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Abstract— The mobility allowance shuttle transit (MAST)
system is a hybrid transit system in which vehicles are allowed
to deviate from a fixed route to serve flexible demand. A
mixed integer programming (MIP) formulation for the static
scheduling problem of multi-vehicle MAST (m-MAST) system
is proposed in this paper. Based on the MIP formulation, we
analyze the impacts of time headways between consecutive
transit vehicles on the performance of a two-vehicle MAST
system. An analytical framework is then developed to model
the performance of both one-vehicle and two-vehicle MAST
systems, which is used to identify the critical demand level
at which an increase of the fleet size from one to two vehicles
would be appropriate. Finally, a sensitivity analysis is conducted
to find out the impact of a key modeling parameter w; on the
critical demand.

I. INTRODUCTION

Public transit services are divided into two broad cat-
egories: fixed-route transit (FRT) and demand responsive

transit (DRT). The FRT systems are thought to be cos%

efficient because of their ride-sharing attribute and suffigient
loading capacity. But they are considered by the

public to be inconvenient since the fixed stop le
are not able to meet individual passeng ire.
inherent lack of flexibility is the most significanf®€onstraint of
fixed-route transit. The DRT systems are gguch more flexi

to offer door-to-door pick-up and Qo%ervices.
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public. For the MAST system, the fixed route can be either
a loop or a line between two terminals. The checkpoints
are usually located at major transfer stops or high dema
zones and are relatively far from each other. A hard consti@int
of the MAST system is the schgdulgd departure tim
checkpoints. The characteristig AST s avewin
several cases efficiently resp@dedjto e needs afits of
both customers and tra ngy. Howeve ed with
the traditional F st eir applic @raotioe has

been quite limited so fal

The design an ations of
attracted co%ble attention J
et al. [2 d the fo

n

ST system has
years. Quadrifoglio
MAST systems in

gitudinal velocity. Their
parameters are helpful in
JeSH the MASTysysteMysuch as slack time and headway.
% ifoglio et a&at}er developed an insertion heuristic

eduling al address a large amount of demand

ynamically [ uadrifoglio and Dessouky’s work [4],
they cargigdyout a set of simulations to show the sensitivity
analysi e performance of the insertion heuristic algo-
rit e capability of the system over different shapes

ice area. In 2008, Zhao and Dessouky [5] studied the
1 service capacity for the MAST system. Although
se studies investigated the design and operations of the
AST system from various aspects, they are all for the
single-vehicle MAST system.

Since the MAST system is a special case of the pickup and
delivery problem (PDP), it can be modeled as a mixed integer
program (MIP). The PDP has been extensively studied.
Cordeau introduced an MIP formulation of the multi-vehicle
Dial-a-Ride Problem (DARP) [6]. He proposed a branch-and-
cut algorithm using new valid inequalities for DARP. This
multi-vehicle DARP MIP formulation is a good reference
for the multi-vehicle MAST MIP formulation. Cordeau and
Laporte gave a comprehensive review on PDP, in which
different mathematical formulations and solution approaches
were examined and compared [7]. Lu and Dessouky (2007)
formulated the multi-vehicle PDP as an MIP and developed
an exact branch-and-cut algorithm to optimally solve multi-
vehicle PDP of up to 5 vehicles and 17 customers without
clusters and 5 vehicles and 25 customers with clusters within
a reasonable time [8]. In [9], Cortes et al. proposed an
MIP formulation for the PDP with transfers. Berbeglia et
al. reviewed the most recent literature on dynamic PDPs and
provided a general framework for dynamic one-to-one PDPs
[10]. Quadrifoglio et al. proposed an MIP formulation for the
static scheduling problem of a single-vehicle MAST system
and solved the problem by strengthening the formulation
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with logic cuts [11].

While the single-vehicle MAST system is suitable for
small service areas and low demand, a larger fleet size
would be needed to respond to heavier demand to provide
a satisfactory level of service to its customers. A design
and operational problem arises when transit agencies have to
decide whether it is necessary to increase the fleet size and
what conditions would justify doing so. A related problem
has been addressed by Quadrifoglio and Li in which an
analytical model is derived to identify the critical demand
at which it would be appropriate to switch operating policy.
[12]. A similar basic idea is adopted in this paper for
identifying the demand level at which a fleet increase would
be desired. So far no published work has yet dealt with
the design and operations of the complex multi-vehicle
MAST system. In this paper, after summarizing the Mixed
Integer Programming formulation for the static scheduling
of the multi-vehicle MAST system, the analytical modeling
for critical demand is derived and tested by simulation in
which the performance of the multi-vehicle MAST system
is compared with its single-vehicle counterpart.

II. FORMULATION

The multi-vehicle MAST system considered consists of a
set of vehicles with predefined schedules along a fixed-rou
of C checkpoints (i=1,2,...,C). These checkpoints includeqivo
terminals (i=1 and i=C) and the remaining C-2 inter j
checkpoints. A rectangular service area is conggd e@is
study as shown in Fig. 1, where L is the dista weeh the

two terminals and W/2 is the maximum allowa@le deviation
distance on each side of the fixed-route.
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Fig. 1. MAST System

We consider the following two assumptions in formulating
the multi-vehicle MAST problem: 1) the scenario is static
and deterministic where the transit demand is known in
advance; and 2) each request only has one customer and there
is no capacity constraint for transit vehicles. The following
presents the notations for the multi-vehicle MAST system:

Sets of Requests:

e« Kpp/Kpnp/Knpp/KNPND

= set of PD/PND/NPD/NPND requests

e Kyyp = Kpyp U Knypp = set of hybrid requests
(PND and NPD types)

e ps(k) € N = pick-up of k, Ve K\Kpnp 0
e ds(k) € N = drop-off of K\Kypp
e pc(k,r,v) € Ny = coll S 11 the oc ces’in
the schedule (for each d each of the
€ Kpnp

pick-up checkpoint %
o de(k,r,v) =3 tions of alh the ogturrences in
the schedulgy(for edch » € RD anMygach v € V') of the

Sets of Ox
o« No %kpoints
o NV n-check
R i

of Arcs: K

'6 e A=all
Sets of Trips$

e« R 1,..., R} = set of trips
. k) C RD = feasible trips of k, Vk € Kgyp

a (VN

= number of trips
= number of checkpoints

V. = number of vehicles

e V = set of vehicles

e TC =[(C—1) x R+1] x V, = total number of stops
at checkpoints in the schedule

e TCyp=(C—1)x R+ 1= number of checkpoint stops
of one vehicle

« TS =TC + |KPND| + |KNPD| + 2 x |KNPND| =
total number of stops

e 6; = scheduled departure time of checkpoint stop i,
Vi € Np, (91 = 0)

e 7, = ready time of request k, Vk € K

e 0;; = rectilinear travel time between i and j, Vi,j € N

e b; = service time for at stop i

o wi/we /w3 = objective function weights

Variables:

o T} = {0,1},V(4,j) € A,Vv € V = binary variables
indicating if an arc (4, j) is used by vehicle v (z} ; = 1)
or not (x7; = 0)

e t; = departure time from stop i, Vi € NV

o t; = arrival time at stop i, Vi € N\{1}

e pr = pick-up time of request k, Vk € K

e dj = drop-off time of request k, Vk € K

oz, = {0,1},Vk € Kpyp = binary variable indicating

whether the checkpoint stop of the hybrid request k (a



pick-up if £ € Kpyp or a drop-off if £k € Kypp) is
scheduled in trip r of vehicle v, Vr € RD,Vv € V

The multi-vehicle MAST scheduling problem is formu-
lated as the following mixed integer program (MIP):

min  w; Z Z (5@'%2)7]' + wo Z(dk — Pk)

vEV (i,j)€A keK

(1)
+ws Y (pk — Tk)
keK
Subject to
S S, =1 Vje N\{1,TCo+1,2TCy+1,...,TC},
veV 1
(2)
DN v, =1 Vje N\{TCy,2IC,....,TC}, 3)
veV j
Sav; =Ygt Ve N\{1,TC,,
J i 4)
TCy+ 1,2TCy, 7TC’}, veV
ti=0; VieNp )
Pr =lpsiy Yk € K\Kpnp (6)
dp = tasey Yk € K\Knpp (7
Z Z zr=1 Vke€ K\Kuyp
veV reHY BR(K)
Pk = tpe(k,rw) — M(1 - ZZ,T),Vk € Kpnp D,Q

pr < tpc(k,r,v) + M(l - Zz’r),Vk E« N € RD,ve

> fdc(k,r,v) - M(]- - Z,}cj r)ab&\!PDvr € R&
w0

d

En

(12)
(13)
(14)
¥;) V() eA
1%
(15)
CO + 1, ceny Ve X TCO —+ 1}
(16)
Z —0 YveV;k e KppUKNpND
’ (17
prckrv ijdsk})_o
(13)
Vv S V, k c KPND
D s Do DTtk =0
J reHYBR(k) j (19)

VUGV;]CGKNPD

The objective function (1) minimizes the weighted sum
of three different factors, namely the total vehicle time
traveled, the total travel time of all passengers and the
total waiting time of all passengers. Here waiting time is
the time gap between the passengers ready time and the
actual pick-up time. Network constraints (2), (3) and (4)
allow each stop (except for the starting and ending nodes
of each vehicle) to have exactly one incoming arc and one
outgoing arc, which guarantee that each stop will be visited
exactly once by the same vehicle. Constraint (5) forces the
departure times from checkpoints to be fixed since
are pre-scheduled. Constraints (6) and (7) make the plc@

time of each request (except fi PND) and the

off time of each request (ex e NPD)
corres
S exact arlable

departure time and the arriva
respectively. Constramt

to be equal to brld req r1ng that a
unique ride of @ uniqle vehicle w11 ected for its
pick-up or drop-o kpoint. C (9) and (10) fix
the value o&iach request on the z variable.
Similarly, ints (11).a e value of variable
for e T st . Con @ and (14) guarantee that
the % time of eac eniger is no earlier than her/his
e and is algo n er than the corresponding drop-
e. ConstralQ) is an aggregate form of sub-tour
1mination ¢ i imilar to the Miller-Tucker-Zemlin
TZ) constra onstraint (16) assures that at each node
the dep time is no earlier than the arrival time plus
e. Constraints (17), (18) and (19) are the key
in multi-vehicle MAST MIP formulation which

hat the pick-up and drop-off stop of each request are
by the same vehicle.

ITII. CRITICAL DEMAND

In this section, we derive the critical demand to identify
the switch point between the single-vehicle MAST system
and the multi-vehicle MAST system. The number of trips R
and the number of checkpoints C are fixed for both MAST
systems. The total demand (including all types of requests)
is considered to be deterministic during the whole service
period of MAST system. All the requests are assumed uni-
formly distributed in space and time, thus the non-checkpoint
stops (NP and ND) are uniformly distributed in the service
area. For simplicity, the time intervals between the departure
times of two consecutive checkpoints are assumed to be
uniform.

We define the following notation in this section:

e 50 = service time at an inserted stop

o w = allowed deviation on the y-axis

e v = bus speed

e t = time interval between departure times of two con-
secutive checkpoints

« 1, = time headway between two consecutive vehicles



e E(M) = expected value of travel miles of a vehicle

e E(T,4) = expected value of ride time of a customer

o E(T,t) = expected value of waiting time of a customer

e «,f3,7,6 = portion of PD, PND, NPD, NPND requests
respectively, and a + S+ v+ =1

A. Performance Measures and Utility Function

E(M),E(Ty), E(Tyq) are the performance measures for
the MAST system with associated weights. The weight
assignment would change in different circumstances. A sen-
sitivity experiment for w; is conducted in Section 4. We
assume that the weight assignment is fixed for various cases
here. The total utility value U is defined as following:

E(M
U=w x (1} ) + wo X E(th) + w3 X E(Trd) (20)

This utility function is consistent with the objective func-
tion formulated in Section 2. It is obvious that lower values
of total utility U indicate better performance of the MAST
system. In the next subsections we will discuss the analytical
computation of U in the one-vehicle case and the two-
vehicle case, respectively, for the MAST operating policy. To
calculate the expected values of the performance measures,
we assume a static situation in which all the requests have
been scheduled through a feasible and optimal procedure.
This static situation can reflect an expected performance o;

the MAST system. &
@in

the whole service area, a service area delim any pair
of consecutive checkpoints is defined as a baSic unit. As
depicted in Fig. 2, denote y as the V, rti jstance betw
any pair of NP/ND requests within S1 n1t of ser

area, and we have the expected e of y: E(y) /
Denote y' as the vertical dlst \ een one of& 0
d at W/%O is)

consecutive checkpoints_(
and its closest NP/N in a basi t
area, and we have th d Value 0

B. Analytical Modeling for the One-Vehicle Case

Since NP/ND customers are uniformly di

rvice

) = w/4.

Then the formulation ree perfor easures will
be discussed

1) Ride Ti te EFP#asNhe expected ride time of

a PD customewithin a bas nit service area, mgo as
the demand density, mea yverage number of NP/ND
ted

stops that need to b between two consecutive

L/(C-1)
[JCheckpoint stop

(O Non-checkpoint stop

Fig. 2. TIllustration for bus route within a basic unit area

checkpoints in one trip, n’ as the total number of NP/ND
stops that need to be inserted into the schedule, N as the
total number of customers. The following equations for ng,
n' and N hold:

no =n'/[R(C —1)] (21)
— [NPD| + |[PND| +2 x [INPND| 22)
— |PD|+ |[NPD| +|PND|+ |[NPND|  (23)

Where an NPD (PND) request has one NP (ND) stop
to be inserted, and an NPND request has two stops (one

NP and one ND) to be inserted intg the schedule. The

formulation of EFP is as follov% Q

PP = Q @ 24)
ane

Where the fir; ravel horizontal
distance between wo colsecutive chec 1th no back-
tracking po icy, th d term i c e travel time for

vertical deV1a n with ng sto g A and the third term

stands fo ice tim . Bxtending to different
umts area t e time of a PD customer
1s 1 jon (25)

P L (C—-2)t/3
Smce all thests are uniformly distributed, the NP
(ND) stop of an D (PND) request is expected to be located
at the of two consecutive checkpoints, which means
the of requests prior to and posterior to it within
it of service area should be the same. Thus, the
d ride time of a PND or NPD customer whose pick-
drop -off checkpoint is located within a basic unit of
rv1ce area has the following equation:

(25)

EPNPINPD _ pPD o (26)

The expected ride time of a PND/NPD customer is half the
value of a PD customer within one basic unit of service area.
Similarly, considering the possibility of traversing different
units of service area, the expected ride time of PND/NDP
customer is:

C - 21&
3
Note that if the two non-checkpoint stops of an NPND

request are scheduled within two consecutive checkpoints,

the ride time of this NPND request is expected to be one third
of the total average ride time between the two consecutive
checkpoints (analogous to E(|x —y|) = (U—L)/3,if z,y €

[L,U]). Thus the expected ride time of an NPND customer

with two stops scheduled within one basic unit of service

area is given by Equation (28). The expected ride time of

NPND customer is formulated in Equation (29).

E(TTI;ND/NPD) 5E,PD_i_ (27)

EYFPND — EPP /3 (28)
NPND EéDD O(O B 2)
BT ") = 3(C—1) + 3(C—1) t 9)

&9



Thus, the expected ride time of all the customers with
different types of requests can be calculated by (30).

E(Ta) = E(T/J") - |PD| + E(T{"7) - [IPND|
+E(THN"P) - INPD| + E(TNNP) . INPND|

2) Waiting Time: Since all the requests discussed here do
not exceed the saturation demand and they are uniformly
distributed without any obvious variation in this static situ-
ation for the analytical modeling, it can be concluded that
the customer will be picked up within two trips (one cycle)
of a vehicle for any type of request. So the expected waiting

time of a customer with any type of request is equal to the
total time of one trip. The following equation holds:

E(TPD) E(TPND) E(TNPD)
= B(TYPNPYy = (C - 1)t

Thus, we can get the expected value of waiting time of
all the customers with different types of requests:

E(Tw) = N(C = 1)t

(30)

€1V

(32)

3) Miles Traveled: For the expected miles traveled by the
vehicle during the whole service time, there are two terms
formulated here. The first term E(My) is the total horizontal
miles that a vehicle has to travel. The second term ext_E(M)
is the extra miles that a vehicle is supposed to travel d
to the insertion of non-checkpoint stops. Thus the exp
miles traveled by a vehicle during the whole service
is formulated as following: @

E(M) = E(My) + ext_E(M) ( 3
=R-L4+w[l/4x2+ (no—1)/3]R
Combining the three performan es the u&l

function for one- vehlcle case is:

symmetrical such that the case with time
is equivalent to the case with time headway
— t,. Thus we have the following relationship

2(C —

for the expected waiting time:

E(TPD) E(TPND) E(TNPD) E(TNPND)

(@ =1t —t,/2, for t,<(C—1)t
/2, for (C—1)t<t,<2C—1)t

(35)

\\

Apparently, in the range of [0, 2(C-1)t], the optimal ¢, for
(35) is t, = (C'—1)t because of the symmetry of the system.
In the following derivation it is assumed that ¢,, = (C' — 1)t,
which means one vehicle starts from checkpoint 1 and the
other one starts from checkpoint C simultaneously. Thus we
have:

B(Tw) = [N(C = 1)t]/2

Similar to the one-vehicle case, the expected miles traveled
and the expected ride time for the two-vehicle case are
formulated as followmg

(36)

E(M)=2x| + ext_E(
=2{R- L+ w[- % (Q
PD _
E; :! 5 (38)
B( 3 (39)
BE(TEQNP Eé’D 2)t/3 (40)
PND (C B 2)
@' 3ot @

1n1ng the three formance measures, the utility
n for the twAg-vehicle case is:

2'wl @ w[R(CG_ 1) + (/8 +7;’ 26)N]}

Lwl L (B4 +28)N
x o573l 2R(C —1) — 1
0; /””25; }[a+(ﬂ+7)/2+3(06_1)}
wsN(C — 2)t[a+ B+~ + C8/(C — 1)]
3
ws(C — DN
2 (“2)

D. Critical Demand

The utility functions for the one-vehicle and two-vehicle
cases are derived and shown in Equations (34) and (42),
respectively. By equating these two utility functions and
solving for N, the critical demand N, can be obtained.
At this critical demand, the one-vehicle and two-vehicle
systems will have the same system performance (including
both operation cost based on vehicle miles traveled and
service quality provided to customers). In other words, transit
demand beyond this critical demand point would necessitate
an increase in the fleet size.

By equating the two utility functions,
quadratic equation can be obtained:

the following

AIN? + AaN + A3=0 (43)
where, s %) w
_wa(f+y+ S0
A= R(C —1) (611 2) )
N Bty 9 ]
2 3(C —1)



A2 _ wgt(C2' - 1) (45)
Ag:—%[RL—i—wR((é_ )] (46)

The critical demand can be obtained by solving the
quadratic equation.

IV. EXPERIMENTS

In this section we conduct two types of experiments.
First, we analytically derive the critical demand for switching
between the one-vehicle and two-vehicle MAST systems and
conduct numerical analysis. We also find the optimization
results for the formulated MIP model using CPLEX. The
optimization results confirm the derived critical demand.
Second, we perform a sensitivity analysis for the weight of
vehicle miles traveled.

All the runs are conducted using CPLEX 12.0 x64 with
default settings using a desktop computer with Core 2 CPU
@3.00 GHz and 8GB RAM. Table 1 summarizes the basic
model input parameters.

As mentioned before, here L denotes the distance between
the two terminals, W denotes the maximum allowable devia-
tion distance on the y-axis, C denotes the number of check-
points, R denotes the number of trips, Js s+1 denotes the
rectilinear travel time between two consecutive checkpoints,
bs denotes the service time for boarding and disembarki
at each stop, t denotes the time interval between depa%
times of two consecutive checkpoints, and w1, ws, w t
objective function weights. @

A. Validation of the Analytical Model

For various situations with different ber of custom
N, based on the derived utility fu&t:%om Secti
and the given model input parameg€rs, th€ analytical yffli

results for the one-vehicle casg™@

S
-1) and twQ§ehigle
case (ANA-2) are calculated @ i

own in T ) e

optimization results froffythe TP ifted in
Table 2. These result i quadratic
trend lines for both thgo SIM-1)) and
two-vehicle case y.(8IM-2)) ed in Fig. 3,
which also i o line, resenting the analytical
results.

From Fig. 3 the followj ations can be made with

regards to the utility fumctig es for the one-vehicle and

two-vehicle MAS

TABLE I
SYSTEM PARAMETERS

10 miles

w 1 mile

C 3

R 6
0s,s+1(s=1,..,TC —1) 12 min
bs(s=1,...,TS) 18 sec

w1 Jwa Jws 0.4/0.4/0.2
t 25 min

TABLE I
UTILITY VALUES FROM ANALYTICAL RESULTS AND CPLEX RESULTS

N Analytical Model CPLEX
One-Vehicle  Two-Vehicle One-Vehicle  Two-Vehicle

8 192.3 211.2 194.9 216.1
10 2252 233.8 228.8 246.6
12 258.3 256.5 252.9 255.6
14 291.6 279.2 304.2 268.0
16 327.5 304.6 322.8 305.3
18 361.1 3275 369.2 333.2
20 394.8 350.5 409.3 354.1

14 16 18 0

150 + T
8 O 12
N (customer)
Fig. @unction curves for one-vehicle case and two-vehicle case
Qle analytical results match the CPLEX results well

for both cases even though there still exist some small
deviations (e.g., when N is above 18 in the one-vehicle
case). The analytical results are a little smaller than the
corresponding CPLEX results, which might be caused
by some idealized considerations of the analytical mod-
eling that overestimate the system performance.

o The critical demand (the intersection point) at which
the one-vehicle case and the two-vehicle case have the
same utility function value is around 12, corresponding
to the critical demand density ng = 1 (see (21) for
definition of ng). Below this critical demand value, ap-
plying the one-vehicle MAST system can result in lower
utility function value (better performance). Beyond this
critical demand point, the two-vehicle MAST system is
preferable.

« In general, for each case the CPLEX result curve fits the
analytical result curve very well. This suggests that both
the analytical model can be used to estimate the actual
utility function values and identify the critical demand.

B. Sensitivity Analysis

Special attention is paid to w;, which reflects the weight
of cost increase when another vehicle is introduced. To see
how the critical demand N, varies as a result of changing
w1, We set wy w3z = 1: 2, wy +ws +ws = 1, and increase



TABLE III
N. FOR VARIOUS w1

[ wi=025 wi=04 wi=05
MIP 6.52 11.56 15.58
Analytical 5.88 11.64 17.28
0
18 .
16 -
- M
En
% 10
38 =
- 6 - —— Simulation
4 =+ = Analytical
2
0

0.2 0.25 0.3 0.35 04 045 0.5 0.55 0.6

wl

Fig. 4. N, with various wq (CPLEX vs. analytical results)

wy from 0.25 to 0.5. The results are shown in Table 3 and
Fig. 4.

Fig. 4 clearly indicate that N, gets larger with the increase
of wj. In other words, if we put more weight on the total
miles traveled, the critical demand to switch from the one-
vehicle MAST system to its two-vehicle counterpart
also increase. This is expected because when switching
the one-vehicle system to two-vehicle system, the
terms in the utility function (20) reflecting the
are significantly decreased, whereas the firs is nearly
doubled. Thus, the changes in w; will affect trade-off

and lead to the increasing trend of cr& and as depic
in Fig. 4.

V. CONCL
In this paper we propose_a
m-MAST and an analy$j
MAST operators to idefiif Mg
is used to decide whe o Switch from % to 2-MAST.
Utilizing thi odel aftd the WP formulation,
ut1hty ion values generated by
A T s¥stem and the 2-MAST

sis is conducted to find out
ameter wi on the critical

for the SC,
eling fram

help
<), which

system. Finally,
the impact of a key
demand.

Experiments are
for switching aeg

to find out the critical demand
I-MAST and 2-MAST. The results
and the analytical model generate ap-
e utility function values. This reasonable

modeling

Since the MAST problem is NP-hard, the MIP can only
optimally solve problems of moderate size. Future work will
include the development of valid inequalities and logic con-
straints to strengthen the formulation and heuristic algorithms

to allow the problems to be solved in real time and at large

size. It would also be interesting to extend the analytical
model to different MAST configurations (e.g., 3+ vehicles)
and to identify the optimal fleet size as a function of demand.
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