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Abstract

We study a hybrid transportation system referred to as mobility allowance shuttle transit (MAST) where vehicles may
deviate from a fixed path consisting of a few mandatory checkpoints to serve demand distributed within a proper service
area. In this paper we propose a mixed integer programming (MIP) formulation for the static scheduling problem of a
MAST type system. Since the problem is NP-Hard, we develop sets of logic cuts, by using reasonable assumptions on pas-
sengers’ behavior. The purpose of these constraints is to speed up the search for optimality by removing inefficient solu-
tions from the original feasible region. Experiments show the effectiveness of the developed inequalities, achieving a
reduction up to 90% of the CPU solving time for some of the instances.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We study a hybrid transportation system referred
to as the mobility allowance shuttle transit (MAST)
where vehicles may deviate from a fixed path con-
sisting of a few mandatory checkpoints to serve
demand distributed within a proper service area. A
MAST system is described by a set of vehicles driv-
ing along a base fixed-route and serving a specific
geographic area. The base route can be laid out
around a loop or between two terminals. Vehicles

must stop at a set of checkpoints along the main
path. The checkpoints are conveniently located at
major transfer points or high density demand zones,
are relatively far from each other and have fixed
departure times. Given a proper amount of slack
time, vehicles are allowed to deviate from the fixed
path to serve (pick-up and/or drop-off) customers
at their desired locations, as long as they are within
a service area.

The idea behind a MAST system is to combine
the flexibility of demand responsive transit (DRT)
systems with the low cost operability of fixed-route
systems and tries to fulfill the recent goals of transit
agencies, which are seeking ways to increase their
service flexibility in a cost efficient way. A small
scale version of such a system has been tested in
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Los Angeles County for one nighttime bus line ser-
vicing mostly night-shift employees of local firms.
The vehicle moves back and forth several times
between two terminals stopping at one additional
checkpoint in the middle of the route and it is
allowed to deviate within half a mile from either side
of the main route.

MAST systems have only recently been app-
roached by researchers. Quadrifoglio et al. (2007)
developed a customized insertion heuristic schedul-
ing algorithm to handle a large amount of demand
dynamically. Continuing work is presented in
Quadrifoglio and Dessouky (2007), where the
authors evaluated the sensitivity to the shape of the
service area of the effectiveness of the above men-
tioned heuristic. Zhao and Dessouky (2007) studied
the optimal service capacity of a MAST system
through a stochastic approach. Quadrifoglio et al.
(2006) employed continuous approximations to
evaluate the performance of MAST systems and
help in their design phase.

Some work approached hybrid systems in which
different vehicles perform the fixed and variable por-
tions. Aldaihani et al. (2004) developed a continu-
ous approximation model for designing such a
service. Scheduling heuristics based on a hybrid sys-
tem include the decision support system of Liaw
et al. (1996), the insertion heuristic of Hickman
and Blume (2000) and the tabu heuristic of Aldaih-
ani and Dessouky (2003). Another work studying a
combination of fixed and flexible service can be
found in Cortés and Jayakrishnan (2002).

Other types of hybrid transportation systems
have been studied by a few researchers. The work
of Daganzo (1984) describes a checkpoint DRT sys-
tem that combines the characteristics of both fixed
route and door-to-door service. A service request
is still made but the pick-up and drop-off points
are not at the door but at centralized locations
called checkpoints. However, the MAST system
conceptually differs from it, since it allows also for
door-to-door requests. Malucelli et al. (1999) pro-
vide a general overview of flexible transportation
systems. Crainic et al. (2001) incorporate the hybrid
fixed and flexible concept in a more general network
setting, providing also a mathematical formulation.

MAST systems can be considered as a special
case of the pickup and delivery problem (PDP)
and can be formulated as mixed integer programs
(MIP). There has been a significant amount of
research on the PDP. Savelsbergh and Sol (1995),
Desaulniers et al. (2000) and Cordeau and Laporte

(2003) provide comprehensive reviews on PDP sys-
tems, examining mathematical formulations and
solutions approaches presented by different authors.
More recently, a branch-and-cut algorithm to solve
the single vehicle PDP without capacity constraints
is described in Lu and Dessouky (2004). Other opti-
mization algorithms for different variants of the
PDP include the work of Psaraftis (1980), Psaraftis
(1983), Kalantari et al. (1985), Desrosiers et al.
(1986), Fischetti and Toth (1989), Dumas et al.
(1991), and Ruland and Rodin (1997). While PDP
systems focus strictly on point-to-point transport
services, the hybrid characteristics of the MAST ser-
vice add significant time and space constraints to the
problem mainly due to the need of having the vehi-
cles arrive at the checkpoints on or before their
scheduled departure time.

In this paper, we propose a MIP formulation of
the single-vehicle MAST scheduling problem and
we develop sets of ‘‘logic cuts’’ based on realistic
assumptions on passenger behavior. We test and
demonstrate their effectiveness for a variety of
demand scenarios by solving to optimality some sets
of problems using CPLEX 9.0.

The reminder of this paper is structured as fol-
lows. In Section 2, we develop the basic formulation
of a MAST system. In Section 3, we present the
logic constraints. Section 4 describes the experimen-
tal results. Finally, we provide the conclusions in
Section 5.

2. Formulation

The MAST system considered consists of a single
vehicle, initially associated with a predefined sche-
dule along a fixed-route consisting of C checkpoints
identified by c = 1,2, . . . ,C; two of them are termi-
nals located at the extremities of the route (c = 1
and c = C) and the remaining C � 2 intermediate
checkpoints are distributed along the route. The
vehicle moves back and forth between 1 and C. A
trip r is defined as a portion of the schedule begin-
ning at one of the terminals and ending at the other
one after visiting all the intermediate checkpoints;
the vehicle’s schedule consists of R trips. Since the
end-terminal of a trip r corresponds to the start-ter-
minal of the following trip r + 1, the total number
of stops at the checkpoints is TC = (C � 1) · R + 1.
Hence, the initial schedule’s array is represented by
an ordered sequence of stops s = 1, . . . ,TC and their
scheduled departure times are assumed to be con-
straints on the system which cannot be violated.
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The service area is represented by a rectangular
region defined by L · W, where L (on the x axis)
is the distance between terminals 1 and C and W/2
(on the y axis) is the maximum allowable deviation
from the main route in either side (see Fig. 1).

Each checkpoint c is scheduled to be visited by
the vehicle R times. Note that for terminal check-
points c = 1 and c = C the ending checkpoint of a
trip r coincides with the starting checkpoint of the
following trip r + 1.

The demand is defined by a set of requests. Each
request is defined by pick-up/drop-off service stops
and a ready time for pick-up. The MAST service
can respond to four different types of requests:
pick-up (P) and drop-off (D) at the checkpoints;
non-checkpoint pick-up (NP) and drop-off (ND),
representing customers picked up/dropped off at
any location within the service area. A certain
amount of slack time between any consecutive pair
of checkpoints is needed in order to allow deviations
to serve NP or ND requests. There are consequently
four different possible types of customers’ requests:

• PD (‘‘Regular’’): pick-up and drop-off at the
checkpoints

• PND (‘‘Hybrid’’): pick-up at the checkpoint,
drop-off not at the checkpoint

• NPD (‘‘Hybrid’’): pick-up not at the checkpoint,
drop-off at the checkpoint

• NPND (‘‘Random’’): pick-up and drop-off not at
the checkpoints

All customers but the PD requests need a booking
process to use the service. While checkpoints are
identified by i = 1, . . . ,TC, non-checkpoint requests
(NP or ND) are identified by i = TC + 1, . . . ,TS,
where TS represents the total number of stops.

In this paper, we consider a static scenario in
which all the demand is known in advance. We also

assume one customer per request, no vehicle capac-
ity constraint and a deterministic environment.

We define the following notation for the system:

• R = number of trips
• RD = {1, . . . ,R} = set of trips
• C = number of checkpoints
• TC = (C � 1) · R + 1 = total number of stops at

the checkpoints in the schedule
• N0 = {1, . . . ,TC} = set of stops at the check-

points
• hi = scheduled departure time of checkpoint stop

i "i 2 N0[h1 = 0]
• KPD = set of PD requests
• KPND = set of PND requests
• KNPD = set of NPD requests
• KNPND = set of NPND requests
• KHYB = KPND [ KNPD = set of hybrid requests

(PND and NPD types)
• K = KPD [ KHYB [ KNPND = set of all requests
• sk = ready time of request k "k 2 K

• TS = TC + |KPND| + |KNPD| + 2 · |KNPND| = total
number of stops

• Nn = {TC + 1, . . . ,TS} = set of non-checkpoint
stops

• N = N0 [ Nn = set of all stops
• di,j = rectilinear travel time between i and j

"i,j 2 N
• bi = service time for boardings and disembark-

ments at stop i "i 2 N/{1}
• A = set of all arcs in the network

PD requests are guaranteed to be served at their
chosen service checkpoints identified by their index
i 2 N0, since we assume no capacity constraint on
the vehicle. NPND requests have their own stops
identified by their index i 2 Nn, which will be
placed somewhere in the schedule. We therefore
identify the following vectors that map pick-up
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Fig. 1. MAST system.

L. Quadrifoglio et al. / European Journal of Operational Research 185 (2008) 481–494 483

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



Author's personal copy

and drop-off stops for each request (except the
checkpoints of the hybrid ones):

• ps(k) 2 N = pick-up stop of each request k
"k 2 K/KPND.

• ds(k) 2 N = drop-off stop of each request k

"k 2 K/KNPD.

Hybrid requests (PND and NPD) instead do not
have a priori a uniquely identified node in N corre-
sponding to their checkpoint service point. In other
words, each pick-up and drop-off stop of all
requests uniquely corresponds to a node in N, with
the exception of the pick-up stop of PND requests
and the drop-off stop of the NPD requests. In fact,
these can be associated to a number of occurrences
of their chosen checkpoint (either a P or a D),
depending on where their non-checkpoint stop
(either a ND or a NP) is positioned in the schedule.
For example, consider a MAST system with C = 5
and R = 4 and assume that a NPD request would
like to be picked up at its NP stop (i*) as soon as
possible and dropped off at the checkpoint c = 4
in the first trip r = 1. It could occur that, because
of lack of slack time due to other requests, the NP
stop i* cannot be placed in the schedule before
c = 4 during the first trip. As a result, the customer
will have to be dropped off at a successive occur-
rence of c = 4 in the schedule. A similar example
could be developed for PND requests. Thus we
have:

• pc(k, r) 2 N0 = collection of all the occurrences in
the schedule (one for each r 2 RD) of the pick-up
checkpoint of each request k "k 2 KPND.

• dc(k, r) 2 N0 = collection of all the occurrences in
the schedule (one for each r 2 RD) of the
drop-off checkpoint of each request k "k 2
KNPD.

The variables of the system are the following:

• xi,j = {0,1} "(i, j) 2 A = binary variables indicat-
ing if an arc (i, j) is used (xi,j = 1) or not (xi,j = 0).

• ti = departure time from stop i "i 2 N.
• ti ¼ arrival time at stop i "i 2 N/{1}.
• pk = pick-up time of request k "k 2 K.
• dk = drop-off time of request k "k 2 K.
• zk,r = {0,1} = binary variable indicating whether

the checkpoint stop of the hybrid request k (a
pick-up if k 2 KPND or a drop-off if k 2 KNPD)
is scheduled in trip r "r 2 RD.

The problem can now be formulated as a mixed
integer linear program, where x1, x2 and x3 are
proper weights:

min x1

X
ði;jÞ2A

di;jxi;j

 !
þx2

X
k2K

ðdk�P kÞ
 !

þx3

X
k2K

ðpk�skÞ
 !

ð1Þ

subject toX
i

xi;j¼1 8j2N=f1g; ð2Þ
X

j

xi;j¼1 8i2N=fTCg; ð3Þ

ti¼hi 8i2N 0; ð4Þ
pk¼ tpsðkÞ 8k2K=KPND; ð5Þ
dk¼�tdsðkÞ 8k2K=KNPD; ð6ÞX
r2HYBRðkÞ

zk;r¼1 8k2KHYB; ð7Þ

pk P tpcðk;rÞ �Mð1� zk;rÞ 8k2KPND; 8r2RD; ð8Þ
pk6 tpcðk;rÞ þMð1�zk;rÞ 8k2KPND; 8r2RD; ð9Þ
dk P�tdcðk;rÞ �Mð1�zk;rÞ 8k2KNPD; 8r2RD; ð10Þ
dk6�tdcðk;rÞ þMð1�zk;rÞ 8k2KNPD; 8r2RD; ð11Þ
pk P sk 8k2K; ð12Þ
dk > pk 8k2K; ð13Þ
�tj P tiþxi;jdi;j�Mð1�xi;jÞ 8ði;jÞ2A; ð14Þ
ti P�tiþbi 8i2N=f1g: ð15Þ

The objective function (1) minimizes the weighted
sum of three different factors, namely the total miles
driven by the vehicle, the total ride time of all cus-
tomers and the total waiting time of all customers,
defined as the time interval between the ready time
and the pick-up time. This definition allows opti-
mizing in terms of both the vehicle variable cost
(first term) and the service level (the last two terms);
modifying the weights accordingly we can empha-
size one factor over the others as needed.

Network constraints (2) and (3) allow each stop
(except nodes 1 and TC) to have exactly one incom-
ing arc and one outgoing arc equal to 1, so that all
the stops will be visited once.

Constraints (4) force the departure times from
each checkpoint to be fixed, since they are presched-
uled like in a fixed-route line.

Constraints (5) establish for each request (except
the PND) the equality between the pick-up time
and the departure time of its corresponding node.
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Similarly, constraints (6) establish for each request
(except the NPD) the equality between the drop-off
time and the arrival time of its corresponding node.

Constraints (7) allow exactly one z variable to be
equal to 1 for each hybrid request, assuring that a
unique ride will be selected for their pick-up or
drop-off checkpoint.

Constraints (8) and (9) fix the value of the pk

variables for each request k 2 KPND, depending on
the variable z chosen. Constraints (10) and (11) do
the same for the dk variables for each request
k 2 KNPD. We let M represent a number large
enough to cause the constraints to become irrele-
vant when zk,r = 0. An M = hTC � h1 is big enough
to serve this purpose.

Constraints (12) prevent the departure times of
each customer from being earlier than its ready
time. Constraints (13) are the precedence con-
straints for each request: pick-up must be scheduled
before the corresponding drop-off.

Constraints (14) are the key constraint in the for-
mulation. They define that for each xi,j = 1 the arri-
val time at j should be no less than the departure time
from i plus the time needed to travel between i and j.
The last term with the M (also in this case an
M = hTC � h1 is large enough to be effective) assures
that for any xi,j = 0 the constraints become irrele-
vant. By using time stamps, these constraints guar-
antee that every feasible solution does not contain
inner loops, but a single path from node 1 to node
TC. Thus, they serve as subtour elimination con-
straints and they are similar to the Miller-Tucker-
Zemlin (MTZ) constraints. Constraints (15) make
sure that at each node the departure time is always
bigger than the arrival time plus the service time.

The problem is a special case of the pick-up
and delivery problem (PDP) that is known to be
NP-Hard. The above formulation is sufficient to find
the optimal solution (if it exists) of a given instance
of the MAST problem. However, the CPU time to
reach optimality can be greatly reduced by removing
unnecessary binary variables and especially by add-
ing logic constraints. The elimination of evidently
infeasible arcs to reduce the size of the problem
has been performed, but it is not shown here for
brevity. In Section 3 instead we define and describe
the logic constraints.

3. Logic constraints

The above formulation is sufficient to find the
optimal solution of the problem, but it is ineffective

in the sense that it includes many feasible inefficient
solutions and thus has a weak LP relaxation. The
purpose of this section is to identify inequalities
linking together some of the variables to reduce
the feasible region identified by constraints
(2)–(15) and possibly speed up the search for opti-
mality. The challenge is to make sure that these
new constraints are legitimate and will only remove
feasible but not optimal solutions from the problem.

A way to speed up the search for optimality and
be able to solve larger instances in a reasonable time
is to ‘‘tighten’’ the model by adding constraints
(‘‘cuts’’) to the formulation. Legitimate cuts should
never cause the optimal solution to change; their
purpose is to help solvers to reach optimality faster.

As noted by Schrijver (1986), a constraint (either
equality or inequality) is classified as valid if it
reduces the dimensions of the relaxed feasible
region, but all integer feasible solutions of the origi-
nal model still satisfy it. The purpose of these con-
straints is to reduce the size of the relaxed feasible
region, ideally making it the convex hull of the inte-
ger feasible solutions which would allow an LP
algorithm to solve the problem. Wolsey (1989,
2003) provide comprehensive surveys about the
research on the development of effective valid con-
straints for MIP formulations.

Another category of constraints are the so called
‘‘logic cuts’’. These constraints are not valid because
their purpose is to reduce the feasible region by
eliminating some integer feasible solutions that are
provably not optimal by some logic considerations.
These ‘‘logic cuts’’ can be indeed very effective. They
may significantly shrink the feasible region, even by
some orders of magnitude, and they allow improv-
ing the quality of the LP relaxation bound, consid-
erably speeding up the reduction of the optimality
gap throughout the iterations of the solver. As a
result, they can be extremely beneficial in reducing
the CPU time in the search for optimality. However,
adding too many of them can also cause the formu-
lation to become cumbersome, forcing solvers to
spend too much time while solving LP relaxation
sub-problems, increasing the total CPU time. There-
fore, their identification and addition to the formu-
lation must be careful and wise, since it may not
always be effective. Developments of logic con-
straints can be found, for example, in Andalaft
et al. (2003) for forest harvesting related optimiza-
tion problems. Related research has been performed
earlier by Kirby et al. (1986) and Guignard et al.
(1994, 1998).
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The underlying concept behind all the inequali-
ties developed in this section is that hybrid custom-
ers will be choosing their P or D checkpoints as
close as possible to their corresponding ND or NP
stop, once these are placed in the schedule. In order
to prove this we need to assume x2 > x3 in the
objective function (1), which implies that customers
would prefer to wait for pick-up rather than to ride
the vehicle. Note that the waiting time is defined as
the difference between the pick-up time and the
ready time (pk � sk "k 2 K). This would generally
not be true if customers do not know the schedule
and face random arrivals of buses at their pick-up
locations; in fact, they would probably rather spend
their time onboard instead of waiting at their pick-
up stop, especially when facing bad weather condi-
tions and/or unsafe areas. However, in a MAST
system, once the schedule is done, customers know
in advance the expected time for pick-up and
drop-off. Thus, given that the drop-off time is fixed,
they would reasonably prefer to have their sched-
uled pick-up times as late as possible to make their
ride shorter and consequently their wait longer. This
is particularly true for NPD and NPND customers
that would spend their waiting time at their NP stop
(home or office or other convenient locations) and
not at an outdoor bus stop. Also, PND and PD cus-
tomers would spend their waiting time at the check-
points, most likely large comfortable and equipped
stations rather than outdoor possibly unsafe bus
stops.

More formally, we can state the following Prop-
osition 1 for NPD requests, which will disembark
the vehicle as early as possible after being picked
up to minimize their ride time.

Proposition 1. A necessary condition for optimality is

that NPD customers must disembark the vehicle at the

first occurrence of their D checkpoint following their
scheduled NP pick-up stop.

Proof. Consider a request k 2 KNPD and assume
that the optimal solution, call it (I), drops off
request k during trip r�, i.e. zk,r� = 1, and has ps(k)
scheduled between dc(k, r* � 1) and dc(k, r*), with
r� > r*. The objective function can be written as
Z = D + x2(dk � pk), where D includes all the terms
in Z except the ride time term of k; therefore its
value would be ZI ¼ Dþ x2ð�tdcðk;r�Þ � pkÞ, since
dk ¼ �tdcðk;r�Þ (depending on the values of the zk,r,
indicating at which occurrence of the drop-off
checkpoint the customer disembarks the vehicle, dk

could be equal to �tdcðk;r�Þ, �tdcðk;r�þ1Þ, . . ., �tdcðk;RÞ, with
�tdcðk;r�Þ < �tdcðk;r�þ1Þ < � � � < �tdcðk;RÞ). Another feasible
solution (II) of the problem can be identified by set-
ting zk;r� ¼ 0 and zk;r� ¼ 1, thus dk ¼ �tdcðk;r�Þ, and
leaving everything else unchanged (the customer
would basically disembark the vehicle at an earlier
occurrence of its drop-off checkpoint). Its
ZII ¼ Dþ x2ð�tdcðk;r�Þ � pkÞ. Since �tdcðk;r�Þ < �tdcðk; r�Þ,
we have ZII < ZI. This is a contradiction. h

In parallel, we can develop and prove the follow-
ing Proposition 2 for PND requests, which will
board the vehicle as late as possible, minimizing
their ride time and therefore maximizing their wait-
ing time.

Proposition 2. If x2 > x3, a necessary condition for

optimality is that PND customers must board the

vehicle at the last occurrence of their P checkpoint

prior to their scheduled ND drop-off stop.

Proof. Consider a request k 2 KPND with sk 6

tpc(k, r�) and assume that the optimal solution, call
it (I), picks up request k during trip r�, i.e.
zk;r� ¼ 1, and has ds(k) scheduled between pc(k, r*)
and pc(k, r* + 1), with r� < r*. The objective func-
tion can be written as Z = D + x2(dk � pk) +
x3(pk � sk), where D includes all the terms in Z

except the ride time and the waiting time terms of
k, and can be rearranged as Z = D + x2dk � x3sk +
pk(x3 � x2); therefore its value would be ZI ¼ Dþ
x2dk � x3sk þ tpcðk;r�Þðx3 � x2Þ, since pk ¼ tpcðk;r�Þ
(depending on the values of the zk,r, indicating
at which occurrence of the pick-up checkpoint the
customer boards the vehicle, pk could be equal
to tpcðk;r�Þ, tpcðk;r�þ1Þ; . . . ; tpcðk;r�Þ, with tpcðk;r�Þ <
tpcðk;r�þ1Þ < � � � < tpcðk;r�Þ). Another feasible solution
(II) of the problem can be identified by setting
zk;r� ¼ 0 and zk;r� ¼ 1, thus pk = tpc(k,r*), and leaving
everything else unchanged (the customer would
basically board the vehicle at a later occurrence of
its pick-up checkpoint). Its ZII = D + x2dk �
x3sk + tpc(k,r*)(x3 � x2). Since x3 � x2 < 0 by
assumption and tpcðk;r�Þ < tpcðk;r�Þ, we have ZII < ZI.
This is a contradiction. h

Note that the opposite assumption on the
weights (x2 < x3) would just reverse the above
result, having customers getting onboard as soon
as possible and we would still be able to produce
logic cuts similar to the ones developed shortly.

Although the logic behind the above Proposi-
tions may seem obvious to a human mind, it is

486 L. Quadrifoglio et al. / European Journal of Operational Research 185 (2008) 481–494

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



Author's personal copy

not explicitly stated in the formulation and the sol-
ver would still consider several feasible but ineffi-
cient solutions (violating the above propositions)
as possible candidates while searching for optimal-
ity. Therefore, based on the above Propositions,
we develop three different groups of valid inequali-
ties to add to the formulation.

To formally develop the constraints we define the
following notation:

• An = arcs in Nn, including all arcs (i, j) "i,j 2 Nn,
with i 5 j.

• A0,n = arcs from N0 to Nn, including all arcs (i, j)
"i 2 N0/{TC} "j 2 Nn.

• An,0 = arcs from Nn to N0, including all arcs (i, j)
"i 2 Nn, "j 2 N0/{1}.

• q(i) 2 K = corresponding request of each non-
checkpoint stop i "i 2 Nn.

3.1. Group #1

The first group of inequalities is developed by
directly applying Propositions 1 and 2. They include
constraints linking the z variables to the t variables
(departure times) of non-checkpoint stops of hybrid
requests and constraints linking the z variables to
some of the x variables.

For a PND request a legitimate set of inequalities
is represented by

tdsðkÞ < zk;rhj þMð1� zk;rÞ; ð16Þ

with j = pc(k, r + 1) "k 2 KPND, "r 2 RD/{R}.
Because of Proposition 2 these constraints force

the ND stop of each PND request to be scheduled
before the next occurrence in the schedule of the
checkpoint chosen as the pick-up. If zk,r = 1 the
PND customer is picked up at his/her checkpoint
pc(k, r) in trip r and the constraint imposes that
the ds(k) has to be scheduled before pc(k, r + 1) by
setting an upper bound on the departure time tds(k).
If zk,r = 0 the constraint becomes irrelevant because
of the M.

Symmetrically for NPD requests a legitimate set
of inequalities is represented by

tpsðkÞ > zk;rhi �Mð1� zk;rÞ; ð17Þ

with i = dc(k, r � 1) "k 2 KNPD, "r 2 RD/{1}.
Because of Proposition 1, these constraints force

the NP stop of each NPD request to be scheduled
after the previous occurrence in the schedule of
the checkpoint chosen as the drop-off. If zk,r = 1

the NPD customer is dropped off at his/her check-
point dc(k, r) in trip r and the constraint imposes
that the ps(k) has to be scheduled after dc(k, r � 1)
by setting a lower bound on the departure time
tps(k). If zk,r = 0 the constraint becomes irrelevant
because of the M.

We can also include the following inequalities for
PND requests:

xdsðkÞ;j 6 zk;r; ð18Þ

with pc(k, r) < j 6 pc(k, r + 1) "k 2 KPND, "r 2
RD/{R}, "(ds(k), j) 2 An,0.

By Proposition 1, if zk,r = 1, ds(k) must be sched-
uled between pc(k, r) and pc(k, r + 1) and all arcs
originating from ds(k) and ending at a checkpoint
j cannot exist whenever j is not included in that
interval. These arcs would in fact infeasibly require
the vehicle to go from ds(k) to a checkpoint sched-
uled before its pick-up pc(k, r) or to skip pc(k, r + 1)
going directly from ds(k) to a checkpoint scheduled
after pc(k, r + 1).

Similarly we have:

xi;dsðkÞ 6 zk;r; ð19Þ

with pc(k, r) 6 i < pc(k, r + 1) "k 2 KPND, "r 2 RD/
{R}, "(i,ds(k)) 2 A0,n.

All arcs originating from a checkpoint i and end-
ing at ds(k) are eliminated whenever i is not
included in the interval [pc(k, r),pc(k, r + 1)) identi-
fied by zk,r = 1.

Symmetrically for NPD requests we have that

xi;psðkÞ 6 zk;r; ð20Þ

with dc(k,r � 1) 6 i < dc(k,r) "k 2 KNPD, "r 2 RD/
{1}, "(i,ps(k)) 2 A0,n.

xpsðkÞ;j 6 zk;r; ð21Þ

with dc(k,r � 1) < j 6 dc(k,r) "k 2 KNPD, "r 2 RD/
{1}, "(ps(k), j) 2 An,0.

3.2. Group #2

A second group of inequalities includes con-
straints linking z and x variables by making use of
Propositions 1 and 2 along with the ready times s
of the requests.

For PND requests we have that

sqðiÞ þ di;j þ bj 6 zk;rhj þMð2� zk;r � xdsðkÞ;iÞ; ð22Þ

with i = ps(q(i)), j = pc(k, r + 1) "k 2 KPND, "r 2
RD/{R}, "(ds(k), i) 2 An.
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By Proposition 1, if zk,r = 1, ds(k) must be sched-
uled between pc(k, r) and pc(k, r + 1) and these con-
straints impose that any arc originating from the
ds(k) of a PND request to any non-checkpoint
pick-up i is not allowed if the vehicle would not be
able to reach checkpoint pc(k, r + 1) on time by
passing through i, because of too high sq(i), even
using the quickest way possible. The M causes these
constraints to become irrelevant if either zk,r or
xds(k),i are not equal to 1.

Similarly,

sqðiÞ þ ðdpsðqðiÞÞ;dsðkÞ þ ddsðkÞ;i þ di;jÞ þ ðbdsðkÞ þ bi þ bjÞ
6 zk;rhj þMð2� zk;r � xdsðkÞ;iÞ; ð23Þ

with i = ds(q(i)), j = pc(k, r + 1) "k 2 KPND, "r 2
RD/{R}, "(ds(k), i) 2 An.

Any arc originating from the ds(k) of a PND
request k to any non-checkpoint drop-off i is not
allowed if the vehicle is not able to go from the
pick-up point ps(q(i)) to ds(k) to i to checkpoint
pc(k, r + 1) on time, because of too high sq(i), even
using the quickest way possible. The M causes these
constraints to become irrelevant if either zk,r or
xds(k),i are not equal to 1.

Analogous constraints can be developed for arcs
(i,ds(k)) as follows:

sqðiÞ þ ðdi;dsðkÞ þ ddsðkÞ;jÞ þ ðbdsðkÞ þ bjÞ
6 zk;rhj þMð2� zk;r � xi;dsðkÞÞ; ð24Þ

with i = ps(q(i)), j = pc(k, r + 1) "k 2 KPND, "r 2
RD/{R}, "(i,ds(k)) 2 An.

sqðiÞ þ ðdpsðqðiÞÞ;i þ di;dsðkÞ þ ddsðkÞ;jÞ þ ðbi þ bdsðkÞ þ bjÞ
6 zk;rhj þMð2� zk;r � xi;dsðkÞÞ; ð25Þ

with i = ds(q(i)), j = pc(k, r + 1) "k 2 KPND, "r 2
RD/{R}, "(i,ds(k)) 2 An.

For NPD requests the four constraints above can
be developed likewise:

sqðiÞ þ di;j þ bj 6 zk;rhj þMð2� zk;r � xpsðkÞ;iÞ; ð26Þ

with i = ps(q(i)), j = dc(k, r) "k 2 KNPD, "r 2 RD,
"(ps(k), i) 2 An.

sqðiÞ þ ðdpsðqðiÞÞ;psðkÞ þ dpsðkÞ;i þ di;jÞ þ ðbpsðkÞ þ bi þ bjÞ
6 zk;rhj þMð2� zk;r � xpsðkÞ;iÞ; ð27Þ

with i = ds(q(i)), j = dc(k, r) "k 2 KNPD, "r 2 RD,
"(ps(k), i) 2 An.

sqðiÞ þ ðdi;psðkÞ þ dpsðkÞ;jÞ þ ðbpsðkÞ þ bjÞ
6 zk;rhj þMð2� zk;r � xi;psðkÞÞ; ð28Þ

with i = ps(q(i)), j = dc(k, r) "k 2 K NPD, "r 2 RD,
"(i,ps(k)) 2 An.

sqðiÞ þ ðdpsðqðiÞÞ;i þ di;psðkÞ þ dpsðkÞ;jÞ þ ðbi þ bpsðkÞ þ bjÞ
6 zk;rhj þMð2� zk;r � xi;psðkÞÞ; ð29Þ

with i = ds(q(i)), j = dc(k, r) "k 2 KPND, "r 2 RD,
"(i,ps(k)) 2 An.

3.3. Group #3

A third group of inequalities links z and x vari-
ables by applying the results from the Propositions
to pairs of hybrid requests. We indeed know by
Proposition 1 (2) that the non-checkpoint stop of a
PND (NPD) request must be included in the interval
between the chosen pick-up (drop-off) checkpoint
and its next (previous) occurrence in the schedule.
For any given pair of hybrid requests, the direct path
connecting together their non-checkpoint stops iden-
tified by the appropriate x variable is not allowed if

Table 1
System parameters, common to all cases

L 10 miles
W 1 mile
C 3
ds,s+1 (s = 1, . . . ,TC � 1) 12 minutes
bs (s = 1, . . . ,TS) 18 seconds
x1/x2/x3 0.4/0.4/0.2

Table 2
System parameters specific to each case

Parameters Cases

A1a B1a A1b B1b A1c B1c A1d B1d A2a B2a A2b B2b A2c B2c A2d B2d

R 2 4 4 4 6 6 6 6
TC 5 9 9 9 13 13 13 13
|KPD| 1 1 1 2 1 1 1 1
|KPND| 2 2 5 6 1 3 5 8
|KNPD| 1 2 4 6 1 2 5 7
|KNPND| 1 1 1 2 0 1 1 1
TS 10 15 20 25 15 20 25 30
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the intervals where the non-checkpoint stops are
supposed to be included in, identified by the corre-
sponding z variables, do not overlap.

Therefore, the following relationships can be
written:

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xdsðkÞ;dsðhÞÞ; ð30Þ

with i = pc(h, s), j = pc(k, r + 1) "k,h 2 KPND,
"r 2 RD/{R}, "s 2 RD.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xdsðhÞ;dsðkÞÞ; ð31Þ

with i = pc(h, s), j = pc(k, r + 1) "k,h 2 KPND, "r 2
RD/{R}, "s 2 RD.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xpsðkÞ;psðhÞÞ; ð32Þ

with i = dc(h, s � 1), j = dc(k, r) "k,h 2 KNPD,
"r 2 RD, "s 2 RD/{1}.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xpsðhÞ;psðkÞÞ; ð33Þ

with i = dc(h, s � 1), j = dc(k, r) "k,h 2 KNPD,
"r 2 RD, "s 2 RD/{1}.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xpsðkÞ;dsðhÞÞ; ð34Þ

with i = pc(h, s), j = dc(k, r) "k 2 KNPD, "h 2 KPND,
"r 2 RD, "s 2 RD.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xdsðhÞ;psðkÞÞ; ð35Þ

with i = pc(h, s), j = dc(k, r) "k 2 KNPD, "h 2
KPND, "r 2 RD, "s 2 RD.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xdsðkÞ;psðhÞÞ; ð36Þ

with i = dc(h, s � 1), j = pc(k, r + 1) "k 2 KPND,
"h 2 KNPD, "r 2 RD/{R}, "s 2 RD/{1}.

zh;shi � zk;rhj < Mð3� zh;s � zk;r � xpsðhÞ;dsðkÞÞ; ð37Þ

with i = dc(h, s � 1), j = pc(k, r + 1) "k 2 KPND,
"h 2 KNPD, "r 2 RD/{R}, "s 2 RD/{1}.

Table 4
CPLEX runs, subset A1

Cuts var bin lin con sec n i rel opt ub lb gap

Case: A1a TS = 10: R = 2; |KPD| = 1; |KPND| = 2; |KNPD| = 1; |KNPND| = 1
None 52 29 23 64 0.03 35 156 60.8 84.9 – – 0.0%
#1 52 29 23 67 0.02 21 98 60.9 84.9 – – 0.0%
#2 52 29 23 66 0.01 24 118 60.8 84.9 – – 0.0%
#3 52 29 23 66 0.02 24 118 60.8 84.9 – – 0.0%
All 52 29 23 71 0.03 26 185 60.9 84.9 – – 0.0%

Cuts var bin lin con sec n 103 i rel opt ub lb gap

Case: A1b TS = 15: R = 4; |KPD| = 1; |KPND| = 2; |KNPD| = 2; |KNPND| = 1
None 114 79 35 146 0.16 182 1.34 101.0 141.22 – – 0.0%
#1 109 75 34 146 0.08 23 0.31 101.1 141.22 – – 0.0%
#2 114 79 35 174 0.16 140 0.92 101.0 141.22 – – 0.0%
#3 114 79 35 228 0.20 189 1.56 101.0 141.22 – – 0.0%
All 109 75 34 245 0.09 11 0.30 101.1 141.22 – – 0.0%

Cuts var bin lin con sec 103 n 103 i rel opt ub lb gap

Case: A1c TS = 20: R = 4; |KPD| = 1; |KPND| = 5; |KNPD | = 4; |KNPND| = 1
None 226 176 50 273 44.35 59.59 449.6 129.9 191.3 – – 0.0%
#1 219 171 48 309 6.59 6.93 71.9 129.9 191.3 – – 0.0%
#2 226 176 50 332 37.95 40.87 408.4 129.9 191.3 – – 0.0%
#3 226 176 50 451 40.5 38.34 385.8 129.9 191.3 – – 0.0%
All 219 171 48 493 5.35 4.25 54.8 129.9 191.3 – – 0.0%

Cuts var bin lin con sec 103 n 106 i rel opt ub lb gap

Case: A1d TS = 25: R = 4; |KPD| = 2; |KPND| = 6; |KNPD| = 6; |KNPND| = 2
None 279 216 63 343 419 327 3.80 154.1 242.4 – – 0.0%
#1 273 211 62 390 81 64 0.77 154.1 242.4 – – 0.0%
#2 279 216 63 416 186 131 1.69 154.1 242.4 – – 0.0%
#3 279 216 63 503 269 192 2.20 154.1 242.4 – – 0.0%
All 273 211 62 563 80 53 0.73 154.1 242.4 – – 0.0%

Table 3
Customer type distribution of MTA line 646

Type PD PND NPD NPND

% 10% 40% 40% 10%
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For example in constraints (30) if zh,s = 1 and
zk,r = 1 we know that ds(h) must be scheduled
between pc(h, s) and pc(h, s + 1); similarly ds(k)
must be scheduled between pc(k, r) and pc(k, r + 1).
Therefore, the direct path from ds(k) to ds(h), iden-
tified by xds(k),ds(h), cannot be allowed if checkpoint
pc(h, s) is not scheduled earlier than pc(k, r + 1) and
the intervals do not overlap, because the vehicle
would have to pass by those checkpoints first, not
allowing a direct path that would skip them. The
M causes these constraints to become irrelevant if
either zh,s, zk,r or xds(k),ds(h) are equal to 0.

3.4. Other constraints

We note that it would be possible to develop sev-
eral other valid inequalities similar to the ones
already described. Equations from (16) to (37) shrink
the feasible region by rendering infeasible some
direct arcs from some stop i to some stop j, identified
by xi,j. Utilizing the same logic, we could forbid any
path beginning at i, passing through one or more

non-checkpoint stops and ending at j. However, the
number of constraints added to the formulation
would be exponentially high, most likely slowing
down the solution search instead of being effective.

4. Experimental results

In this section, we evaluate the effectiveness of
the groups of inequalities defined above by solving
different instances of the problem, including none,
one or all of them in the formulation. All the runs
are performed utilizing CPLEX 9.0 with default set-
tings using a 3.2 GHz CPU with 2 GB RAM. We
refer to Fig. 1 for the geometry of the MAST system
considered and Table 1 summarizes the assumed
parameters, common to all cases and consistent
with the real data of the MTA Line 646 in Los
Angeles County.

We run two sets of experiments: in set A we
assume a difference between the scheduled departure
times of two consecutive checkpoints (hs+1 � hs, s =
1, . . . ,TC � 1) of 17.5 minutes; in set B we assume

Table 5
CPLEX runs, subset A2

Cuts var bin lin con sec n i rel opt ub lb gap

Case: A2a TS = 15: R = 6; |KPD| = 1; |KPND| = 1; |KNPD| = 1; |KNPND| = 0
None 68 35 33 83 0.02 9 106 80 101.1 – – 0.0%
#1 68 35 33 106 0.01 0 59 80 101.1 – – 0.0%
#2 68 35 33 87 0.01 9 119 80 101.1 – – 0.0%
#3 68 35 33 101 0.02 7 103 80 101.1 – – 0.0%
All 68 35 33 128 0.01 0 61 80 101.1 – – 0.0%

Cuts var bin lin con sec n i rel opt ub lb gap

Case: A2b TS = 20: R = 6; |KPD| = 1; |KPND| = 3; |KNPD| = 2; |KNPND| = 1
None 129 84 45 156 0.12 191 978 126.1 164.5 – – 0.0%
#1 129 84 45 194 0.10 17 366 126.1 164.5 – – 0.0%
#2 129 84 45 184 0.11 142 853 126.1 164.5 – – 0.0%
#3 129 84 45 316 0.17 188 1164 126.1 164.5 – – 0.0%
All 129 84 45 382 0.09 10 304 126.1 164.5 – – 0.0%

Cuts var bin lin con sec n 103 i rel opt ub lb gap

Case: A2c TS = 25: R = 6; |KPD | = 1; |KPND| = 5; |KNPD| = 5; |KNPND| = 1
None 287 226 61 353 41.20 27,267 392.8 162 212 – – 0.0%
#1 284 223 61 437 2.03 893 12.0 162 212 – – 0.0%
#2 287 226 61 435 38.72 20,315 374.5 162 212 – – 0.0%
#3 287 226 61 739 73.96 29,313 556.7 162 212 – – 0.0%
All 284 223 61 819 1.83 524 8.5 162 212 – – 0.0%

Cuts var bin lin con sec 106 n 106 i rel opt ub lb gap

Case: A2d TS = 30: R = 6; |KPD| = 1; |KPND| = 8; |KNPD| = 7; |KNPND| = 1
None 418 342 76 503 36,000 14.3 242 186.7 ? 294.1 274.7 6.6%
#1 409 334 75 604 10,316 3.8 60 186.7 293.9 – – 0.0%
#2 418 342 76 671 36,000 12.1 227 186.7 ? 295.2 267.4 9.4%
#3 418 342 76 1377 36,000 5.1 138 186.7 ? 295.3 257.8 12.7%
All 409 334 75 1428 12,273 3.7 65 186.7 293.9 – – 0.0%
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25 minutes instead. As a result the slack time is
approximately 25% in set A and 50% in set B, since
the direct time among two consecutive checkpoint is
about 12.5 minutes.

In each set we consider two different subsets of
runs. In subset A2 (and B2) we assume larger num-
ber of trips (R) compared to subset A1 (and B1). In
each subset we consider four cases (i.e., for subset
A1: A1a, A1b, A1c and A1d) so that moving from
the smallest (A1a) to the largest (A1d) case we have
a 5-unit increase in the total number of stops in the
network (TS). We assume a different number of
requests of each type, as shown in Table 2. The
NP and ND locations are sampled from a spatial
uniform distribution over the whole service area
(W · L); while the ready times are sampled from a
uniform distribution starting from half an hour
before the beginning of the service to the end of it.

As a result we have TS going from 10 to 25 for sub-
sets A1 (and B1) and from 15 to 30 for subsets A2
(and B2). As mentioned in Section 1, the MAST
scheduling problem can be considered as a special

case of the PDP. The traditional single-vehicle PDP
has been solved optimally for sizes up to about 30
nodes (Kalantari et al., 1985; Fischetti and Toth,
1989; Ruland and Rodin, 1997), which is about the
same size of the MAST problems solved in this paper.

We tried to maintain the ratio between the differ-
ent types of requests as close as possible to the real
demand data of MTA Line 646, which has a distri-
bution described in Table 3.

In each case we solve the problem with five differ-
ent formulations: without adding any groups of
inequalities (‘‘none’’), adding only one group at a
time (‘‘#1’’, ‘‘#2’’ or ‘‘#3’’) or adding all the groups
together (‘‘all’’). For each run we show the size of the
problem solved (after the ‘‘presolve’’ routine in
CPLEX): total variables (‘‘var’’), divided into binary
(‘‘bin’’) and linear (‘‘lin’’) and total number of con-
straints (‘‘con’’). The following columns show the
time to reach optimality in seconds (‘‘sec’’), the num-
ber of nodes visited in the branch and bound tree
(‘‘n’’), the number of simplex iterations performed
(‘‘i’’), the relaxed optimal value (‘‘rel’’) and the real

Table 6
CPLEX runs, subset B1

Cuts var bin lin con sec n i rel opt ub lb gap

Case: B1a TS = 10: R = 2; |KPD| = 1; |KPND| = 2; |KNPD| = 1; |KNPND| = 1
None 67 43 24 85 0.04 64 403 81.2 114.7 – – 0.0%
#1 67 43 24 91 0.03 27 221 81.8 114.7 – – 0.0%
#2 67 43 24 87 0.04 50 324 81.2 114.7 – – 0.0%
#3 67 43 24 85 0.04 64 403 81.2 114.7 – – 0.0%
All 67 43 24 93 0.03 25 217 81.8 114.7 – – 0.0%

Cuts var bin lin con sec n 103 i rel opt ub lb gap

Case: B1b TS = 15: R = 4; |KPD| = 1; |KPND| = 2; |KNPD| = 2; |KNPND| = 1
None 124 89 35 156 0.56 695 7.91 105.8 164.9 – – 0.0%
#1 123 88 35 199 0.19 126 1.39 105.8 164.9 – – 0.0%
#2 124 89 35 188 0.50 643 5.46 105.8 164.9 – – 0.0%
#3 124 89 35 256 0.62 815 7.25 105.8 164.9 – – 0.0%
All 123 88 35 309 0.25 89 1.55 105.8 164.9 – – 0.0%

Cuts var bin lin con sec 103 n 106 i rel opt ub lb gap

Case: B1c TS = 20: R = 4; |KPD| = 1; |KPND| = 5; |KNPD| = 4; |KNPND| = 1
None 247 197 50 299 619.0 723.3 5.58 132.8 217.8 – – 0.0%
#1 244 195 49 351 49.0 60.7 0.47 132.8 217.8 – – 0.0%
#2 247 197 50 400 355.7 319.9 3.33 132.8 217.8 – – 0.0%
#3 247 197 50 639 508.1 460.2 4.03 132.8 217.8 – – 0.0%
All 244 195 49 742 32.0 27.2 0.31 132.8 217.8 – – 0.0%

Cuts var bin lin con sec 106 n 106 i rel opt ub lb gap

Case: B1d TS = 25: R = 4; |KPD| = 2; |KPND| = 6; |KNPD| = 6; |KNPND| = 2
None 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3%
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7%
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2%
#3 397 335 62 590 36,000 14.4 215 193.0 ? 312.8 295.6 5.5%
All 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1%
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optimum (‘‘opt’’). We stopped CPLEX after a max-
imum solving time of 10 hours (36,000 seconds),
recording the upper (‘‘ub’’) and lower (‘‘lb’’) bounds
and the ‘‘gap’’ reached at that time. The complete
results of one instance of each case for subset A1,
A2, B1 and B2 are shown in Tables 4–7, respectively.

The results in the tables show that cuts ‘‘#1’’ are
the most effective, followed by ‘‘#2’’ and then by
‘‘#3’’, which are efficient in roughly half of the cases
(compared to the ‘‘none’’ runs). The synergistic
effect of grouping them all the cuts together (‘‘all’’
runs) is beneficial in most cases; however, in some
cases, adding cuts ‘‘#1’’ alone to the formulation
is still the best choice. The improvement due to
the logic cuts can be observed in any instance,
reaching a reduction of CPU time up to 90% or
more in some of them compared to the ‘‘none’’ runs
(see cases ‘‘c’’). The larger problem size cases ‘‘d’’ do
not always reach optimality but the effect of cuts
can be noted by looking at the smaller ‘‘gap’’ values,
which are tightened because of better lower bounds
‘‘lb’’. In case A2d, the optimality gap is still 6.6%

after 10 CPU hours with the original formulation
(‘‘none’’); cuts ‘‘#2’’ and ‘‘#3’’ are not effective;
yet optimality is reached after about 3 CPU hours
with cuts ‘‘#1’’ or ‘‘all’’. We also note that the
relaxed optimal values (‘‘rel’’) are about the same
in each run for each case; this means that the cuts
do not improve the initial value of the lower opti-
mality bound, but they are effective in speeding up
the rise of it throughout the iterations.

We note that increasing the slack time from 25%
(Set A) to 50% (Set B) expands the feasible region,
because more stops could be placed between any
pair of consecutive checkpoints in the schedule. As
a result, the solution run time is consistently larger
in all instances. For example in case A1d CPLEX
is able to reach the optimal solution in each run rel-
atively fast, while in case B1d CPLEX could not
find the optimal solution in any run after the
10 hours maximum solving time allowed. Similarly,
A2d can be solved faster than B2d and so forth.

The significant results show how effective the
methodology can be. The original MIP formulation

Table 7
CPLEX runs, subset B2

Cuts var bin lin con sec n i rel opt ub lb gap

Case: B2a TS = 15: R = 6; |KPD| = 1; |KPND| = 1; |KNPD| = 1; |KNPND| = 0
None 86 53 33 107 0.03 4 144 92.6 103.3 – – 0.0%
#1 86 53 33 146 0.02 0 129 92.7 103.3 – – 0.0%
#2 86 53 33 113 0.03 4 115 92.6 103.3 – – 0.0%
#3 86 53 33 129 0.02 0 156 92.6 103.3 – – 0.0%
All 86 53 33 174 0.01 0 82 92.7 103.3 – – 0.0%

Cuts var bin lin con sec 103 n 103 i rel opt ub lb gap

Case: B2b TS = 20: R = 6; |KPD| = 1; |KPND| = 3; |KNPD| = 2; |KNPND| = 1
None 172 127 45 205 2.76 5.93 35.04 139.1 190.9 – – 0.0%
#1 172 127 45 261 0.47 0.54 4.46 139.1 190.9 – – 0.0%
#2 172 127 45 243 1.99 3.47 24.98 139.1 190.9 – – 0.0%
#3 172 127 45 365 2.16 2.93 22.86 139.1 190.9 – – 0.0%
All 172 127 45 459 0.96 1.15 9.99 139.1 190.9 – – 0.0%

Cuts var bin lin con sec 103 n 106 i rel opt ub lb gap

Case: B2c TS = 25: R = 6; |KPD| = 1; |KPND| = 5; |KNPD| = 5; |KNPND| = 1
None 327 266 61 393 589 388 5.49 143.5 222.1 – – 0.0%
#1 327 266 61 518 64 41 0.62 143.5 222.1 – – 0.0%
#2 327 266 61 593 489 314 4.36 143.5 222.1 – – 0.0%
#3 327 266 61 1004 1007 501 6.57 143.5 222.1 – – 0.0%
All 327 266 61 1329 51 27 0.46 143.5 222.1 – – 0.0%

Cuts var bin lin con sec 106 n 106 i rel opt ub lb gap

Case: B2d TS = 30: R = 6; |KPD| = 1; |KPND| = 8; |KNPD| = 7; |KNPND| = 1
None 567 491 76 654 36,000 12.0 198 196.6 ? 332.8 278.7 16.3%
#1 566 490 76 839 36,000 7.5 168 196.6 ? 332.8 298.3 10.4%
#2 567 491 76 908 36,000 7.4 161 196.6 ? 334.9 283.3 15.4%
#3 567 491 76 1826 36,000 4.5 136 196.6 ? 333.2 270.8 18.7%
All 566 490 76 2157 36,000 7.1 150 196.6 ? 332.8 305.6 8.2%
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is enough to fully represent the MAST scheduling
problem and find an optimum for any given
instance. However, ‘‘complicating’’ the model by
adding logic constraints can be extremely effective
to guide solvers in finding optimality faster, which
could be crucial for NP-Hard problems. This would
suggest applying the methodology for more compli-
cated MAST systems (multiple-vehicle and/or
MAST networks).

5. Conclusions

In this paper, we propose a mixed integer pro-
gramming (MIP) formulation of the static schedul-
ing problem of a mobility allowance shuttle transit
(MAST) system, a hybrid transit solution combin-
ing fixed and flexible types of services. Since it is a
NP-Hard problem, we develop sets of ‘‘logic cuts’’
based on reasonable assumptions on passengers’
behavior and whose purpose is to remove ineffi-
cient and therefore uninteresting solutions from
the feasible region to speed up the search for opti-
mality.

Experimental results on several instances show
the effectiveness of the cuts, which are able to reduce
the CPU solution time by up to more than 90% for
some cases. Specifically, cuts ‘‘#1’’ provide the best
overall results that always effective, followed in gen-
eral by cuts ‘‘#2’’ and cuts ‘‘#3’’, which are not
always effective. The synergistic effect of including
all the cuts together further reduces the CPU solu-
tion time in many cases.

Future research may consider developing a solu-
tion algorithm which would efficiently ‘‘add and
lift’’ the logic constraints in the formulation
throughout the iterations and possibly reduce the
CPU solution time even more. In addition, the same
methodology could be used to further strengthen
the MAST scheduling optimization problem formu-
lation by looking for different logic constraints.
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