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Abstract— The mobility allowance shuttle transit (MAST)
system is a hybrid transit system in which vehicles are allowed
to deviate from a fixed route to serve flexible demand. A
mixed integer programming (MIP) formulation for the static
scheduling problem of multi-vehicle MAST (m-MAST) system
is proposed in this paper. Based on the MIP formulation, we
analyze the impacts of time headways between consecutive
transit vehicles on the performance of a two-vehicle MAST
system. An analytical framework is then developed to model
the performance of both one-vehicle and two-vehicle MAST
systems, which is used to identify the critical demand level
at which an increase of the fleet size from one to two vehicles
would be appropriate. Finally, a sensitivity analysis is conducted
to find out the impact of a key modeling parameter w1 on the
critical demand.

I. INTRODUCTION

Public transit services are divided into two broad cat-
egories: fixed-route transit (FRT) and demand responsive
transit (DRT). The FRT systems are thought to be cost-
efficient because of their ride-sharing attribute and sufficient
loading capacity. But they are considered by the general
public to be inconvenient since the fixed stops and schedule
are not able to meet individual passenger’s desire. This
inherent lack of flexibility is the most significant constraint of
fixed-route transit. The DRT systems are much more flexible
to offer door-to-door pick-up and drop-off services. They
have been operated in quite a few cities and working as
an effective type of flexible transit service especially within
low-density residential areas, such as examples in Denver
(CO), Raleigh (NC), Akron (OH), Tacoma (WA), Sarasota
(FL), Portland (OR) and Winnipeg (Canada) [1]. However,
the associated high cost prevents the DRT to be deployed as a
general transit service. As a result they are largely limited to
specialized operations such as shuttle service, cab and Dial-
a-Ride services which are mandated under the Americans
with Disabilities Act. Thus, transit agencies are faced with
increasing demand for improved and extended DRT service.

The mobility allowance shuttle transit (MAST) is an inno-
vative concept that combines the cost-efficient operability of
traditional FRT with the flexibility of DRT systems. It allows
transit vehicles to deviate from a fixed route consisting of a
few mandatory checkpoints to serve on demand customers
within a predetermined service area, and thus can be both
affordable and convenient enough to attract the general
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public. For the MAST system, the fixed route can be either
a loop or a line between two terminals. The checkpoints
are usually located at major transfer stops or high demand
zones and are relatively far from each other. A hard constraint
of the MAST system is the scheduled departure time from
checkpoints. The characteristics of the MAST system have in
several cases efficiently responded to the needs and wants of
both customers and transit agency. However, compared with
the traditional FRT systems, their application in practice has
been quite limited so far.

The design and operations of the MAST system has
attracted considerable attention in recent years. Quadrifoglio
et al. [2] evaluated the performance of MAST systems in
terms of serving capability and longitudinal velocity. Their
results indicate that some basic parameters are helpful in
designing the MAST system such as slack time and headway.
Quadrifoglio et al. later developed an insertion heuristic
scheduling algorithm to address a large amount of demand
dynamically [3]. In Quadrifoglio and Dessouky’s work [4],
they carried out a set of simulations to show the sensitivity
analysis for the performance of the insertion heuristic algo-
rithm and the capability of the system over different shapes
of service area. In 2008, Zhao and Dessouky [5] studied the
optimal service capacity for the MAST system. Although
these studies investigated the design and operations of the
MAST system from various aspects, they are all for the
single-vehicle MAST system.

Since the MAST system is a special case of the pickup and
delivery problem (PDP), it can be modeled as a mixed integer
program (MIP). The PDP has been extensively studied.
Cordeau introduced an MIP formulation of the multi-vehicle
Dial-a-Ride Problem (DARP) [6]. He proposed a branch-and-
cut algorithm using new valid inequalities for DARP. This
multi-vehicle DARP MIP formulation is a good reference
for the multi-vehicle MAST MIP formulation. Cordeau and
Laporte gave a comprehensive review on PDP, in which
different mathematical formulations and solution approaches
were examined and compared [7]. Lu and Dessouky (2007)
formulated the multi-vehicle PDP as an MIP and developed
an exact branch-and-cut algorithm to optimally solve multi-
vehicle PDP of up to 5 vehicles and 17 customers without
clusters and 5 vehicles and 25 customers with clusters within
a reasonable time [8]. In [9], Cortes et al. proposed an
MIP formulation for the PDP with transfers. Berbeglia et
al. reviewed the most recent literature on dynamic PDPs and
provided a general framework for dynamic one-to-one PDPs
[10]. Quadrifoglio et al. proposed an MIP formulation for the
static scheduling problem of a single-vehicle MAST system
and solved the problem by strengthening the formulation
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with logic cuts [11].
While the single-vehicle MAST system is suitable for

small service areas and low demand, a larger fleet size
would be needed to respond to heavier demand to provide
a satisfactory level of service to its customers. A design
and operational problem arises when transit agencies have to
decide whether it is necessary to increase the fleet size and
what conditions would justify doing so. A related problem
has been addressed by Quadrifoglio and Li in which an
analytical model is derived to identify the critical demand
at which it would be appropriate to switch operating policy.
[12]. A similar basic idea is adopted in this paper for
identifying the demand level at which a fleet increase would
be desired. So far no published work has yet dealt with
the design and operations of the complex multi-vehicle
MAST system. In this paper, after summarizing the Mixed
Integer Programming formulation for the static scheduling
of the multi-vehicle MAST system, the analytical modeling
for critical demand is derived and tested by simulation in
which the performance of the multi-vehicle MAST system
is compared with its single-vehicle counterpart.

II. FORMULATION

The multi-vehicle MAST system considered consists of a
set of vehicles with predefined schedules along a fixed-route
of C checkpoints (i=1,2,...,C). These checkpoints include two
terminals (i=1 and i=C) and the remaining C-2 intermediate
checkpoints. A rectangular service area is considered in this
study as shown in Fig. 1, where L is the distance between the
two terminals and W/2 is the maximum allowable deviation
distance on each side of the fixed-route. Vehicles perform R
trips back and forth between the terminals.

In this study, the transit demand is defined by a set of
requests. Each request consists of pick-up/drop-off locations
and a ready time for pick-up. There are four possible types
of customers requests, which are shown below:

• PD (Regular): pick-up and drop-off at a checkpoint
• PND (Hybrid): pick-up at a checkpoint and drop-off at

a random point
• NPD (Hybrid): pick-up at a random point and drop-off

at a checkpoint
• NPND (Random): pick-up and drop-off at random

points

Fig. 1. MAST System

We consider the following two assumptions in formulating
the multi-vehicle MAST problem: 1) the scenario is static
and deterministic where the transit demand is known in
advance; and 2) each request only has one customer and there
is no capacity constraint for transit vehicles. The following
presents the notations for the multi-vehicle MAST system:

Sets of Requests:
• KPD/KPND/KNPD/KNPND

= set of PD/PND/NPD/NPND requests
• KHYB = KPND ∪ KNPD = set of hybrid requests

(PND and NPD types)
• ps(k) ∈ N = pick-up of k, ∀k ∈ K\KPND

• ds(k) ∈ N = drop-off of k, ∀k ∈ K\KNPD

• pc(k, r, v) ∈ N0 = collections of all the occurrences in
the schedule (for each r ∈ RD and each v ∈ V ) of the
pick-up checkpoint of k, ∀k ∈ KPND

• dc(k, r, v) ∈ N0 = collections of all the occurrences in
the schedule (for each r ∈ RD and each v ∈ V ) of the
drop-off checkpoint of k, ∀k ∈ KNPD

Sets of Nodes:
• N0 = checkpoints
• Nn = non-checkpoint stops
• N = N0 ∪Nn

Sets of Arcs:
• A = all arcs
Sets of Trips:
• RD = {1, ..., R} = set of trips
• HY BR(k) ⊂ RD = feasible trips of k, ∀k ∈ KHYB

Parameters:
• R = number of trips
• C = number of checkpoints
• Ve = number of vehicles
• V = set of vehicles
• TC = [(C − 1)×R+ 1]× Ve = total number of stops

at checkpoints in the schedule
• TC0 = (C − 1)×R+1 = number of checkpoint stops

of one vehicle
• TS = TC + |KPND| + |KNPD| + 2 × |KNPND| =

total number of stops
• θi = scheduled departure time of checkpoint stop i,
∀i ∈ N0, (θ1 = 0)

• τk = ready time of request k, ∀k ∈ K
• δi,j = rectilinear travel time between i and j, ∀i, j ∈ N
• bi = service time for at stop i
• w1/w2/w3 = objective function weights
Variables:
• xvi,j = {0, 1},∀(i, j) ∈ A,∀v ∈ V = binary variables

indicating if an arc (i, j) is used by vehicle v (xvi,j = 1)
or not (xvi,j = 0)

• ti = departure time from stop i, ∀i ∈ N
• ti = arrival time at stop i, ∀i ∈ N\{1}
• pk = pick-up time of request k, ∀k ∈ K
• dk = drop-off time of request k, ∀k ∈ K
• zvk,r = {0, 1},∀k ∈ KHYB = binary variable indicating

whether the checkpoint stop of the hybrid request k (a
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pick-up if k ∈ KPND or a drop-off if k ∈ KNPD) is
scheduled in trip r of vehicle v, ∀r ∈ RD,∀v ∈ V

The multi-vehicle MAST scheduling problem is formu-
lated as the following mixed integer program (MIP):

min w1

∑
v∈V

∑
(i,j)∈A

δijx
v
i,j + w2

∑
k∈K

(dk − pk)

+w3

∑
k∈K

(pk − τk)
(1)

Subject to∑
v∈V

∑
i

xvi,j = 1 ∀j ∈ N\{1, TC0+1, 2TC0+1, ..., TC},

(2)∑
v∈V

∑
j

xvi,j = 1 ∀j ∈ N\{TC0, 2TC0, ..., TC}, (3)

∑
j

xvi,j =
∑
i

xvj,i ∀j ∈ N\{1, TC0,

TC0 + 1, 2TC0, ..., TC}; v ∈ V
(4)

ti = θi ∀i ∈ N0 (5)
pk = tps(k) ∀k ∈ K\KPND (6)
dk = tds(k) ∀k ∈ K\KNPD (7)∑

v∈V

∑
r∈HYBR(K)

zvk,r = 1 ∀k ∈ K\KHYB (8)

pk ≥ tpc(k,r,v) −M(1− zvk,r),∀k ∈ KPND, r ∈ RD, v ∈ V

(9)
pk ≤ tpc(k,r,v) +M(1− zvk,r),∀k ∈ KPND, r ∈ RD, v ∈ V

(10)
dk ≥ tdc(k,r,v) −M(1− zvk,r),∀k ∈ KNPD, r ∈ RD, v ∈ V

(11)
dk ≤ tdc(k,r,v) +M(1− zvk,r),∀k ∈ KNPD, r ∈ RD, v ∈ V

(12)
pk ≥ τk ∀k ∈ K (13)
dk ≥ pk ∀k ∈ K (14)

tj ≥ ti +
∑
v∈V

xvi,jδi,j −M(1−
∑
v∈V

xvi,j) ∀(i, j) ∈ A

(15)
ti ≥ ti + bi ∀i ∈ N\{1, TC0 + 1, ..., V e× TC0 + 1}

(16)∑
j

xvps(k),j−
∑
j

xvj,ds(k) = 0 ∀v ∈ V ; k ∈ KPD∪KNPND

(17)∑
r∈HYBR(k)

∑
j

xvpc(k,r,v),j −
∑
j

xvj,ds(k) = 0,

∀v ∈ V ; k ∈ KPND

(18)

∑
j

xvps(k),j −
∑

r∈HYBR(k)

∑
j

xvj,dc(k,r,v) = 0,

∀v ∈ V ; k ∈ KNPD

(19)

The objective function (1) minimizes the weighted sum
of three different factors, namely the total vehicle time
traveled, the total travel time of all passengers and the
total waiting time of all passengers. Here waiting time is
the time gap between the passengers ready time and the
actual pick-up time. Network constraints (2), (3) and (4)
allow each stop (except for the starting and ending nodes
of each vehicle) to have exactly one incoming arc and one
outgoing arc, which guarantee that each stop will be visited
exactly once by the same vehicle. Constraint (5) forces the
departure times from checkpoints to be fixed since they
are pre-scheduled. Constraints (6) and (7) make the pick-up
time of each request (except for the PND) and the drop-
off time of each request (except for the NPD) equal to the
departure time and the arrival time of its corresponding node,
respectively. Constraint (8) allows exactly one z variable
to be equal to 1 for each hybrid request, assuring that a
unique ride of a unique vehicle will be selected for its
pick-up or drop-off checkpoint. Constraints (9) and (10) fix
the value of for each request depending on the z variable.
Similarly, constraints (11) and (12) fix the value of variable
for each request . Constraints (13) and (14) guarantee that
the pick-up time of each passenger is no earlier than her/his
ready time and is also no later than the corresponding drop-
off time. Constraint (15) is an aggregate form of sub-tour
elimination constraint similar to the Miller-Tucker-Zemlin
(MTZ) constraint. Constraint (16) assures that at each node
the departure time is no earlier than the arrival time plus
the service time. Constraints (17), (18) and (19) are the key
constraints in multi-vehicle MAST MIP formulation which
assure that the pick-up and drop-off stop of each request are
served by the same vehicle.

III. CRITICAL DEMAND

In this section, we derive the critical demand to identify
the switch point between the single-vehicle MAST system
and the multi-vehicle MAST system. The number of trips R
and the number of checkpoints C are fixed for both MAST
systems. The total demand (including all types of requests)
is considered to be deterministic during the whole service
period of MAST system. All the requests are assumed uni-
formly distributed in space and time, thus the non-checkpoint
stops (NP and ND) are uniformly distributed in the service
area. For simplicity, the time intervals between the departure
times of two consecutive checkpoints are assumed to be
uniform.

We define the following notation in this section:
• s0 = service time at an inserted stop
• w = allowed deviation on the y-axis
• v = bus speed
• t = time interval between departure times of two con-

secutive checkpoints
• tv = time headway between two consecutive vehicles
• E(TPD

rd ) = expected value of ride time of a PD
• E(TPND

rd ) = expected value of ride time of a PND
• E(TNPD

rd ) = expected value of ride time of an NPD
• E(TNPND

rd ) = expected value of ride time of an NPND
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• E(M) = expected value of travel miles of a vehicle
• E(Trd) = expected value of ride time of a customer
• E(Twt) = expected value of waiting time of a customer
• α, β, γ, δ = portion of PD, PND, NPD, NPND requests

respectively, and α+ β + γ + δ = 1

A. Performance Measures and Utility Function

E(M), E(Twt), E(Trd) are the performance measures for
the MAST system with associated weights. The weight
assignment would change in different circumstances. A sen-
sitivity experiment for w1 is conducted in Section 4. We
assume that the weight assignment is fixed for various cases
here. The total utility value U is defined as following:

U = w1 ×
E(M)

v
+ w2 × E(Twt) + w3 × E(Trd) (20)

This utility function is consistent with the objective func-
tion formulated in Section 2. It is obvious that lower values
of total utility U indicate better performance of the MAST
system. In the next subsections we will discuss the analytical
computation of U in the one-vehicle case and the two-
vehicle case, respectively, for the MAST operating policy. To
calculate the expected values of the performance measures,
we assume a static situation in which all the requests have
been scheduled through a feasible and optimal procedure.
This static situation can reflect an expected performance of
the MAST system.

B. Analytical Modeling for the One-Vehicle Case

Since NP/ND customers are uniformly distributed within
the whole service area, a service area delimited by any pair
of consecutive checkpoints is defined as a basic unit. As
depicted in Fig. 2, denote y as the vertical distance between
any pair of NP/ND requests within the basic unit of service
area, and we have the expected value of y: E(y) = w/3.
Denote y′ as the vertical distance between one of the two
consecutive checkpoints (both located at w/2 on the y-axis)
and its closest NP/ND stop within a basic unit of service
area, and we have the expected value of y: E(y′) = w/4.
Then the formulation for three performance measures will
be discussed.

1) Ride Time: Denote EPD
0 as the expected ride time of

a PD customer within a basic unit of service area, n0 as
the demand density, meaning the average number of NP/ND
stops that need to be inserted between two consecutive

Fig. 2. Illustration for bus route within a basic unit area

checkpoints in one trip, n′ as the total number of NP/ND
stops that need to be inserted into the schedule, N as the
total number of customers. The following equations for n0,
n′ and N hold:

n0 = n′/[R(C − 1)] (21)
n′ = |NPD|+ |PND|+ 2× |NPND| (22)
N = |PD|+ |NPD|+ |PND|+ |NPND| (23)

Where an NPD (PND) request has one NP (ND) stop
to be inserted, and an NPND request has two stops (one
NP and one ND) to be inserted into the schedule. Then the
formulation of EPD

0 is as following:

EPD
0 =

L

(C − 1)v
+
w

v
[
1

4
× 2+

1

3
(n0− 1)]+ s0×n0 (24)

Where the first term is the travel time for horizontal
distance between two consecutive checkpoints with no back-
tracking policy, the second term indicates the travel time for
vertical deviation with n0 stops scheduled, and the third term
stands for the service time at n0 stops. Extending to different
units of service area, the expected ride time of a PD customer
is in Equation (25).

E(TPD
rd ) = EPD

0 + (C − 2)t/3 (25)

Since all the requests are uniformly distributed, the NP
(ND) stop of an NPD (PND) request is expected to be located
at the middle of two consecutive checkpoints, which means
the numbers of requests prior to and posterior to it within
a basic unit of service area should be the same. Thus, the
expected ride time of a PND or NPD customer whose pick-
up or drop-off checkpoint is located within a basic unit of
service area has the following equation:

E
PND/NPD
0 = EPD

0 /2 (26)

The expected ride time of a PND/NPD customer is half the
value of a PD customer within one basic unit of service area.
Similarly, considering the possibility of traversing different
units of service area, the expected ride time of PND/NDP
customer is:

E(T
PND/NPD
rd ) =

1

2
EPD

0 +
C − 2

3
t (27)

Note that if the two non-checkpoint stops of an NPND
request are scheduled within two consecutive checkpoints,
the ride time of this NPND request is expected to be one third
of the total average ride time between the two consecutive
checkpoints (analogous to E(|x−y|) = (U−L)/3, if x, y ∈
[L,U ]). Thus the expected ride time of an NPND customer
with two stops scheduled within one basic unit of service
area is given by Equation (28). The expected ride time of
NPND customer is formulated in Equation (29).

ENPND
0 = EPD

0 /3 (28)

E(TNPND
rd ) =

EPD
0

3(C − 1)
+
C(C − 2)

3(C − 1)
t (29)
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Thus, the expected ride time of all the customers with
different types of requests can be calculated by (30).

E(Trd) = E(TPD
rd ) · |PD|+ E(TPND

rd ) · |PND|
+E(TNPD

rd ) · |NPD|+ E(TNPND
rd ) · |NPND|

(30)

2) Waiting Time: Since all the requests discussed here do
not exceed the saturation demand and they are uniformly
distributed without any obvious variation in this static situ-
ation for the analytical modeling, it can be concluded that
the customer will be picked up within two trips (one cycle)
of a vehicle for any type of request. So the expected waiting
time of a customer with any type of request is equal to the
total time of one trip. The following equation holds:

E(TPD
wt ) = E(TPND

wt ) = E(TNPD
wt )

= E(TNPND
wt ) = (C − 1)t

(31)

Thus, we can get the expected value of waiting time of
all the customers with different types of requests:

E(Twt) = N(C − 1)t (32)

3) Miles Traveled: For the expected miles traveled by the
vehicle during the whole service time, there are two terms
formulated here. The first term E(M0) is the total horizontal
miles that a vehicle has to travel. The second term ext E(M)
is the extra miles that a vehicle is supposed to travel due
to the insertion of non-checkpoint stops. Thus the expected
miles traveled by a vehicle during the whole service period
is formulated as following:

E(M) = E(M0) + ext E(M)

= R · L+ w[1/4× 2 + (n0 − 1)/3]R(C − 1)
(33)

Combining the three performance measures, the utility
function for one-vehicle case is:

U1 =
w1

v
{R · L+

w[R(C − 1)

6
+

(β + γ + 2δ)N

3
]}

+ w2(C − 1)tN + w3N{
L

(C − 1)v

+
w

v
[
1

4
× 2 +

1

3
[
(β + γ + 2δ)N

R(C − 1)
− 1]]

+ s0 ×
(β + γ + 2δ)N

R(C − 1)
}[α+

β + γ

2
+

δ

3(C − 1)
]

+
w3N(C − 2)t[α+ β + γ + Cδ/(C − 1)]

3

(34)

C. Analytical Modeling for the Two-Vehicle Case

For the two-vehicle MAST system, note that the average
waiting time is determined by two extreme cases: the shortest
waiting time (equal to 0) and the longest one. Also note
that the system is symmetrical such that the case with time
headway tv is equivalent to the case with time headway
2(C − 1)t − tv . Thus we have the following relationship
for the expected waiting time:

E(TPD
wt ) = E(TPND

wt ) = E(TNPD
wt ) = E(TNPND

wt )

=

{
(C − 1)t− tv/2, for tv < (C − 1)t

tv/2, for (C − 1)t ≤ tv ≤ 2(C − 1)t

(35)

Apparently, in the range of [0, 2(C-1)t], the optimal tv for
(35) is tv = (C−1)t because of the symmetry of the system.
In the following derivation it is assumed that tv = (C− 1)t,
which means one vehicle starts from checkpoint 1 and the
other one starts from checkpoint C simultaneously. Thus we
have:

E(Twt) = [N(C − 1)t]/2 (36)

Similar to the one-vehicle case, the expected miles traveled
and the expected ride time for the two-vehicle case are
formulated as following:

E(M) = 2× [E(M0) + ext E(M)]

= 2{R · L+ w[
1

4
× 2 +

1

3
(
n0
2
− 1)]R(C − 1)}

(37)

EPD
0 =

L

(C − 1)v
+
w

v
[
1

4
×2+

1

3
(
n0
2
−1)]+s0×

n0
2

(38)

E(TPD
rd ) = EPD

0 + (C − 2)t/3 (39)

E(T
PND/NPD
rd ) = EPD

0 /2 + (C − 2)t/3 (40)

E(TNPND
rd ) =

EPD
0

3(C − 1)
+
C(C − 2)

3(C − 1)
t (41)

Combining the three performance measures, the utility
function for the two-vehicle case is:

U2 =
2w1

v
{R · L+ w[

R(C − 1)

6
+

(β + γ + 2δ)N

3
]}

+ w3N{
L

(C − 1)v
+
w

v
[
1

2
+

1

3
[
(β + γ + 2δ)N

2R(C − 1)
− 1]]

+ s0 ×
(β + γ + 2δ)N

2R(C − 1)
}[α+ (β + γ)/2 +

δ

3(C − 1)
]

+
w3N(C − 2)t[α+ β + γ + Cδ/(C − 1)]

3

+
w2(C − 1)tN

2
(42)

D. Critical Demand

The utility functions for the one-vehicle and two-vehicle
cases are derived and shown in Equations (34) and (42),
respectively. By equating these two utility functions and
solving for N, the critical demand Nc can be obtained.
At this critical demand, the one-vehicle and two-vehicle
systems will have the same system performance (including
both operation cost based on vehicle miles traveled and
service quality provided to customers). In other words, transit
demand beyond this critical demand point would necessitate
an increase in the fleet size.

By equating the two utility functions, the following
quadratic equation can be obtained:

A1N
2 +A2N +A3 = 0 (43)

where,

A1 =
w3(β + γ + 2δ)

R(C − 1)
(
w

6v
+
s0
2
)

· [1− δ − β + γ

2
+

δ

3(C − 1)
]

(44)
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A2 =
w2t(C − 1)

2
(45)

A3 = −w1

v
[RL+

wR(C − 1)

6
] (46)

The critical demand can be obtained by solving the
quadratic equation.

IV. EXPERIMENTS

In this section we conduct two types of experiments.
First, we analytically derive the critical demand for switching
between the one-vehicle and two-vehicle MAST systems and
conduct numerical analysis. We also find the optimization
results for the formulated MIP model using CPLEX. The
optimization results confirm the derived critical demand.
Second, we perform a sensitivity analysis for the weight of
vehicle miles traveled.

All the runs are conducted using CPLEX 12.0 x64 with
default settings using a desktop computer with Core 2 CPU
@3.00 GHz and 8GB RAM. Table 1 summarizes the basic
model input parameters.

As mentioned before, here L denotes the distance between
the two terminals, W denotes the maximum allowable devia-
tion distance on the y-axis, C denotes the number of check-
points, R denotes the number of trips, δs,s+1 denotes the
rectilinear travel time between two consecutive checkpoints,
bs denotes the service time for boarding and disembarking
at each stop, t denotes the time interval between departure
times of two consecutive checkpoints, and w1, w2, w3 are the
objective function weights.

A. Validation of the Analytical Model

For various situations with different number of customers
N, based on the derived utility functions from Section 3
and the given model input parameters, the analytical utility
results for the one-vehicle case (ANA-1) and two-vehicle
case (ANA-2) are calculated and shown in Table 2. The
optimization results from the MIP model are also listed in
Table 2. These results are approximated by two quadratic
trend lines for both the one-vehicle case (Poly.(SIM-1)) and
two-vehicle case (Poly.(SIM-2)) and are plotted in Fig. 3,
which also includes two lines representing the analytical
results.

From Fig. 3 the following observations can be made with
regards to the utility function curves for the one-vehicle and
two-vehicle MAST cases.

TABLE I
SYSTEM PARAMETERS

L 10 miles
W 1 mile
C 3
R 6
δs,s+1(s = 1, ..., TC − 1) 12 min
bs(s = 1, ..., TS) 18 sec
w1/w2/w3 0.4/0.4/0.2
t 25 min

TABLE II
UTILITY VALUES FROM ANALYTICAL RESULTS AND CPLEX RESULTS

N Analytical Model CPLEX
One-Vehicle Two-Vehicle One-Vehicle Two-Vehicle

8 192.3 211.2 194.9 216.1
10 225.2 233.8 228.8 246.6
12 258.3 256.5 252.9 255.6
14 291.6 279.2 304.2 268.0
16 327.5 304.6 322.8 305.3
18 361.1 327.5 369.2 333.2
20 394.8 350.5 409.3 354.1

Fig. 3. Utility function curves for one-vehicle case and two-vehicle case

• The analytical results match the CPLEX results well
for both cases even though there still exist some small
deviations (e.g., when N is above 18 in the one-vehicle
case). The analytical results are a little smaller than the
corresponding CPLEX results, which might be caused
by some idealized considerations of the analytical mod-
eling that overestimate the system performance.

• The critical demand (the intersection point) at which
the one-vehicle case and the two-vehicle case have the
same utility function value is around 12, corresponding
to the critical demand density n0 = 1 (see (21) for
definition of n0). Below this critical demand value, ap-
plying the one-vehicle MAST system can result in lower
utility function value (better performance). Beyond this
critical demand point, the two-vehicle MAST system is
preferable.

• In general, for each case the CPLEX result curve fits the
analytical result curve very well. This suggests that both
the analytical model can be used to estimate the actual
utility function values and identify the critical demand.

B. Sensitivity Analysis

Special attention is paid to w1, which reflects the weight
of cost increase when another vehicle is introduced. To see
how the critical demand Nc varies as a result of changing
w1, we set w2 : w3 = 1 : 2, w1+w2+w3 = 1, and increase
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TABLE III
Nc FOR VARIOUS w1

w1 = 0.25 w1 = 0.4 w1 = 0.5

MIP 6.52 11.56 15.58
Analytical 5.88 11.64 17.28

Fig. 4. Nc with various w1 (CPLEX vs. analytical results)

w1 from 0.25 to 0.5. The results are shown in Table 3 and
Fig. 4.

Fig. 4 clearly indicate that Nc gets larger with the increase
of w1. In other words, if we put more weight on the total
miles traveled, the critical demand to switch from the one-
vehicle MAST system to its two-vehicle counterpart will
also increase. This is expected because when switching from
the one-vehicle system to two-vehicle system, the last two
terms in the utility function (20) reflecting the service quality
are significantly decreased, whereas the first term is nearly
doubled. Thus, the changes in w1 will affect this trade-off
and lead to the increasing trend of critical demand as depicted
in Fig. 4.

V. CONCLUSIONS

In this paper we propose an MIP for the scheduling of
m-MAST and an analytical modeling framework to help
MAST operators to identify the critical demand (Nc), which
is used to decide when to switch from 1-MAST to 2-MAST.
Utilizing this analytical model and the MIP formulation,
we also compare the utility function values generated by
the two methods for the 1-MAST system and the 2-MAST
system. Finally, a sensitivity analysis is conducted to find out
the impact of a key modeling parameter w1 on the critical
demand.

Experiments are conducted to find out the critical demand
for switching between the 1-MAST and 2-MAST. The results
show that the MIP and the analytical model generate ap-
proximately the same utility function values. This reasonable
match demonstrates the validation and the effectiveness
of the proposed analytical framework for critical demand
modeling.

Since the MAST problem is NP-hard, the MIP can only
optimally solve problems of moderate size. Future work will
include the development of valid inequalities and logic con-
straints to strengthen the formulation and heuristic algorithms
to allow the problems to be solved in real time and at large

size. It would also be interesting to extend the analytical
model to different MAST configurations (e.g., 3+ vehicles)
and to identify the optimal fleet size as a function of demand.
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