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Abstract

We study a hybrid transportation system referred to as mob @ llowance sh%transit (MAST) where vehicles may
deviate from a fixed path consisting of a few mandatory clie

goints to serveglchmatd distributed within a proper service
area. In this paper we propose a mixed integer progra IP) formuor the static scheduling problem of a
MAST type system. Since the problem is NP-Hard, op sets of lggig cuts, by using reasonable assumptions on pas-
sengers’ behavior. The purpose of these cons @speed up % for optimality by removing inefficient solu-
t

tions from the original feasible region. Ex nts show the ss of the developed inequalities, achieving a
reduction up to 90% of the CPU solving time¥@r some of the g
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1. Introduction must stop at a set of checkpoints along the main
path. The checkpoints are conveniently located at
We study nsporgftion sy§€m referred major transfer points or high density demand zones,
to as the mo owanc&: transit (MAST) are relatively far from each other and have fixed
where vehicles§imay devig omw® fixed path con- departure times. Given a proper amount of slack
sisting of a few mandg heckpoints to serve time, vehicles are allowed to deviate from the fixed
demand distributed proper service area. A path to serve (pick-up and/or drop-off) customers
MAST system is by a set of vehicles driv- at their desired locations, as long as they are within

ing along a base fixX@d-route and serving a specific a service area.
geographicfareay The base route can be laid out The idea behind a MAST system is to combine
around a between two terminals. Vehicles the flexibility of demand responsive transit (DRT)
systems with the low cost operability of fixed-route
; 4 systems and tries to fulfill the recent goals of transit
Corr ing author. Tel.: +1 979 458 4171. . . . . .
E-mail addresses: 1quadrifoglio@civil.tamu.edu (L. Quadrifo- age‘?‘“es’ Wthh alje seeking Ways to increase their
glio), maged@usc.edu (M.M. Dessouky). service flexibility in a cost efficient way. A small
! Tel.: +1 213 740 4891. scale version of such a system has been tested in
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Los Angeles County for one nighttime bus line ser-
vicing mostly night-shift employees of local firms.
The vehicle moves back and forth several times
between two terminals stopping at one additional
checkpoint in the middle of the route and it is
allowed to deviate within half a mile from either side
of the main route.

MAST systems have only recently been app-
roached by researchers. Quadrifoglio et al. (2007)
developed a customized insertion heuristic schedul-
ing algorithm to handle a large amount of demand
dynamically. Continuing work is presented in
Quadrifoglio and Dessouky (2007), where the
authors evaluated the sensitivity to the shape of the
service area of the effectiveness of the above men-
tioned heuristic. Zhao and Dessouky (2007) studied
the optimal service capacity of a MAST system
through a stochastic approach. Quadrifoglio et al.
(2006) employed continuous approximations to
evaluate the performance of MAST systems and
help in their design phase.

Some work approached hybrid systems in which
different vehicles perform the fixed and variable por
tions. Aldaihani et al. (2004) developed a contl
ous approximation model for designing s
service. Scheduling heuristics based on a 1@
tem include the decision support sy
et al. (1996), the insertion heuristic ofHickman
and Blume (2000) and the tabu heysistic o Aldal
ani and Dessouky (2003). Anot r%c study

combination of fixed and fleXible service
found in Cortés and J aya (2002).

Other types of porta&o
have been studied resear . ork
of Daganzo (1984)«c s a che @ T sys-
tem that combi characgeristi® of both fixed

route and
is still made

A service request

d drop-off points
centrahzed locations
v' , the MAST system

et al. (2001) incorporate the hybrid

fixed ¢ concept in a more general network
sett viding also a mathematical formulation
M systems can be considered as a special

case of the pickup and delivery problem (PDP)
and can be formulated as mixed integer programs
(MIP). There has been a significant amount of
research on the PDP. Savelsbergh and Sol (1995),
Desaulniers et al. (2000) and Cordeau and Laporte

(2003) provide comprehensive reviews on PDP sys-
tems, examining mathematical formulations and
solutions approaches presented by different authors.
More recently, a branch-and-cut algorithm to solve
the single vehicle PDP without capacity constraints
is described in Lu and Dessouky (2004). Other opti-
mization algorithms for different variants of the
PDP include the work of Psaraftis (1980), Psaraftis
(1983), Kalantari et al. (1985), Desrosiers et a
(1986), Fischetti and Toth (1989) Dumas et
(1991), and Ruland and Rodin (1997). Whilg @
systems focus strictly on t-to-point

services, the hybrid ch \Y

vice add significant space cons

problem m he eed ofg the vehi-
cles arrive af the kpomts before their
schedul Zm time.

P formulation of

In th%er we prop
the Si% icle hng problem and

q sets > based on realistic

ions on p2¥Senger behav1or. We test and

strate ir effectiveness for a variety of

and sce &by solving to optimality some sets
of problem g CPLEX 9.0.

eminder of this paper is structured as fol-

%ction 2, we develop the basic formulation

ST system. In Section 3, we present the

ic constraints. Section 4 describes the experimen-

results. Finally, we provide the conclusions in
Section 5.

2. Formulation

The MAST system considered consists of a single
vehicle, initially associated with a predefined sche-
dule along a fixed-route consisting of C checkpoints
identified by ¢ =1,2,...,C; two of them are termi-
nals located at the extremities of the route (¢ =1
and ¢ = C) and the remaining C — 2 intermediate
checkpoints are distributed along the route. The
vehicle moves back and forth between 1 and C. A
trip r is defined as a portion of the schedule begin-
ning at one of the terminals and ending at the other
one after visiting all the intermediate checkpoints;
the vehicle’s schedule consists of R trips. Since the
end-terminal of a trip r corresponds to the start-ter-
minal of the following trip r + 1, the total number
of stops at the checkpoints is TC=(C — 1) x R+ 1.
Hence, the initial schedule’s array is represented by
an ordered sequence of stops s = 1,..., TC and their
scheduled departure times are assumed to be con-
straints on the system which cannot be violated.
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The service area is represented by a rectangular
region defined by L x W, where L (on the x axis)
is the distance between terminals 1 and C and W/2
(on the y axis) is the maximum allowable deviation
from the main route in either side (see Fig. 1).

Each checkpoint ¢ is scheduled to be visited by
the vehicle R times. Note that for terminal check-
points ¢ =1 and ¢ = C the ending checkpoint of a
trip r coincides with the starting checkpoint of the
following trip r + 1.

The demand is defined by a set of requests. Each
request is defined by pick-up/drop-off service stops
and a ready time for pick-up. The MAST service
can respond to four different types of requests:
pick-up (P) and drop-off (D) at the checkpoints;
non-checkpoint pick-up (NP) and drop-off (ND),
representing customers picked up/dropped off at
any location within the service area. A certain
amount of slack time between any consecutive pair
of checkpoints is needed in order to allow deviations
to serve NP or ND requests. There are consequently
four different possible types of customers’ requests:

e PD (“Regular”): pick-up and drop-off at t
checkpoints

e PND (“Hybrid”): pick-up at the c
drop-off not at the checkpoint

e NPD (“Hybrid”): pick-up not at the ¢
drop-off at the checkpoint

e NPND (“Random”): pick-up
the checkpoints

All customers but the
process to use the h11e
identified by i=1,
(NP or ND) are ﬁed by
where TS re e tot m

In this pa we consi

an

which all the d di 1s , in advance. We also

assume one customer per request, no vehicle capac-
ity constraint and a deterministic environment.
We define the following notation for the system:

e R = number of trips

e RD={1,...,R} =set of trips

e C =number of checkpoints

e TC=(C - 1) x R+ 1=total number of stops at
the checkpomts in the schedule

o Ng=1{1,...,TC} =set of stops at the ch
points

o (); = scheduled departur of chec 0
iVie Ny 9] =0] 8

° KPD =set of PD

requests

Q hybrid requests

= set of all requests

mber o)

o N,={T =set of non-checkpoint

stop
:@J = set of all stops
t111near travel time between i and j

kpoint, g/
= service time for boardings and disembark-

-off not

ments at stop i Vi e N/{1}
o 4 =set of all arcs in the network

PD requests are guaranteed to be served at their
chosen service checkpoints identified by their index
i € Ny, since we assume no capacity constraint on
the vehicle. NPND requests have their own stops
identified by their index i€ N,, which will be
placed somewhere in the schedule. We therefore
identify the following vectors that map pick-up

O W/2

Fig. 1. MAST system.
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and drop-off stops for each request (except the
checkpoints of the hybrid ones):

e ps(k) € N =pick-up stop of each request k
Vk € K/KpND.

o ds(k) € N =drop-off stop of each request k
Vk € K/KNpD.

Hybrid requests (PND and NPD) instead do not
have a priori a uniquely identified node in N corre-
sponding to their checkpoint service point. In other
words, each pick-up and drop-off stop of all
requests uniquely corresponds to a node in N, with
the exception of the pick-up stop of PND requests
and the drop-off stop of the NPD requests. In fact,
these can be associated to a number of occurrences
of their chosen checkpoint (either a P or a D),
depending on where their non-checkpoint stop
(either a ND or a NP) is positioned in the schedule.
For example, consider a MAST system with C =5
and R =4 and assume that a NPD request would

like ‘to be picked up at its NP stop (i*) as soon as ®> . _szkr) Vk € Kpnp, VrERD,  (8)
possible and dropped off at the checkpoint ¢ =4 ' ’

in the first trip » = 1. It could occur that, beca 6 Px gtpc(k”@ Zer) Yk € Kpnp, Vr€RD,  (9)
of lack of slack time due to other requests, t di Z Lge(kr) (I-z,) Vk€Knpep, VreRD,  (10)
stop i cannot be placed in the schedmlg ofe wh+M(1—z,) YkeKnpp, VreRD, (11)
¢ = 4 during the first trip. As a result, istomer &k VkeKk, (12)
will have to be dropped off at a succesSiye occur- % VikCK 13
rence of ¢ =4 in the schedule A lar exam P VRER, (13)
could be developed for PND e Thus@ ;= ti+x101,—M(1—xi;) V(i,j) €4, (14)
have: K 6 >T+b VieN/{1}. (15)

e pc(k,r) € Ny = collecs ltheocc n

the schedule (on ac®hr € R
checkpoint of e est k

e dc(k,r) € Ny tion ofgall th rrences in
the sch ¢ forglach r € RD) of the

eally, request k Vk e

The variables

e x;;={(Q ¥(7,/) € A = binary variables indicat-
ing if a @ /) is used (x; ;= 1) or not (x;; = 0).
: A C time from stop i Vi€ N.

4 al time at stop i Vi € N/{1}.
-up time of request k Vk € K.

[ ]
[ ]
.pk D
[ ]
[ ]

stem are the following:

d; = drop-off time of request k Vk € K.

z;» = 10,1} = binary variable indicating whether
the checkpoint stop of the hybrid request k (a
pick-up if k € Kpnp or a drop-off if k € Knpp)
is scheduled in trip r Vr € RD.

The problem can now be formulated as a mixed
integer linear program, where w;, w, and w; are
proper weights:

min ( Z 5[7})6[7]’) +w; (Z(dk _Pk>>
(

i)ed kek
OF (Z(Pk—fk)> (1)
subject to - 96
Zx,,—l VjeN/{1}, A 0
ix,]_l VieN/, 6 (3)
t_0 Vie Ny, 4

{Z

=~
m

=

~

N"U
Z
g 9

S3TE

)

The objective function (1) minimizes the weighted
sum of three different factors, namely the total miles
driven by the vehicle, the total ride time of all cus-
tomers and the total waiting time of all customers,
defined as the time interval between the ready time
and the pick-up time. This definition allows opti-
mizing in terms of both the vehicle variable cost
(first term) and the service level (the last two terms);
modifying the weights accordingly we can empha-
size one factor over the others as needed.

Network constraints (2) and (3) allow each stop
(except nodes 1 and TC) to have exactly one incom-
ing arc and one outgoing arc equal to 1, so that all
the stops will be visited once.

Constraints (4) force the departure times from
each checkpoint to be fixed, since they are presched-
uled like in a fixed-route line.

Constraints (5) establish for each request (except
the PND) the equality between the pick-up time
and the departure time of its corresponding node.
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Similarly, constraints (6) establish for each request
(except the NPD) the equality between the drop-off
time and the arrival time of its corresponding node.

Constraints (7) allow exactly one z variable to be
equal to 1 for each hybrid request, assuring that a
unique ride will be selected for their pick-up or
drop-off checkpoint.

Constraints (8) and (9) fix the value of the p;
variables for each request k € Kpnp, depending on
the variable z chosen. Constraints (10) and (11) do
the same for the d) variables for each request
k € Knpp. We let M represent a number large
enough to cause the constraints to become irrele-
vant when z; , = 0. An M = Oyc — 0, is big enough
to serve this purpose.

Constraints (12) prevent the departure times of
each customer from being earlier than its ready
time. Constraints (13) are the precedence con-
straints for each request: pick-up must be scheduled
before the corresponding drop-off.

Constraints (14) are the key constraint in the for-
mulation. They define that for each x; ;=1 the arri-
val time at j should be no less than the departure time
from i plus the time needed to travel between i an
The last term with the M (also in this cas
M = Otc — 0, is large enough to be effecti €
that for any x;;= 0 the constraints bq irrcle-

vant. By using time stamps, these constrafats guar-

TC. Thus, they serve as subt

in the sense that it includes many feasible inefficient
solutions and thus has a weak LP relaxation. The
purpose of this section is to identify inequalities
linking together some of the variables to reduce
the feasible region identified by constraints
(2)—(15) and possibly speed up the search for opti-
mality. The challenge is to make sure that these
new constraints are legitimate and will only remove
feasible but not optimal solutions from the problem.
A way to speed up the search for optimality @
be able to solve larger instance§ in a reasonablg tfime

is to “tighten” the mode adding gonstray
(“cuts”) to the formulagio egitimate 1d
never cause the optismalNsefution to c their
purpose is to SO to%each 0®1 y faster.
As noted b@ver (1986), Q int (either
equality or in ty) is cl as valid if it
reduces Nlimensions Q&relaxed feasible
region, intege olwtions of the origi-
nal smed 11 sati
str@s to reduceNe size of the relaxed feasible
p1?, ideally nidking ™t the convex hull of the inte-
e’ feasible ions which would allow an LP
algorithm Qve the problem. Wolsey (1989,

2003) provide" comprehensive surveys about the
re \@ the development of effective valid con-
S

r MIP formulations.

S
éﬁoher category of constraints are the so called

c cuts”. These constraints are not valid because

eliminating some integer feasible solutions that are

antee that every feasible solution not contai
inner loops, but a single path <fr{ 1to noa\ eir purpose is to reduce the feasible region by
e

liminatio &
straints and they are simil Miller-T&
Zemlin (MTZ) const% traints %% e

sure that at each no artur
bigger than the arri % plus t ¢

The problem épecial se fe pick-up
and delivery (PD at is known to be
NP-Hard. Thé@bove fo atiomis sufficient to find
the optimal sol@tion (if] s) of a given instance
of the MAST probl gver, the CPU time to

reach optimality eatly reduced by removing
unnecessary binaryWariables and especially by add-

T

ing logic c ints. "The elimination of evidently
infeasible reduce the size of the problem
has b ed, but it is not shown here for
brev ection 3 instead we define and describe
the log nstraints.

3. Logic constraints

The above formulation is sufficient to find the
optimal solution of the problem, but it is ineffective

provably not optimal by some logic considerations.
These “logic cuts’ can be indeed very effective. They
may significantly shrink the feasible region, even by
some orders of magnitude, and they allow improv-
ing the quality of the LP relaxation bound, consid-
erably speeding up the reduction of the optimality
gap throughout the iterations of the solver. As a
result, they can be extremely beneficial in reducing
the CPU time in the search for optimality. However,
adding too many of them can also cause the formu-
lation to become cumbersome, forcing solvers to
spend too much time while solving LP relaxation
sub-problems, increasing the total CPU time. There-
fore, their identification and addition to the formu-
lation must be careful and wise, since it may not
always be effective. Developments of logic con-
straints can be found, for example, in Andalaft
et al. (2003) for forest harvesting related optimiza-
tion problems. Related research has been performed
earlier by Kirby et al. (1986) and Guignard et al.
(1994, 1998).
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The underlying concept behind all the inequali-
ties developed in this section is that hybrid custom-
ers will be choosing their P or D checkpoints as
close as possible to their corresponding ND or NP
stop, once these are placed in the schedule. In order
to prove this we need to assume w,> w3 in the
objective function (1), which implies that customers
would prefer to wait for pick-up rather than to ride
the vehicle. Note that the waiting time is defined as
the difference between the pick-up time and the
ready time (px — 7, Vk € K). This would generally
not be true if customers do not know the schedule
and face random arrivals of buses at their pick-up
locations; in fact, they would probably rather spend
their time onboard instead of waiting at their pick-
up stop, especially when facing bad weather condi-
tions and/or unsafe areas. However, in a MAST
system, once the schedule is done, customers know
in advance the expected time for pick-up and
drop-off. Thus, given that the drop-off time is fixed,
they would reasonably prefer to have their sched-
uled pick-up times as late as possible to make their
ride shorter and consequently their wait longer. Th1s

(home or office or other convenient loc
not at an outdoor bus stop. Also, PN
tomers would spend their waiting time athe check-
points, most likely large comforta nd equlpp
stations rather than outdoor unsafe
stops.

More formally, we can t followin 0

osition 1 for NPD ich w1$1 Tk
the vehicle as earl % gnble aff cked
up to minimize t h ime.

Proposition ssary ition for optimality is
that NPD cus@@mers mustdisembDugk the vehicle at the

first occurrence of theip kpoint following their
scheduled NP pick-

is particularly true for NPD and NPND custo Z 1
that would spend their waiting time at thelr N zk o=
D Cus-

Proof. Consider equest k € Knpp and assume
that the 1 sOlution, call it (I), drops off
request k‘trip r°, 1.e. zx o = 1, and has ps(k)
sche en dc(k r* — 1) and dc(k,r"), with

objective function can be written as
Z = »(di — pi), where 4 includes all the terms
in Z except the ride time term of k; therefore its
value would be Z; = A4+ ws(tacw) — pyr), since
dr = tac(r,~) (depending on the Values of the z,,

indicating at which occurrence of the drop-off
checkpoint the customer disembarks the vehicle, dj

could be equal to fyc(k), Ldc(ks*+1)> - - -» Lde(k,R)> With
Lactr) < ldekr+1) < =+ < lde(kR))- Another feasible
solution (II) of the problem can be identified by set-
ting z,» =0 and z,- =1, thus d; = t4c,~, and
leaving everything else unchanged (the customer
would basically disembark the vehicle at an earlier
occurrence of its drop-off checkpoint). Its
Zu = A+ 0Ty — Pi)- SInce faee) < tac(k,r°),
we have Zy; < Zj. ThlS 1s a contradiction.

In parallel, we can develop and prove the fo@’@

ing Proposition 2 for PN D\requests, whi

board the vehicle as 0551b1 im ng
their ride time and the 1m121 ait-
ing time.

Proposition > w3, d ry condztzon for

opnmalz t PND cu s must board the

vehzcle last occu their P checkpoint
prlor i sched, op -off stop.

Consider a Wgquest k € Kpyp Wwith 1 <

. and asSyme that the optimal solution, call

(I) pi request k during trip r°, i.e.

s ds(k) scheduled between pc(k ")
nd r* + 1), with r° <r*. The objective func-
be wrltten as Z=A+ w(dy — pr) +
Tx), where A includes all the terms in Z
t the ride time and the waiting time terms of
, and can be rearranged as Z = 4 + w»d;, — w31, +
pk(a)3 5,); therefore its value would be Z; = A+
Wrdy — O3Tf + tpepe) (03 — @2),  SINCE Py = fpe(ks)
(depending on the values of the z;,, indicating
at which occurrence of the pick-up checkpoint the
customer boards the vehicle, p; could be equal
tO  fpc(kso)s  Ipelkyotl)s - - - o Epck™)s with toc(ko) <
tockro+1) < -+ < tpek,+)). Another feasible solution
(IT) of the problem can be identified by setting
Zko = 0 and z,» = 1, thus py = f,cx~), and leaving
everything else unchanged (the customer would
basically board the vehicle at a later occurrence of
its pick-up checkpoint). Its Zy=4+ w.d; —
W3Ty + tpc(k,,*)(wg — (1)2). Since w3 — Wy <0 by
assumption and fpek,e) < ek, W€ have Zy < Z.
This is a contradiction. [

Note that the opposite assumption on the
weights (w, <w3) would just reverse the above
result, having customers getting onboard as soon
as possible and we would still be able to produce
logic cuts similar to the ones developed shortly.

Although the logic behind the above Proposi-
tions may seem obvious to a human mind, it is
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not explicitly stated in the formulation and the sol-
ver would still consider several feasible but ineffi-
cient solutions (violating the above propositions)
as possible candidates while searching for optimal-
ity. Therefore, based on the above Propositions,
we develop three different groups of valid inequali-
ties to add to the formulation.

To formally develop the constraints we define the
following notation:

e A, = arcs in N, including all arcs (i,j) Vij € N,
with i # j.

® Ay, = arcs from N, to N, including all arcs (i,)
Vie No/{TC} Vj € N,,.

® A, = arcs from N, to Ny, including all arcs (i,)
Yie N,, Vje No/{1}.

e (i) € K = corresponding request of each non-
checkpoint stop i Vi e N,,.

3.1. Group #1

The first group of inequalities is developed by
directly applying Propositions 1 and 2. They include

requests and constraints linking the z v
some of the x variables.
For a PND request a legitimate set of in

is represented by a 6

constraints linking the z variables to the ¢ variab
(departure times) of non-checkpoint stops of 1

alities

NS
tds(k) < Zk,rej + M(l — Zk,r)7 s (Q\
with j = pe(k,r + 1) VkGK r € RD/ \

Because of Proposity se consftai rce
the ND stop of eaclx request 4o O &e uled
before the next ocClgrdmee in the % le of the
checkpoint se he pigk-up. xr =1 the
PND custom cked u&s/her checkpoint
pe(k,r) in tripgr and th€™@gnstraint imposes that
the ds(k) has to be schefore pc(k,r + 1) by
setting an upper bourte 0 C departure time 745

If z;. , = 0 the con'Sif™ comes irrelevant because
of the M.

Symme for NPD requests a legitimate set
of inequalifie epresented by

N-M(1-z,), (17)

with i =dc(k,r — 1) Vk € Knpp, Vi € RD/{1}.
Because of Proposition 1, these constraints force
the NP stop of each NPD request to be scheduled
after the previous occurrence in the schedule of
the checkpoint chosen as the drop-off. If z;, =1

the NPD customer is dropped off at his/her check-
point dc(k,r) in trip r and the constraint imposes
that the ps(k) has to be scheduled after dc(k,r — 1)
by setting a lower bound on the departure time
tosky- If zi» =0 the constraint becomes irrelevant
because of the M.

We can also include the following inequalities for

PND requests:
2
Vk € Kpnp, @
RD/(R}, V(ds(k),j) € 4, Q
By Proposition 1, if , d8(k) mugthe d-
uled between pc(k,r@‘ (k,r +1)_an 1 arcs
originating fr S d endin heckpoint

Xds(k)j S Zhors

with pc(k,r) <j<pclk,r+1

j cannot exis§ wheifever j is no ded in that
imMbeasibly require
eckpoint sched-
skip pc(k,r + 1)
heckpoint scheduled

interval. These ould i
the vehicle% go from ds@)
uled befopthitS pick-mc r
goi elefro 0ac
ce,r + 1).
intilarly we(ze:

ids(h) S Zkors

(19)

) < 1< pC(k,l" + 1) Yk e KPND; Vre RD/
(k)) € Aon.

{ 4
Q cs originating from a checkpoint i and end-
Qg

with p,

t ds(k) are eliminated whenever i is not
ded in the interval [pc(k,r), pc(k,r + 1)) identi-
ed by Zieyr = 1.

Symmetrically for NPD requests we have that

Xips(k) < Zky, (20)

with de(k,r — 1) < i < de(k, r) Vk € Knpp, Vr € RD/
{ 1 }a V(l, ps(k)) € AO,n'

Xps(k),j < Zks (21)
with de(k, r — 1) <j < de(k, r) Yk € Knpp, Vr € RD/
{1}9 V(ps(k)sj) € An,()'

3.2. Group #2

A second group of inequalities includes con-
straints linking z and x variables by making use of
Propositions 1 and 2 along with the ready times 1
of the requests.

For PND requests we have that

Ty + 01y + by <z 0 + M(2 — 21, — Xas(n)) (22)

with 7= ps(q(i)), j=pclk,r +1) Vk € Kpnp, Vr €
RD/{R}, V(ds(k),i) € A4,,.



488 L. Quadrifoglio et al. | European Journal of Operational Research 185 (2008) 481-494

By Proposition 1, if zx , = 1, ds(k) must be sched-
uled between pc(k,r) and pc(k,r + 1) and these con-
straints impose that any arc originating from the
ds(k) of a PND request to any non-checkpoint
pick-up i is not allowed if the vehicle would not be
able to reach checkpoint pc(k,r + 1) on time by
passing through i, because of too high 7,;, even
using the quickest way possible. The M causes these
constraints to become irrelevant if either z;, or
Xds(k),; are not equal to 1.

Similarly,
Ty() + (Spsta(i),ash) T Sasihy.i + i) + (basy + bi + )
< Zk,rgj + M(z — Zkyr — xds(k),i)a (23)

with 7= ds(q(i)), j=pclk,r +1) Vk € Kpnp, Vr €
RD/{R}, V(ds(k),i) € 4

Any arc originating from the ds(k) of a PND
request k£ to any non-checkpoint drop-off i is not
allowed if the vehicle is not able to go from the
pick-up point ps(¢(i)) to ds(k) to i to checkpoint
pc(k,r + 1) on time, because of too high 7, even
using the quickest way possible. The M causes these
constraints to become irrelevant if either z;,
Xds(k),i are not equal to 1.

Analogous constraints can be developed
(i,ds(k)) as follows:

Mst(qm),j c
@ (k) € A

Tq(i) + (Bpsiglii + Sidstr) + dastay) +
<z 0 + M(2 = 21 — Xiase))»

(bl- + bds(k) + bj)

(25)
with i =ds(¢(7)), j=pclk,r +1) Vk € Kpnp, VFr €
RD/{R}, V(i,ds(k)) € 4,,.
For NPD requests the four constraints above can
be developed likewise:
@0 F 0 +b; <z,0, + M2 —

with i = ps(¢(7)), j = dc(k,r) Vk € Knpp, Vr €
V(ps(k),i) € 4,,.

(26)

— Xps(h) i)

Tq(t‘) + (Ops %) + Ops( h
Zk ,0 + M

with i = ds(q#)), ]Qk r) Vv

V(ps(k), i) e

Tq() + (51-7 + 5ps ) j)

9 )
,V) VkGKNPD, Vre RD,

(28)

8+ Ops(iyy) +
2— Zle,r

(bi + bps) + b))

— Xi,ps(k) )a (29)

S(q(l))9 ] = dC(k, l") Vk € KPND: Vr € RD,

)€ A,.
Ty() + (Oiask) + as)j) + (basi) + b))
<z + M2 =z — Xigse . Group #3
with i = ps(q(i)), j = pe(k,r &Vk € Kpn &E\ A third group of inequalities links z and x vari-
RD/{R}, V(i,ds(k)) € A, ables by applying the results from the Propositions
to pairs of hybrid requests. We indeed know by
Table 1 .. .
System parameters, co 1l cases Proposition 1 (2) that the nop—checkpelnt st'op of a
PND (NPD) request must be included in the interval
L 0 miles . .
W 1 mile between the chosen pick-up (drop—.oﬂ) checkpoint
C 3 and its next (previous) occurrence in the schedule.
Ogsr1 (s=1,. -1 12 minutes For any given pair of hybrid requests, the direct path
b (s=1,....TS) 18 seconds connecting together their non-checkpoint stops iden-
off 03 04/0.4/02 tified by the appropriate x variable is not allowed if
Table 2
System paragft pecific to each case
Parameters ases
Ala Bla Alb Blb Alc Blc Ald Bld A2a B2a A2b B2b A2¢ B2c A2d B2d
R 2 4 4 4 6 6 6 6
TC 5 9 9 9 13 13 13 13
|Kppl 1 1 1 2 1 1 1 1
|Kpn| 2 2 5 6 1 3 5 8
|Knppl 1 2 4 6 1 2 5 7
|Knpnol 1 1 1 2 0 1 1 1
TS 10 15 20 25 15 20 25 30
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the intervals where the non-checkpoint stops are Zns0i — 2k, 0; < M (3 — zjg — Zky — Xps(i) ds(n))» (34)

supposed to be included in, identified by the corre- o )
sponding z variables, do not overlap. with i = pc(h, 5), j = de(k, ) Vk € Knpp, Vh € Kpnp,

Therefore, the following relationships can be Vr € RD, Vs € RD.
written: Zh,sgi - Zk,rgj < M(3 — Zps T Zky — xds(h),ps(k))a (35)

901'_ r0<M3_ s ro S S ) 30 .
Zusls = 200 <M =205 =2 =Xawam),  (B0) g, = de(kr) Yk € Kpp, Vh e

with = pC(h,S), ] = pC(k,l’ + 1) Vk,h € KPND: KpnD, Vre RD, Vs € RD.
Vr € RD/{R}, Vs € RD. Zns0; — 2k, 0; < M (3 — Zis — Ziy — Xds(i) ps(h) ) (36)

Zps0i — zi,0; < M3 - Zhs — Zky T xds(h),ds(k))a (31) with i=dc(h,s — 1), j=pc(lar+1) Vke K,

with i = pc(h, s), j = pe(k,r + 1) Vk,h € Kpnp, Vr € Vh € Knpps Vr € RD/{R}, RD/{1}

RD/{R}, Vs € RD. Zps0; — 2, 0; < M(3 — z/8 - Mps(h).ds 7)
2nsly = 21,0y <M = zhs = 2ir = Xpsiowsn)s 32) with i = de(h, g 1 (k,r + Kpnp»
with i=dc(hs—1), j=dck,r) VkheKnpp, 71 EKxep, EER , Vs €

Vr € RD, Vs € RD/{1}.

Zh,sgi - Zk,rgj < M(3 — Zps — Zkyp — xps(h),ps(k)); (33) Table 3

Custom tributio,

with i=dc(h,s — 1), j=dc(k,r) Vk,h e Knpp, Ty NPND
Vr € RD, Vs € RD/{1}. 10% o o o

Table 4

CPLEX runs, subset Al

Cuts var bin lin rel opt ub Ib gap
Case: Ala TS=10: R= 2 |KPD| = 1 |KPND|

None 52 29 23 60.8 84.9 - - 0.0%
#1 52 29 2\ 60.9 84.9 - - 0.0%
#2 52 29 23

0.01 118 60.8 84.9 - - 0.0%
#3 52 29 z& 66 0 118 60.8 84.9 - - 0.0%
All 52 29 Q 71 ) 26 185 60.9 84.9 - - 0.0%

co® & n 10% i rel opt ub b gap

Case: AIb TS =15: R = Mgk ®h= T [Konn xﬁ!z; [Knpnp| = 1

None 114 0 35 @ 0.16 182 1.34 1010 14122 - - 0.0%
7
7
7

Cuts var

#1 109 5 46 0.08 23 0.31 101.1 141.22 - - 0.0%
#2 9 5 174 0.16 140 0.92 101.0 141.22 - - 0.0%
#3 1 9 228 0.20 189 1.56 101.0 141.22 - - 0.0%
All 10 34 245 0.09 11 0.30 101.1 141.22 - - 0.0%
Cuts var in con sec 10° n 10% i rel opt ub Ib gap
Case: Alc TS = 20: ; | =1; |Kpnp| = 55 |[Knpp | = 4; [Knenp| = 1

None 226 50 273 44.35 59.59 449.6 129.9 191.3 - - 0.0%
#1 48 309 6.59 6.93 71.9 129.9 191.3 - - 0.0%
#2 176 50 332 37.95 40.87 408.4 129.9 191.3 - - 0.0%
#3 176 50 451 40.5 38.34 385.8 129.9 191.3 - - 0.0%
All 171 48 493 5.35 4.25 54.8 129.9 191.3 - - 0.0%
Cuts ar bin lin con sec 10° n 106 i rel opt ub Ib gap
Case: Ald =25: R=4; |Kpp| =2; |Kpnp| = 6; |Knpp| = 6; |Knpnp| = 2

None 279 216 63 343 419 327 3.80 154.1 2424 - - 0.0%
#1 273 211 62 390 81 64 0.77 154.1 242.4 - - 0.0%
#2 279 216 63 416 186 131 1.69 154.1 242.4 - - 0.0%
#3 279 216 63 503 269 192 2.20 154.1 242.4 - - 0.0%

All 273 211 62 563 80 53 0.73 154.1 242.4 - - 0.0%
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For example in constraints (30) if z,,=1 and
zrr=1 we know that ds(h) must be scheduled
between pc(h,s) and pc(h,s+ 1); similarly ds(k)
must be scheduled between pc(k,r) and pc(k,r + 1).
Therefore, the direct path from ds(k) to ds(%), iden-
tified by Xqg(x).as(n)» cannot be allowed if checkpoint
pc(h, s) is not scheduled earlier than pc(k,» + 1) and
the intervals do not overlap, because the vehicle
would have to pass by those checkpoints first, not
allowing a direct path that would skip them. The
M causes these constraints to become irrelevant if
either zj, 5, z, O X4g(k),ds(n) are equal to 0.

3.4. Other constraints

We note that it would be possible to develop sev-
eral other valid inequalities similar to the ones
already described. Equations from (16) to (37) shrink
the feasible region by rendering infeasible some
direct arcs from some stop i to some stop j, identified
by x;;. Utilizing the same logic, we could forbid any
path beginning at i, passing through one or more
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non-checkpoint stops and ending at j. However, the
number of constraints added to the formulation
would be exponentially high, most likely slowing
down the solution search instead of being effective.

4. Experimental results

In this section, we evaluate the effectiveness of
the groups of inequalities defined above by solvin@

one or all of them in the
are performed utilizing
tings using a 3.2 G

and consistent

parameters, €
with théNgeal data of the Line 646 in Los
Angel ty. @
€ WO S riments: in set A we
a differenc
of two comsecu
.., TC -1

the scheduled departure
e checkpoints (0,41 — 0Oy, s =
17.5 minutes; in set B we assume

Table 5 K

CPLEX runs, subset A2

Cuts var bin lin con n rel opt ub Ib gap
Case: A2a TS =15: R=6; |Kpp| = 1; |Kpnp| = 1;

None 68 35 106 80 101.1 - - 0.0%
#1 68 35 59 80 101.1 — - 0.0%
#2 68 35 119 80 101.1 - - 0.0%
#3 68 35 103 80 101.1 - — 0.0%
All 68 35 61 80 101.1 - - 0.0%
Cuts var i rel opt ub Ib gap
Case: A2b TS =20: R=

None 129 191 978 126.1 164.5 - - 0.0%
#1 129 17 366 126.1 164.5 - - 0.0%
#2 142 853 126.1 164.5 - - 0.0%
#3 I 188 1164 126.1 164.5 - - 0.0%
All 12 10 304 126.1 164.5 — - 0.0%
Cuts var n 10% i rel opt ub Ib gap
Case: A2¢ TS = 25: = 1, |KPND| =3 |KNPD| =35 |KNPND| =1

None 287 61 353 41.20 27,267 392.8 162 212 - - 0.0%
#1 84 61 437 2.03 893 12.0 162 212 - - 0.0%
#2 87 226 61 435 38.72 20,315 374.5 162 212 - - 0.0%
#3 226 61 739 73.96 29,313 556.7 162 212 - - 0.0%
All 223 61 819 1.83 524 8.5 162 212 - - 0.0%
Cuts var bin lin con sec 10° n 108 i rel opt ub Ib gap
Case: A2dPTS =30: R =6; |Kpp| = 1; |[Kpnpl = 8; |Knpp| = 7; |[Knpnp| = 1

None 418 342 76 503 36,000 14.3 242 186.7 ? 294.1 274.7 6.6%
#1 409 334 75 604 10,316 3.8 60 186.7 293.9 - - 0.0%
#2 418 342 76 671 36,000 12.1 227 186.7 ? 295.2 267.4 9.4%
#3 418 342 76 1377 36,000 5.1 138 186.7 ? 295.3 257.8 12.7%
All 409 334 75 1428 12,273 3.7 65 186.7 293.9 - - 0.0%
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25 minutes instead. As a result the slack time is
approximately 25% in set A and 50% in set B, since
the direct time among two consecutive checkpoint is
about 12.5 minutes.

In each set we consider two different subsets of
runs. In subset A2 (and B2) we assume larger num-
ber of trips (R) compared to subset Al (and B1). In
each subset we consider four cases (i.e., for subset
Al: Ala, Alb, Alc and Ald) so that moving from
the smallest (Ala) to the largest (Ald) case we have
a 5-unit increase in the total number of stops in the
network (TS). We assume a different number of
requests of each type, as shown in Table 2. The
NP and ND locations are sampled from a spatial
uniform distribution over the whole service area
(W x L); while the ready times are sampled from a
uniform distribution starting from half an hour
before the beginning of the service to the end of it.

As aresult we have TS going from 10 to 25 for sub-
sets Al (and B1) and from 15 to 30 for subsets A2
(and B2). As mentioned in Section 1, the MAST
scheduling problem can be considered as a special

@, he relawapti
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case of the PDP. The traditional single-vehicle PDP
has been solved optimally for sizes up to about 30
nodes (Kalantari et al., 1985; Fischetti and Toth,
1989; Ruland and Rodin, 1997), which is about the

same size of the MAST problems solved in this paper.
demand data of MTA Line 646, which has a distri-
ent formulations: withou

We tried to maintain the ratio between the differ-
bution described in Table 3. @
i
t adding any groups§of
inequalities (“‘none”), addri ly one grqup
time (“#17, “#2” or “ﬂQ ing all ps

ent types of requests as close as possible to the real
In each case we solve the problem with five di
a
together (““all”). For we show t of the
e

problem solvegssga “presooutine in
CPLEX): totall variaples (“var’), divided’into binary
(“bin”) apd li lin”’) an umber of con-
straints (¢ ). The foll @lumns show the
time toffe timalj i% “sec’’), the num-
ber @fnQdes visit e“Branch and bound tree

number Ofsimplex iterations performed

1 value (“rel’”’) and the real

Table 6

CPLEX runs, subset Bl

Cuts var bin lin con n rel opt ub Ib gap
Case: Bla TS = 10: R =2; |Kpp| = 1; |Kpnp| = 2; |[I€D| = 1; |[Knpnpl = 1

None 67 43 24 8 4 6 81.2 114.7 - - 0.0%
#1 67 43 24 0.03 * 221 81.8 114.7 - - 0.0%
#2 67 43 24 0.04 324 81.2 114.7 - - 0.0%
#3 67 43 24& 85 0. 403 81.2 114.7 - - 0.0%
All 67 43 @ 93 0.0 25 217 81.8 114.7 - - 0.0%
Cuts var i con ¢ & n 10% i rel opt ub b gap
Case: BIb TS=15: R= pBh= I [Kpnpy =2; |Knpnp| = 1

None 124 0.56 695 7.91 105.8 164.9 - - 0.0%
#1 123 9 0.19 126 1.39 105.8 164.9 - - 0.0%
#2 188 0.50 643 5.46 105.8 164.9 - - 0.0%
#3 1 256 0.62 815 7.25 105.8 164.9 - - 0.0%
All 12 309 0.25 89 1.55 105.8 164.9 - - 0.0%
Cuts var con sec 10°n 108 i rel opt ub Ib gap
Case: Blc TS =20: | = 1; |Kpnp| = 55 |[Knepl = 4; |[Knenpl = 1

None 247 299 619.0 723.3 5.58 132.8 217.8 - - 0.0%
#1 44 351 49.0 60.7 0.47 132.8 217.8 - - 0.0%
#2 400 355.7 319.9 3.33 132.8 217.8 - - 0.0%
#3 639 508.1 460.2 4.03 132.8 217.8 - - 0.0%
All ] 742 32.0 27.2 0.31 132.8 217.8 - - 0.0%
Cuts ar bin lin con sec 10% n 108 i rel opt ub Ib gap
Case: Bld ¥S =25: R=4; |Kpp| = 2; |Kpnp| = 6; |[Knpp| = 6; |Knpnpl =2

None 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3%
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7%
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2%
#3 397 335 62 590 36,000 144 215 193.0 ? 312.8 295.6 5.5%
All 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1%
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optimum (“opt”’). We stopped CPLEX after a max-
imum solving time of 10 hours (36,000 seconds),
recording the upper (“ub”) and lower (“Ib’’) bounds
and the “gap” reached at that time. The complete
results of one instance of each case for subset Al,
A2, Bl and B2 are shown in Tables 4-7, respectively.

The results in the tables show that cuts “#1°° are
the most effective, followed by “#2” and then by
“#3”, which are efficient in roughly half of the cases
(compared to the “none” runs). The synergistic
effect of grouping them all the cuts together (“‘all”
runs) is beneficial in most cases; however, in some
cases, adding cuts “#1” alone to the formulation
is still the best choice. The improvement due to
the logic cuts can be observed in any instance,
reaching a reduction of CPU time up to 90% or
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after 10 CPU hours with the original formulation
(“none”); cuts “#2” and “#3” are not effective;
yet optimality is reached after about 3 CPU hours
with cuts “#1” or “all”. We also note that the
relaxed optimal values (“rel”’) are about the same
in each run for each case; this means that the cuts
do not improve the initial value of the lower opti-
mality bound, but they are effective in speeding up
the rise of it throughout the iterations.

We note that increasing the slack time from 289
(Set A) to 50% (Set B) expards the feasible region
because more stops coul laced et\@

pair of consecutive ch int§)in the I As
a result, the solutioz e 1S consi larger
in all instanc t%h le in c CPLEX
is able to reagh theptimal solutionSms€ach run rel-

more in some of them compared to the “none’ runs atively fast, n case EX could not
(see cases ““‘c”’). The larger problem size cases “d”” do find the timal soluti y run after the
not always reach optimality but the effect of cuts 10 houfs imum S@ Vi@n llowed. Similarly,
can be noted by looking at the smaller “gap” values, A2dnga solve n B2d and so forth.
which are tightened because of better lower bounds he®significant $€sults show how effective the
“Ib”. In case A2d, the optimality gap is still 6.6% @ dology {be. he original MIP formulation
Table 7 @ O

CPLEX runs, subset B2 ®.

Cuts var bin lin con rel opt ub 1b gap
Case: B2a TS =15: R=6; |Kpp| = 1; |Kpnp| = 1;

None 86 53 144 92.6 103.3 - - 0.0%
#1 86 53 . ‘ 129 92.7 103.3 - - 0.0%
#H2 86 53 0.0 115 92.6 103.3 - - 0.0%
#3 86 53 0. 156 92.6 103.3 - - 0.0%
All 86 53 & 0 82 92.7 103.3 - - 0.0%
Cuts var & 10° n 10% i rel opt ub Ib gap
Case: B2b TS=20: R= = ~ 2; |Knpnpl =1

None 172 2.76 5.93 35.04 139.1 190.9 - - 0.0%
#1 172 0.47 0.54 4.46 139.1 190.9 - - 0.0%
#2 1.99 3.47 24.98 139.1 190.9 - - 0.0%
#3 1 2.16 2.93 22.86 139.1 190.9 - - 0.0%
All 17 0.96 1.15 9.99 139.1 190.9 - - 0.0%
Cuts var 10° n 108 i rel opt ub Ib gap
Case: B2¢ TS = 25: = 1; |Kpnpl = 55 [ Knppl = 55 [Knpnp| = 1

None 327 61 393 589 388 5.49 143.5 222.1 - - 0.0%
#1 61 518 64 41 0.62 143.5 222.1 - - 0.0%
H2 266 61 593 489 314 4.36 143.5 222.1 - - 0.0%
#3 266 61 1004 1007 501 6.57 143.5 222.1 - - 0.0%
All 2 266 61 1329 51 27 0.46 143.5 222.1 - - 0.0%
Cuts var bin lin con sec 10%n 108 i rel opt ub Ib gap
Case: B2d°TS =30: R = 6; |Kpp| = 1; |Kpnp| = 8; |Knepl = 7; | Knpnp| = 1

None 567 491 76 654 36,000 12.0 198 196.6 ? 332.8 278.7 16.3%
#1 566 490 76 839 36,000 7.5 168 196.6 ? 332.8 298.3 10.4%
H2 567 491 76 908 36,000 7.4 161 196.6 ? 334.9 283.3 15.4%
#3 567 491 76 1826 36,000 4.5 136 196.6 ? 3332 270.8 18.7%
All 566 490 76 2157 36,000 7.1 150 196.6 ? 332.8 305.6 8.2%
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is enough to fully represent the MAST scheduling
problem and find an optimum for any given
instance. However, “complicating” the model by
adding logic constraints can be extremely effective
to guide solvers in finding optimality faster, which
could be crucial for NP-Hard problems. This would
suggest applying the methodology for more compli-
cated MAST systems (multiple-vehicle and/or
MAST networks).

5. Conclusions

In this paper, we propose a mixed integer pro-
gramming (MIP) formulation of the static schedul-
ing problem of a mobility allowance shuttle transit
(MAST) system, a hybrid transit solution combin-
ing fixed and flexible types of services. Since it is a
NP-Hard problem, we develop sets of “logic cuts”
based on reasonable assumptions on passengers’
behavior and whose purpose is to remove ineffi-
cient and therefore uninteresting solutions from
the feasible region to speed up the search for opti-
mality.

the effectiveness of the cuts, which are able to r@
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