)e q‘ (6.18)
ta; = tas + Aty g p sst a(s [ DR am+1)] (6.19)
Since the departure @gs of ¢ @ts (s <TC) are constraints of the

system and act as “ i 1ers all@ps that are not in the portion of the

schedule where sertlon ta (between m and m+1) are not affected. We

can theanden ify 51x &cases

:K ustomers having both pick-up and drop-off stops scheduled before ¢

Q&
N
QO

are not affected by the insertion.

e Customers having their pick-up stop before ¢ and their drop-off stop

O in between g and m+1 will have their ride time increased because their

drop-off stop will be delayed as given by Equation (6.19).
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e Customers having their pick-up stop before g and their drop-off stop
after m+1 will not be affected by the insertion because the departure
time f,,+; will remain unchanged.

e Customers having both their pick-up and drop-off stops in between ¢ @

and m+1 will have both of them delayed by the same amount as give 0
by Equations (6.18) and (6.19). Therefore, their waiting time @b

pick-up stop will be increased but their ride tlme

unchanged. * Q
e Customers having their pick- Qn bet q@ m+1 and their

drop-oft stop after m+ w111 ave their a1t1 time at the pick-up

stop increased as en by Equat@ .18) and their ride time

decreased by e amo@.‘se their drop-off stop will not be
affecte %
havin @ ir plck-up and drop-off stops after m+1 will

«
gortthm provides customers at the time of the request with time

' their pick-up and drop-off locations. To do so, it computes the earliest

O re time from g, etd,, as follows:
Q etd, = td, + d,4/Vv+b, (6.20)
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where #d, represents the current departure time from stop a. Also the departure time

of ¢ is initialized likewise:

tdy = td, + dy /v + b, = etd, (6.21) @

It can easily be shown that etd, is a lower bound for any further updates of ¢d,,. 60

The algorithm then computes the latest departure time from @, as
follows: * Q

ltd, = etd, + sty m+1 ‘ , : K 2 (6.22)

We prove that /td, 1 er bound d, by the following contradiction
argument. Let’s use the ‘scrlpt B (wittNG®0,..., /) to indicate the " update of a

variable and sup td ? > @have td,P-td,” > ltd-td,”. We also know

by Eqan hat
\

e

7d,?-1, -td “’))+ A(td,P-1d,PV)+ . +(1d,V-1d,”)=

é
1= ZAtk (6.23)
® Q Att.. .+ Atgt.. +AL =

?“\\’ O

Y
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and from Equations (6.21) and (6.22), ltd,-td,” = Itd,-etd, = st 1, but this would

S
imply ZAtk > Stmm+1, meaning that the sum of the extra time needed for insertions
k=1

after the insertion of ¢ had exceeded the total slack time available after the insertion
of ¢ and this is a contradiction since the feasibility check would have prevented this 0

from happening. Therefore, Equation (6.22) says that future possible inse c@

between m and g will delay td, to a maximum total amount of time boun e
currently available slack time.
In a similar fashion, the earliest and 1 @ ed ltay, are

computed. As a result, the customer, G ed is pr ith etd,, Itd,, eta,
and /ta, knowing that their actual es tdgand taq ounded by these values:
etd, < td, < Itd, OQ 0\,2 (6.24)

eta, < ta, g@ \Q (6.25)
2 aPr \ etdp = tdp = Itdp because the departure time from a

nt KZS n a MAST system, a D request will have etap <tap <ltap.

Q early Q a ND requests will also have etdyp <tdyp <lItdyp and
0® etanp < ltanp.
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6.3 Experimental results

In this section we discuss the results obtained by simulation analysis. The
target is to show that the insertion heuristic developed in this paper can be a used as
an efficient scheduling tool for real MAST systems. We test its performance on a @

simulation model of the actual MAST service represented by MTA Line 646 in L@C’

Angeles. In order to perform this task, we first need to define the MAST sy@

performance measures. @

6.3.1 Performance measures O Q~
We define the following meQ parame r a MAST system:
&cle

e ML drlven b
o K age ridey lesenger
Q @ averag@altmg time (¢dyp - etdyp) over NP requests only

{ ee indicat dlrectly related to the corresponding terms of the COST
Qn tion

ion (6.16): At, s, APT, APW. Thus, we can similarly define the

ance Z of a MAST system as:

O Z = wixMI/v + woxPTxNCr + wzxPWxNCnp (6.26)
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where NCr and NCyp stand respectively for the total number of customers and the
total number of NP customer requests (NPD and NPND types) served by the system.

Z is in time units.

In addition, let’s define: @
e PI: average time interval between request/show up and 660

pick-up time (etdp or etdnp) per passenger

AN
e PST: percentage of the total mltu@ne = Z‘@Qonsumed

Given a total demand rate custot'ners/hou&ieﬁne the saturation level

as the maximum demand t% m conﬁ@mn can satisfy without becoming

unstable. This level ca cstimated b ng at the PI values. Given that the

demand is unifo @tlme for@ns well below their saturation level, the PI

values sh @ound hal &eadway of the system. A slightly larger value of

PI, but con nt over, @llon time, shows that the system is near the saturation

st11 ven if a few customers have to wait longer to be picked up

@e to te &ongestlons created by the randomness of the demand, the system

® on a table If instead the PI value increases over the simulation time, then
?9 the §ystem is unstable and the demand rate is above the saturation level. An

Odication of how much the demand rate is below the saturation level is given by the

Q PST; values around 90% indicate that the demand rate is more or less at saturation
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level. In addition, since the slack time consumption is directly proportional to the
miles driven, the PST and MI values are related to each other. Therefore, bigger

values of MI also indicate a higher level of saturation.

As earlier noted, a MAST service already exists in San Pedro in Los A @ .

6.3.2 Algorithm performance 0()

County, Line 646. San Pedro is one of Los Angeleg County's busiest OQrcial

i fer regular
/ g

por safety reasons,

hubs, consisting of several warehouses, factories offices. Bu

fixed-route service in the area during CJ@n? Ho

employees of local firms workinq3 ichf shifts haQeen finding it extremely

inconvenient to walk to and wa@
MAST service during niﬁ e, ansporti@ngers between one of the business

areas in San Pedro t(% y bus te

us stop. TQre, MTA Line 646 offers a

L 2
The M stem e M by Line 646 consists of a single vehicle
coverinngrvice area % =10 miles and W =1 mile, with two terminal
0@(@1‘[5 and ofig intehmediate checkpoint located in the middle. The duration of

ride i«minutes and the headway is 1 hour. The service operates for 4.5

® ours ( each night. Given that v =25 miles/hour, the system has very little

S 1 (stfo) = 2.5 minutes, for s =1,..., TC-1; therefore, about 6 minutes per

,5+1

E Oie), allowing very few insertions of non-checkpoint requests, but this is justified by

Q the very low actual demand (4-5 customers/hour, most of them being of type PND
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and NPD). These “light” conditions allow the bus operator to easily make all the
decisions concerning accepting/rejecting customer requests and routing the vehicle
since the system needs to deal with only 2-3 insertion requests per ride.

MTA is interested in testing the MAST concept for higher demand levels.
However, at the current slack level, the system will not be able to accommodate C)

more demand. Therefore, in order to evaluate the performance of the insgity

algorithm for the higher demand cases we perform the simulation ents

assuming a larger slack time. A summary of the eters Value@a

the experiments are shown in Table 12. OQ Q @
\ystem paraan

0 miles
1 mile
3
5 miles
25 min(¢; = 0)
25 miles/hour
18 sec
0.25/0.25/0.5

&n Equa&l) we compute the values of the initial slack times stﬁ?}H =12.7
® miny e,..., TC-1) that are about 50% of the time intervals between two

used in

co e checkpoints’ departure times (td;+; - td; = 25 minutes).

; O In setting the COST function’s weights, we assume that customers perceive

Q the extra waiting time at stops (w3) with more discomfort than the ride time on the
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vehicle (w;) and that slack time consumption (w;) and passengers’ ride time (w,) are

equally weighted. This is the inverse of what we assumed in Section 5.1 for s,

compared to ®; and ®; (see Table 4), but as we noted earlier the waiting time

weighted by w3 and s are different in nature. @
Given a total demand rate 6 (customers/hour) constant over time, we als C)

assume that the customer types are distributed as shown in Table 13, like as

earlier (Table 6): @
Table 13 — Cus@@distribqu~

Type PD D NPND
% 10% 40% 10%

We further assu e chec&&quests (P and D) are uniformly
distributed among t ckp01 t non-checkpoint requests (NP and ND)
are uniformly ibWted in t e area. The simulation is run for 50 hours. We
verified this length xatlon time was sufficiently long to have all the

ce para @ onverge to their steady-state values for stable systems.

ordlng &parameter values shown in Table 12, the total number of rides

\ ﬁrst perform a set of runs setting the control parameters BACK =L and

; OH1 =1 (for all s=1,..., TC-1) allowing any backtracking and any slack time

Q consumption if available, thus giving the most freedom to the algorithm when
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checking for insertion feasibility. At these parameter settings (configurations A) we
seek the saturation level of the system, by examining the PI and PST values for

different values of the demand 0. The results are shown in Table 14.

Configuration Al A2 A3
0 (customers/hour)| 15 20 25 O
BACK (miles) L L L K
PW (min)

(0) Q
s,5+1
el @,
PT (min) . .
MI (miles) % 1012.7110 1083.8

Table 14 — Saturation level for configurations A E QC)

T

PI (min)
PST (%)
saturation level?

The findings show th@gturati@l is around 6 =20 customers/hour

(configuration Al@lle Al’@ble system relatively far from saturation
(PST = @w right %oundary because the PI value is higher than half

the head aw(50 mi \ it does not increase over time. Hence, the system is

le t sin time consumption is very high (PST = 91.3%), it is near
&

Anything above 6 = 20 would lead to system instability as shown

Qe demg
§ y th from A3, where the PI value is very high and keeps increasing along
v with'tje simulation run time and the PST is close to 100%.

QO

c
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Therefore, by allowing more slack time in the schedule (St = 12.7 minutes

s,5+1

instead of 2.5, for s=1,.., TC-1) and setting BACK=L and 7 =1

s,5+1

(configurations A), MTA Line 646 would be able to serve a demand & with up to 20

<

customers/hour assuming the customer type distribution of Table 13. 0
Now, keeping the demand at the saturation level (configuration A2), we WQ

to observe the effect of modifying the usable slack time st! For this ,

s,s+1°

maintaining BACK =L, we vary the values of = ©) Yfor all s=1,. 1) in the

range from 1 to 7z Ohmin " (configurations B) Qﬂt f@) is control

parameter. We compare the perfom@of each means of the object

function Z, as defined in Equatio ) The mm@ run time is again 50 hours.
Each configuration is teste@ xactly e demand using CNR (Common

Random Numbers) 1ts are su ed in Table 15. From Equation (4.13),

T, Sf}‘“ is approxé ly equal tc@
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Table 15 — Effect of 7z( )

s,5+1

- configurations B

Configuration Bl1=A2| B2 B3 B4 BS B6

0 (customers/hour)| 20 20 20 20 20 20

BACK (miles) L L L L L L

79, 1 075 | 05 | 04 | 03 |#m"=0.22

PI (min) 61.67 | 55.87 | 54.59 | 51.56 | 52.26 51.60 @
PST (%) 91.3% | 87.4% |82.3%[79.2%|76.6% | 72.0% 0
saturation level? yes | below | below | below | below below 0
PW (min) 1.23 1.15 | 1.25 | 1.32 | 1.41 1.37

PT (min) 25.86 | 24.68 | 24.13 | 23.09 | 22.60 22.76

MI (miles) 1051.4 [1021.7] 989.0 | 968.2 | 951.5 92

Z 7149 | 6987 | 6853 | 6624 | 6533

The figures reveal the positive effec@Qeam@ m | to almost

ﬂs(f)s)flﬂn. All the performance paramete@)lﬁcantly AQrove their values, with the

exception of PW, showing ini%\progress bu n a progressive worsening.
Also the Z values gradu Q Q’l

inimum value with configuration

p and reai
BS at zrs S+1 =0.3, {% greater % . Due to the increased efficiency of the
algorith @)nﬁgurat@ well below their saturation levels. Note that

conﬁguratl B6 ha and MI values, indicating a better performance in

th ac consumption, but the overall performance Z shows a

rsenln &ervice quality with respect to B5. These results show the benefit

\Q the consumption of slack time and saving some of it for future
P

v O Now, starting from configuration B5, we would like to observe the effect of

Q limiting the backtracking distance. @ We perform another set of simulations
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(configurations C), keeping 6 = 20 and ﬁfi)ﬂ = 0.3 and varying the BACK parameter

from L to 0. The results are shown in Table 16.

Table 16 — Effect of BACK - configurations C

Configuration Cl=B5| C2 Cé6
0 (customers/hour)| 20 20 20

BACK (miles) L 1.5
70, 03 | 03
PI (min) 52.26 | 52.26
PST (%) 76.6% |76.6%
saturation level? below | below
PW (min) 1.41 1.41
PT (min) 22.60 | 22.60
MI (miles) 951.5 | 95L.5

Z 6533 | 653

There are no cha Qe perfo @r lowering the value of the BACK
parameter from ratlon 0 about 1.5 miles (C2). This means that
in the sim lat®{1re are &x of an insertion with a backtracking distance
bigger th miles. ¢ @re setting BACK to a value larger than 1.5 has no

e \
eﬁe@ the sch’ On the contrary, improvements in all the performance
O ures c&rogresswely seen in cases C3, C4, C5 and C6 (BACK =0.8, 0.5,

® 0.3 d hile C7 and C8 (BACK =0.1 and 0) show better values for PST and

0 e overall performance Z slightly worsens due to the increasing values of

; ON and PT. All the cases are well below their saturation level and the best

Q configuration according to Z is found by setting BACK = 0.2 miles, corresponding to

117



case C6. These experiments illustrate the positive effect of limiting to a certain

degree the amount of backtracking that the vehicle is allowed to do.

Case C6 represents a better configuration than A2 with respect to the overall

performance Z and almost all the other parameters (with the exception of PW,

slightly increased). In particular, the improved efficiency of the algorithm causes the

MI and PST values to drop and the system is now well below saturation.

therefore look for the new saturation level for these more efficient param&t

by performing another set of runs (configuration see Table 1

configuration C6 and progressively increasian Q~
ation level - cQurations D

@DZ D3
25 30
0.2 0.2
0.3 0.3
52.23 | 55.98 | 77.58
72.4% |86.8% | 95.9%

Q : ! below | yes | above
, 1.37 1.72 | 1.92

22.28 | 23.93 | 29.00

\& ¥
K &M (miles) 9242 | 983.4 [1020.6
O

oQ

ngs

ng from

e for configurations A, we can estimate the saturation level for

configurations D by looking at the stability of the PI value over the simulation time.

O\e figures show that 8 = 25 customers/hour (D2) approximately represent the limit

for the system. Anything above this value would cause instability. Therefore, the
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adjustments made on the control parameters allow the insertion heuristics to handle a

demand rate 25% larger than the initial configuration A2.

6.3.3 Comparison vs. optimality @

We now provide an evaluation of the insertion heuristic algorithm by 0
comparing its performance against optimality found by CPLEX, as descri

Chapter 5.

In order to perform this task we need t @ revise T function
defined in Equation (6.16); in particular to 1ng time term so
that it matches the corresponding term ij ective Qtion given in the Equation

(5.2), in order to have w3 and ® \ng the sameQ. Thus, we have that

COST = Wlx@szxA T, (6.27)
S &

where APN{T now repre\@e sum over all passengers of the total waiting time,
{ the t1m al between the ready time and the pick-up time. We also

that Eduatign (6 26) is modified accordingly as follows:
‘ 0 = w1><MI/V + wpxPTXNCr + w3xPWpxNCr

Q where PWt now represents the average total waiting time of all customers.

(6.28)
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O @ show that in the A1d case the heuristic reaches the optimal value

For each subset (A1, A2, Bl and B3) solved by CPLEX in Section 5.4 we
consider only the cases with heavier demand (Ald, A2d, B1d and B2d), since in all
the other cases the heuristic reaches optimality. In Table 18 for each case we
provide the Z value obtained by the insertion heuristic and by CPLEX. For the
heuristic results we show the Z obtained with no control and with the best setting of 0

the control parameters found for each case (if any). The CPLEX results pre

are the best ones for each case depending on whether and which valid @htles

are added to the formulation. * Q
Table 18 — He@ vs. optimelity

Heuristic
@ CPLEX

no control
(ﬂsm 1; @omrol
cuts | opt | ub Ib | gap

BACK =L)

any |242.4] / /10.0%
#1/all[293.9] / /10.0%
#1 | 2 [312.8]304.4]2.7%
all | 2 [332.8]305.6/8.2%

ith the default values of the control parameters (7r =1 and

§,5+1

=L). In the A2d case, the heuristic reaches a Z value of 294.1 very close to

A
timality (293.9) with the default values of the control parameters and we could not

improve the result by modifying them. In cases Bld and B2d the heuristic with no
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control reaches the Z values of 323.2 and 344.1 respectively that are higher than the
upper optimality bound found by CPLEX (312.8 and 332.8 correspondingly); a
proper setting of the control parameters allows to improve the solutions substantially
respectively down to 314.1 and 332.8.

In conclusion, the heuristic obtains results that are very close to optimality for C)

the instances considered especially by properly modifying the values of the 06

parameters. @
We now perform a mmula%C)s to obser&he behavior of the system

when modifying the shape of tt@r
mileage. In particular bser\@fect of the control parameters in

each configuration @ T satur Q
The as arame@e systems are shown in the following Table 19

6.4 Sensitivity over service area

ce area, maintafling constant the total square

and are thgfSame as the’ able 12, excluding L and W that are objects of our

ahgl¥si€) We n the initial slack time available between any pair of

&ecutiv&points will vary depending on the assumed proportion between W

® and ;; ‘ller L, the larger the amount of slack time, because the checkpoints are
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\
OK & 7 1

N

Table 19 — System parameters

C 3

dys+1 (s=1,..., TC-1) 5 miles

tdgy) - tds (s=1,...,TC-1)| 25 min(¢; = 0)
v 25 miles/hour
b; (s=1,...,TS) 18 sec

Wi/ Wa /W3 0.25/0.25/0.5

Configuration A: W=1; L=12 0

The first analysis is done within a s/im service area with L = 12 a
both in miles. The distance between checkpomt% miles and ck time
available between any consecutive pair of them@r Qnutes
first look for the saturation level of fghis s configurdion setting the control

parameters BACK =L and 7[5 s+l allowmg any &cking and any slack time

consumption if available, ng t freedom to the algorithm when

checking for msertlon fe 1ty The I. s e shown in Table 20.

Q 20 - Satu for Configuration A, BACK =L, zrs( s)+1 =1
6 (customers/hour) 18
BACK (miles) L

PW (min) 0.99
PT (min) 25.33

MI (miles) 1049.8

E O The system becomes unstable with a demand 0 > 18 customers/hour, that is

QO

approximately the saturation level of this configuration.
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We now look for the new capacity of the system with a proper setting of the

control parameters, namely: BACK = 0.2 and 7% =0.3. The results summarized

s,5+1

in Table 21 show that the saturation level is increased up to 21 customers/hour.

Table 21 — Saturation level for Configuration A, BACK = 0.2, ﬁgi)ﬂ = O.3e 0
0 (customers/hour)| 21

BACK (miles) 0.2 O

7 0.3 QK

PT (min) @

5,5+l
MI (mileso Q~
The improvement on the Mity of the @&is only 3 customers/hour

about 15% increase), but i e positi ect of the control parameters also
p p

PW (min)

on the total mileage ?;E has decreas approximately 30 miles despite the

increased demand& stratin’@roved efficiency of the algorithm. The ride

time (P19 a about t 4 while the extra waiting time at NP stops (P W)
g p

increases, Q eavier demand that leads to an increased number of

slig

\

Qrtions a@po ent of pick-ups.
® guration B: W=2; L=6

vg Q A similar analysis is performed over a service area with W=2 and L =6.

e total square mileage is still equal to 12 and all the other parameters of the system

Q are kept the same. However, given the different shape of the area, checkpoints are
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closer to each other and therefore the initial slack time available between any two

pair of consecutive checkpoints is larger, about 18 minutes.

The next two tables show the figures for the saturation levels of this

configuration. Table 22 shows the results with the maximum freedom given to the @

insertion procedure (BACK =L and 7z“+1 =1). Table 23 illustrates the ﬁndin%C)

with a proper setting of the control parameters, namely BACK = 0.3 and 7[3 s+1

Table 22 — Saturation level for Confi

Ta@?@uratmnl &\onﬁguratlon B, BACK=0.3, ;rf 3+1 =03

customers/hour)| 20

\ BACK (miles) 0.3

\ % Q 7[5 s+1 03
O & PW (min) 1.94
O PT (min) 22.81

MI (miles) 933.5

Q EIn this case the improvement due to control parameter adjustment is more
Q gnificant: the saturation level jumps from 12 to 20 customers/hour (66% increase)
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and the mileage (MI) is reduced by about 120 miles, even with the increased

demand. The values of PT and PW increase slightly.

Configuration C: W=3; L=4
We now consider a service area with W =3 and L =4. The total square 0
mileage is again still equal to 12 and all the other parameters of the system ar

the same, but checkpoints are even closer to each other and the initial tlme

available between any two pair of consecutive checﬁs is now a inutes.

n@ th® maximum

', = 1) and Table 25

Table 24 shows the saturation level f nfigu

freedom given to the insertion proce@ K=L d
shows the saturation level with er setting o control parameters for this
system (BACK = 0.5 and ”&

& *o

”lQZ@atura‘uon or Configuration C, BACK =L, 7r§ s)+1 =1
customers/hour) 12

BACK (miles) L

PT (min) 17.37
MI (miles) 1047.3

T §OS)+1 1
PW (min) 1.73
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Table 25 — Saturation level for Configuration C, BACK = 0.5, 79 =05

s,5+1

0 (customers/hour)| 18

BACK (miles) 0.5

., 0.5

PW (min) 1.68

PT (min) 2217 @

MI (miles) 964.0 C)

The increase in the saturation level due to control parameter adjustm@

significant, from 12 to 18 customers/hour (50% increase) and the mlle also
is reduced by about 80 miles. A more s1g crease Value is

observed for this Configuration.
The analysis shows that Q)ttmg of &control parameters could

pro
significantly improve the perfo®\ of the systeQr every configuration. The
results also show that the nﬁgurat&z!rforms better with or without the
involvement of the Q

W% though with different emphasis in the
two cases. @ \\

ut actlvaﬁn control parameters (BACK =L and 79 =1)

s,5+1

%V tion A 0 D rms Configurations B and C in terms of system capacity

s. 12 ers/hour) meaning that the insertion procedure is able to perform

® bett if a slimmer service area and consequently a lesser amount of slack
‘ 0 ti s is due to the fact that a “wild” consumption of the slack time is less likely

Ohappen when there is a smaller amount of it available to begin with and the system

Q 1s able to control itself better.
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When properly setting the control parameters, every configuration benefits
from it, but the improvements shown in Configuration B and C are much more
evident than those in Configuration A and, while the s/im case still performs better,
the three “optimized” systems are comparable in terms of capacity and performance. @
In addition we note that the longitudinal velocity V (along the x axis in 0
Figure 11) of the vehicle decreases with the widening of the serviceé

(Configurations B and C), because of the increased amount of time needgd By the
vehicle to serve points along the larger width. PD %mers trave to/from
checkpoints could perceive this slowness ley, Qi average they
would experience ride times increasingly la er than the_dirceg time needed to travel

between their pick-up and drop- of\herefore on er service areas, such as

Configuration A would be for pub nsportation purposes, where the
longitudinal velocity V@e vehicle js &mch slower than a fixed-route lines

traveling betwee omts er conﬁguratlons with wider service area

could Ve pprop %&Ae transportation of goods instead of people.

\
& MASIixed-route comparison
® perform a comparison between the MAST service and a fixed-route

0 b e. For this purpose we assume the same service area (LxW = 10x1 miles)

E Qserved by a single vehicle fixed-route line consisting of 19 stops evenly distributed

Q along the x axis (one stop every 0.5 miles). See Figure 18. We keep the same
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vehicle speed (v =25 miles/hour) and the same b =18 sec for all stops and we
assume no slack time for the fixed-route since it does not have to drive off route. We
note that in most transit systems there is also additional slack time added to the
schedule due to random travel times. Since in this study we consider only
deterministic travel times, we assume the slack time for accommodating random
travel times is zero. Since the headway for the fixed route bus is 60 minute@

scheduled/actual travel time between two consecutive stops is 1.5 minutes O

N L

e
\;V Fixed-route Q 5@)

v

a@ O

. 3 . .
Figu 1& ST/Fixed-route systems comparison

e,
In

é «o perform the comparison, we need to define an additional
® perfoeasure given by the average walking time per passenger (PWK)

0 a a walking speed of 3 miles/hour. While the MAST system serves its

v

Ostomers point to point and no walking occurs, a fixed-route system forces NP and
Q ND requests to walk to/from the nearest fixed stop in order to use the service. Note
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that the P and D requests could have a certain amount of walking time associated
with it, but considering the same demand it would be equivalent for both systems.
Consequently, we assume it to be zero. Therefore, the overall performance Z
defined in Equation (6.26) slightly changes as follows: @

O

Z = wixMI/v + woxPTxNCrt + wixPWxNCnp + WaxPWKXNCr

where the new last term represents the contributio% of the a"Q& walking
time and wy 1s its weight factor that we cons ass o@ma to 0.5 like
ws (even though customers would @y perceivg walging time with more

discomfort that waiting time at :& stop especi ring nighttime for safety

reasons). Q @

We ran the simul for the f@o te service again for 50 hours so that

R =100 in this c@we co
using thg @ Qand. T are shown in Table 26.
0\

()

e results with the MAST configuration D2

O & Table 26 — MAST/fixed-route comparison

PT (min) 23.93 | 14.00
PWK (min) 0 7.5

PI (min) 55.98 | 30.21
PW (min) 1.72 0

0 (customers/hour) 25
s System MAST-D2 | Fixed

MI (miles) 983.4 | 1000
Z 8674.2 |9862.1
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We observe that the PI values (directly proportional to the headway of the
system and not included in Z) clearly are in favor of the fixed-route system.
However, it has been shown that for headways larger than 12-13 minutes the

majority of the customers are aware of the schedule (Okrent, 1974) and this is true

for all P requests showing up at bus stops (for both systems). Furthermore, as we 0

already noticed, for NP requests PI represents the waiting time incurred fro
customer’s call (ready time 1) to the etdnp that people most likely spen g fice,

at home or in another comfortable location, not at stop. Ther e do not

consider PI as a valid parameter for this com

The other figures show that the@ system Z to the corresponding
fixed-route results has a smaller PWN< 2 minutes) §' bigger by approximately
10 minutes, but MI is lowe e’s n for the customers as opposed to
the fixed-route system \‘ on aver Xm

performance Z 1s in favd) Q MAST system, confirming the validity of

ers walk 7.5 minutes. The overall

this inng#

serv %eg .

ice co 0 a conventional transportation system for this

Q\

o
oS O
?*\\’o

Y
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7 Conclusions and future research

In this research we analyzed the Mobility Allowance Shuttle Transit (MAST)
service, an innovative fixed and flexible type of transportation system that merges

the flexibility of demand responsive transit (DRT) systems and the low cost c)@

operability of fixed-route systems. 0

From a design point of view, we investigated the viability of MAST

Results show that the system is able to serve pro a reasonable n while
maintaining a relatively high longitudinal Vel in order t the service
attractive to customers. The relations Veloc1 mand density can
be beneficially used in the design Qet the eters of the MAST system,
such as slack time, size of the area a @m r of vehicles to be employed
per line.

From an al p01 Q in static scenarios, the problem is
mathematigall Klated ard integer linear program and it is a special

case of t ickup Problem (PDP). We developed and added to the

nc?
Q@m a set (@r and efficient valid inequalities that sped up the search for
O

pti mal ol8glon by raising the lower optimality bound.

® E ST scheduling problem is then examined from a dynamic operational
e

0 p e. We developed a customized insertion heuristic algorithm to schedule

E @ service dynamically. Due to the dynamic nature of the environment, the

Q algorithm makes effective use of a set of control parameters to reduce the
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consumption of slack time and enhance the algorithm performance. The results
show the efficacy of the algorithm and its control parameters and demonstrate that
the algorithm can be used as an effective method to automate scheduling of this line

and other similar services. A comparison performed by simulation shows that the

innovative hybrid characteristics of MAST services are competitive with 0

conventional fixed-route ones and perform better under certain demand distribu >
Future research on MAST systems should focus on studying the @hlcle

case and designing efficient networks of this type ﬁice, in ord er wider
atu

service areas and different demand distributjegs® e copibBi a@ nature of the

problem would also need to develop a@yze efﬁciialzithms to schedule the

vehicles interconnected within thesaetworks. O

O
o)

4
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