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Scheduling Multiple Vehicle Mobility Allowance Shuttle Transit
(m-MAST) Services

Wei Lu, Lu Lu and Luca Quadrifoglio

Abstract— The mobility allowance shuttle transit (MAST)
system is an innovative hybrid transit system in which vehicles
are allowed to deviate from a fixed route to serve flexible
demand. In this paper, we develop an insertion heuristic that
economically inserts the deviation requests into the schedule for
multiple-vehicle MAST system, which has never been addressed
in the literature. The proposed heuristic is validated and
evaluated by a set of simulations performed at different demand
levels and with different control parameters. By comparing
its performance versus the optimal solutions, the effectiveness
and quality of the heuristic is confirmed. Compared to its
single-vehicle counterpart, the multiple-vehicle MAST prevails
in terms of rejection rate, passenger waiting time and overall
objective function, among other performance indices.

[. INTRODUCTION

Public transit services are divided into two broad cat-
egories: fixed-route transit (FRT) and demand responsive
translt (DRT). The FRT systems are thought to be co

are not able to meet individual passenger’
inherent lack of flexibility is the most significafi
fixed-route transit. The DRT systems are
to offer door-to-door pick-up and dr

zones and are relatively far from each other. A hard constraint

of the MAST system is the scheduled departure time frg @

checkpoints. G
The design and operations of the MAST syste

attracted considerable attention in recent years. @

et al. [2] evaluated the performance of MAS

terms of serving capability and longitudingmyctecity. Their
results indicate that some basic param @ helpful in
designing the MAST system such as sla®k tir®®and headway.

Quadrifoglio later develop sertlon heuristic
scheduling to addres amount of demand
dynamica 1, Q ad Dessouky carried
out a ulatlo S e sensitivity analysis for

nce of the heuristic algorithm and the

& different shapes of service area.

nd Dessouk 5] studied the optimal service capacity
for the MAST Although these studies investigated
the design and ions of the MAST system from various

aspects, are all for the single-vehicle MAST system.
AST system is a special case of the pickup and
delgye lem (PDP), it can be modeled as a mixed integer

0g (MIP). The PDP has been extensively studied and
of the exact algorithms are based on integer program-

to solve the single-vehicle DARP [11] and its variant with

ore flexible

) ' . S ' C ng techniques [6]-[10]. Other exact algorithms include

have been operated in quite a feygjtig and worki dynamic programming. Psaraftis used dynamic programming
an effective type of flexible i e especial in

low-density residential ar ch as example
(CO), Raleigh (NC), Akron ¥OQH), Tacoma %asota

(FL), Portland (OR) a innipeg (Cap@da Wwever,
the associated higl&@ents the T deployed as
a general transit sgfvice. ®fius, trapgit agen ghare faced with
increasing dempagdNor improv d extended DRT service
and a combi @ 0 es of transit systems
BVide a rg

cost-efficient and flexible

e transit (MAST) is an inno-
the cost-efficient operability of
exibility of DRT systems. It allows

a loop or a line between two terminals. The checkpoints
are usually located at major transfer stops or high demand
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time windows [12]. Both algorithms has a time complexity
of O(N23N) (N for customers), and can solve an instance
of N up to 20 in a meaningful time.

Since the optimization problem of PDP is known to be
strongly NP-hard [13], researchers have been studying on
heuristic approaches to solve PDP with large instances in
a reasonable (polynomial) time, while not compromising
the quality of solution too much. Along these approaches,
insertion heuristics are the most popular because they can
provide meaningfully good results in very fast running time,
thus are capable of handling problems with large instances.
Another reason that justifies insertion heuristics in practice
is that they can be easily implemented in dynamic envi-
ronments [14] since they usually insert requests into the
existed schedule in a cost-efficient manner. Savelsbergh and
Sol [15] gave a complete review on pickup and delivery
problem and discussed the several variants of the problem in
terms of different optimization objectives, time-constraints,
and fleet sizes. Both exact algorithms based on mathematical
modeling and heuristics were reviewed. Some recent efforts
in insertion heuristics includes Lu and Dessouky’s [16]. A
major disadvantage of the insertion heuristics is usually it’s



hard to bound its performance. Another disadvantage is its
myopic and greedy approach for current optimum at each
time step without having an overview of all the request. The
insertion heuristic controlled by “usable slack time” resolved
this issue efficiently [3].

II. SYSTEMS DEFINITION AND MODEL DESCRIPTION
A. Definition of MAST System

A general MAST system has a fleet of vehicles serving
a set of customers’ requests (see [3] for definition). With
a fixed pre-defined time headway, vehicles travel along a

fixed-route line (back and forth between two terminals or Fig. 1. Sample 1-MAST network 00

along a loop) which consists of an ordered set of checkpoints
associated with predefined departure times, which serve as
tight constraints.

The transit demand is defined by a set of requests. Each
request consists of pick-up/drop-off locations and a ready
time for pick-up. There are four possible types of customers:

o PD (Regular): pick-up and drop-off at a checkpoint

o PND (Hybrid): pick-up at a checkpoint and drop-off at
a random point

o NPD (Hybrid): pick-up at a random point and drop-off
at a checkpoint

« NPND (Random): pick-up and drop-off at randgm
points \

used in this paper. To give an example, we cons
customers (see Table I) with their correspondi

a simple single-vehicle MAST (1-MAST ith TCe= icle 2. The nodes 1° & 4° (so as 2° & 5° and 3° &
TCo = 3 checkpoints in Ny = {1%42", two rarfd ) are essentially the same node geographically, but in the

drop-off stops according to the network in Fi
pick-up stops in N,+ = {4+ 5% random_drof*o erspective of scheduling they’re not, since they are visited
requests in N,,- = {67,74 ong vehicle imgfeligle ~ by different vehicles at different times. For the graph, the

set V= {1}. Let N = I+ n—- The 1S  same aforementioned precedence and time constraints still
almost a complete graph, eX@luding the ardsqviofit g the  apply in a m-MAST system. Besides, no arcs between nodes
conditions described apewe, nanmiely (2 1) and  representing checkpoints visited by different vehicles (such
(1, 3) that violate thg %rmined sequig checkpoints  as (1 — 4) and (1 — 5)) are allowed.
(1 — 2 — 3) andf(6,4)™2, To formally introduce the multiple-vehicle MAST prob-
up before drop ecedence lem, we first present some definitions.

Definition 1 (m-MAST route). An m-MAST route Rt, for
vehicle v is a directed route through a subset N,, C N such

other icl8§is added into the system (i.e., that:

1,2}), the f checkpoints stays the same 1) Rt, starts in 1+ (v —1) x TCy.

0 = 3) butmwe needyo double TC (T'C =2 xTCy = 6) 2) {14+ (v—1)xTCy,....,u x TCy} C N,.

because th point are visited by different vehicles at 3) (ps(k)Uds(k))NN, =@ or (ps(k)Uds(k)) NN, =
ps(k) Uds(k) for all k € K.

4) If ps(k) Uds(k) C N,, then ps(k) is visited before

TABLE I

ds(k).
SAMPLE SET OF REQUESTS 5) Vel(lic)le v visits each location in N,, exactly once.
k| ps(k) | ds(k) 6) Precedence constraint of pick-up and drop-off is not
1] 47 6~ violated.
2 13_ 7; 7) Departure times at checkpoints {1 + (v — 1) X
?1 510 ;0 TCy,...,v x TCy} are complied with.

8) Rt, ends in v x TC,.
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Definition 2 (m-MAST plan). An m-MAST plan is a set of
routes RT = {Rt,|v € V'} such that:

1) Rt, is a m-MAST route for vehicle v, for each v € V.
2) {Ny|v € V'} is a partition of N.

Define f(RT) as the price of plan R7 corresponding to
a certain objective function f. Then we define the m-MAST
problem as:

min{f(RT|RT is a m-MAST plan)}

Particularly in this paper f is a combination of operation
cost and dissatisfaction of customers, defined by:

w1 X M /Vspeeq + we X RT X | K|+ ws x WT x |K|

where wy, ws, and ws are the weights and M represents
the total miles driven by the vehicles, vgpeeq is the speed
of vehicles, RT is the average ride time per customer, WT
the average waiting time per customer from the ready time
to the pick-up time, and K is the set of customers. This
definition of the f allows optimizing in terms of both the
vehicle variable cost (first term) and the service level (the
last two terms); modifying the weights accordingly, we can
emphasize one factor over the others as needed.

Definition 3 (m-MAST problem). An optimization problgm
m-MAST is a 4-tuple < 1o, Sq, fq,optg >, where:
o Iq: the set of all MAST graphs G
o Sq: the set of all m-MAST plans of the grap
o fo: f(RT) is the price of m-MAST plan R

e oplg: min.
Theorem 1. m-MAST problem is NP-
sense.

Proof: We prove by showin kup an
problem (PDP) [15], whic 0 be stron -
hard [13], is reducible to AST. leen an of
PDP, we can construct an instance of m-MA axing
the constraints on depa#re times at chg X., setting

the departure timeS%o . In this way

a solution to theq€onstructed mMAST C
original PDP, ving P 1Syno harder than solving

m-MAST. canWgertainly be done in
e proved that m-MAST is

B. Model Description

Specifically, the multi-vehicle MAST system (m-MAST)
analyzed in this paper consists of a set of vehicles V' with
predefined schedules along a fixed-route of C' checkpoints
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rep se =1,..,TC.
eckpomt customers requests (NP or ND) with
e stro, g C ., 'S, where T'S represents the current total

y
W72
1 2 3C c C-1
[ ] = = = —=
I.
Wwi2 <
r+l
L X
Fig. 3. Multi-Vehicle MAST System
(@ = 1,2,...,C). These checkpoints include t S

(i =1 and ¢ = C) and the remaining C' — 24
checkpoints. A rectangular service area is cQus in this
study as shown in Fig. 3, where L is the dibetween the
two terminals and /2 is the maximunglal/®wable deviation

distance on each Side of the fixed-g¢ trip r is defined
as a portion g edule beginn

@ e ofber after
WO

é Rtrips back and forth

check h vehj
e ermi . 3). Since the end terminal
of a tip 7 corresponds tohe start terminal of the following

one vehicle is
stops at the ch

C —1)R+1, and the total number of
ts of all vehicles is TC' = TCy x|V | =
1 X |V'|. Hence, the initial schedules array is

an ordered sequence of stops s=1,..,TC
y the checkpoints with s = 1,...,7C, and

mber of stops Each stop s of vehicle v has an associated
eparture and arrival times respectively identified by ¢, , and

t’ 50 . As mentioned, the scheduled departure times ¢, of
the checkpoints (Vs < TC) are fixed and assumed to be
constraints of the system, which can not be violated, while
the ¢, ,, of the non-checkpoint stops (Vs > T'C) and all the
t, , are variables of the system.

Different from single-vehicle MAST, the optimization of
multi-vehicle MAST is a more restricted problem in which
three types of decisions have to be made: 1). Assignment:
the solution has to assign requests to vehicles in a way the
objective function is minimized. 2). Routing: the solution has
to specify routes for vehicles so that the total miles are small.
3). Scheduling: the solution has to give schedules (sequence)
to pick up and drop off customers so that the waiting and
ride times are small.

The objective of this research is to develop an inser-
tion heuristic algorithm that efficiently inserts the random
requests (deviations) into the schedule in an economical
manner. The algorithm is expected to reasonably approximate
the optimality of the problem in a polynomial time so that
the real-time dynamic operation of the service is possible. In
another perspective, let «(s) represent the current position
of stop s in the schedule, Vs. The problem defined by a
m-MAST system is to determine the indices a(s) and the



departure/arrival times ts,, Vs > TC, Vv, and ¢/, . Vs, in
order to minimize objective function while not Vlolatlng the
checkpoints fixed departure times ¢; ,, , Vs < T'C, Vv, and the
customers precedence constraints. The problem is solved by
means of an cheapest insertion heuristic algorithm described
in the following section.

It is assumed that vehicles are homogeneous, following
checkpoints back and forth with a predefined time headway.
And the vehicles have unlimited capacity. This simplifies the
mathematical problem, without compromising adherence to
reality, as even small vehicles will almost never be filled up
to capacity, due to much more restrictive time constraints.

III. ALGORITHM DESCRIPTION
A. Control Parameters

1) Usable Slack Time (st): Slack time is a crucial resource
in MAST system for vehicles to deviate from the main route
to serve NP and ND requests. The initial slack time of
vehicle v between two consecutive checkpoints s and s+ 1,
st'%), |, is defined b

s,s+1,v° y

st@

s,5+1,v - tS»U

- ds,s+1/vspeed - hs+17
Vs=1,..,TC -1

— terl,v

(D

at stop s+ 1 for passengers boardings and dis-embarkmen
and d, sy the distance between s and s + 1. As more,

ups and drop offs occur off the base route, the cu @/

where vspeeq is the vehicle speed, hgq 1 the time allowﬁx

time stg ¢41,, available is progressively reduced.

(0)
s,s+1,v

At time t,,,, Usable slack time s
between vehicle s and s + 1 is deﬁne

(0)

Sts,o41,0 = St Vs =1,.

f veh1ci

<tsv
1_

_tnow "ls,v _ts v
torlo—8,0
S ts+1 \

t(O trow > t
where 7, &1&3 param
slack time, ti‘ t is set, te m

event the algorithm from
‘ know that the minimum

[1 + (ﬂ—s s+1
for t,, <t

u —
s s,s+1,0 —

yU

)

3
controllifig the usage of
slack time is reserved

pact on
this behavior as an additional delay. Therefore, we limit the
amount of backtracking in the schedule. The backtracking
distance indicates how much the vehicle drives backwards
on the z-axis while moving between two consecutive stops
to either pick up or drop off a customer at a non-checkpoint

customers already onboard, which may perceive

\\'\
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stop with respect to the direction of the current trip. Denote
backtracking distance between stop a and b by bd, ;. We
define the control parameter BACK > 0 that is the
maximum allowable backtracking distance that the vehicle
can ride between any two consecutive stops. Clearly, with
BACK > L, any backtracking is allowed.

B. Feasibility
While evaluating a customer request, the algorithm needs
to determine the feasibility of the insertion of a new stop

s = q between any two consecutive stops a and b alread
scheduled. The extra time needed for the insertion is cé)

puted as follows:
Ataqp = (da,q + dgp —d

a,b)/vspeed —-
Let m and m+1 be the checkpoints befo % S

a and b in the schedule. It is feasible t

and b if the folloying conditions hold

a, < mm St Q m,m+1, v
(6)

unction

each fea51b
computes the

. ART the

1nsert10n of a stop ¢, the algorithm
quantltles along with Atg 4:

over all passengers of the extra ride time,

the ride time of the customer requesting the

the sum over all passengers of the extra waiting

(<

ng;‘ the cost function is defined as:

COST = wy X Ata,q,b + wg X ART + w3 X AWT (7)
D. Buckets

Considering the schedule’s array, Each checkpoint c is
scheduled to be visited by each vehicle a number of times,
with different stop indices s(r,c,v) (stop index of the 7-
th occurrence of checkpoint ¢ in the schedule of vehicle
v), depending on the fleet size and how many trips R are
planned.

For each intermediate checkpoint ¢ = 2,...,C — 1 and
each v € V the indices s(k, ¢, v), which identify them in the
schedule, are computed by the following sequence:

s(r,c,v) =1+ (C =1)(r —1)
L (C=D+(E)C 1) —2Ac 1)
2
+-1D)TCy Vr=1,.,RVYv=1,..,|V|
3

For the terminal checkpoints 1 and C, since their fre-
quency of occurrence is halved, the sequences are the fol-
lowing:

s(r,1,v) =14 2(C —
Vr=1,..,

1)(r — 1) + (v — 1)TCy,

L4 B2 Yo =1,



s(r,Cyv) =C +2(C —

vr=1,...,

D(r—1)+ (v
1+ [R/2],Yv =

1)TC,

1,..|V] (10
Definition 4. For every checkpoint ¢ and every v € V, a
bucket of ¢ and v is a portion of the schedule delimited by
two successive occurrences of ¢ by the same vehicle, namely
all the stops s in the current schedule’s array such that
als(r,c,v)] < a(s) < afs(r + 1,¢,v)] for any allowable
r, as described in Eq. 8 - Eq. 10.

The buckets’ definition for N PN D-type customers needs
to be slightly revised. We characterize the sequence repre-
senting the occurrences of any terminal checkpoint (¢ = 1

or C):

s(r,lor Cov) =14+ (C—-1)(r—1)+ (v
Vr=1,..,R+1,Yo=1,..,

1)TC,
(11)
V|

For NPND — type customers, a bucket represents all
the stops s such that a[s(r,1 or C,v)] < a(s) < a[s(r +
1,1 or C,v)] for any allowable r as described in Eq. 11

E. Assignment and Insertion Procedure

1) PD type: PD-type requests do not need any inseﬂ\iﬁaSIblllty is fe

procedure, since both pick-up and drop-off points are ch
points and they are already part of the schedule. Ve év

assignment procedure is needed. The assignment i
choosing the vehicle traveling as the desired d
customer that can provides the earliest plcku
2) PND type: PND-type customers ne
stop ¢ inserted in the schedule. The
insertions feasibility in the buckets
the ND stop cannot be schegtilg
to be examined is the one
of P following the current P at is

g with the ﬁrst
ition of the ¥
the bucket delimited b ) and ), with
(K, v) = ming, , sW, @ s(k, pv) Among the
etwc®h all pal of conSggfitive stops a, b

ave their
check& 0
checkpomt

P, the ﬁr t

feas1ble insertion,
in the first bu

the algorithm selects the

the algorithm repeats the
et, assuming that the customer
beginning of it corresponding to
ence of P, that is s(k’ +1,Pv). This
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3) NPD type: NPD-type customers need to have their NP
stop q inserted in the schedule. The algorithm runs in a very
similar way except for changing the insertion from ND to
NP.

4) NPND type: A NPND-type customer requires the
insertion of two new stops ¢ and ¢’; therefore, the insertion
procedure will be performed by a O(|V| - |T'S|?) procedure,
where |T'S| is the total number of stops. It means that
for each feasible insertion of the NP stop ¢, the algorithm
checks feasibility for the ND stop ¢’. A NPND feasibility i 1s
granted when both NP and ND insertions are simultaneous
feasible. The search for NPND feasibility is performed é)
the additional constraint of having g scheduled befor

The search for NPND feasibility is performc@ Q

two consecutive buckets meaning that when chg

insertion feasibility in bucket ¢ and ¢+ 1, th looks
for ND insertion feasibility only in buc 1 ¢+ 1. For
each of the vehiclgs, the algorithm start g the NPND

feasibility in the fif§t bucket dehm current position

of the bus rrent trip r. This is
the first o ne of the terminal
check mely s(k',1or C,v) =
OI' C, ) s(k,1 or C,v) > tpow. Among all

he fe ible NPND igsertio in the first bucket, the algorithm
the one the minimum COST. If no NPND

lgonthm will then check pairs of two
onsecutive bu at a time, increasing the checking-range
by one t at each step (buckets 1/2, then buckets 2/3, .
i .). While checking buckets i/i + 1, we already
% ND insertion is infeasible in bucket i Therefore,
nsertion feasibility needs to be considered in both
s (since NPND insertion infeasibility in bucket i does
t prevent NP insertion to be feasible in i), ND insertion
eeds to be checked only in bucket i + 1. The procedure will
continue until at least one NPND feasible insertion is found.
5) Rejection Policy: The general assumption while per-
forming the insertion procedure is a no-rejection policy
from both the MAST service and the customers. Thus, the
algorithm attempts to insert the customer requests checking,
if necessary, the whole existing schedule of all the vehicles
bucket by bucket. So generally pending requests will not be
rejected, rather be postponed. However, in a static environ-
ment, where the trips of service are very small, requests are
more likely to be rejected. But this still happens at only very
small probabilities.

F. Update Time Windows

The algorithm provides customers at the time of the
request with time windows for their pick-up and drop-off
locations. Assuming the customer is assigned to vehicle



v, the earliest departure time et,, from ¢ is computed as Algorithm 1 Overall Scheme

follows: 1: for t = service_start to service_end do
ety = taw + da.q/Vspecd + h (12) 2:  if If customer request 1 received then
3 for each vehicle v (v =1,2,...,|V]) do
where t, ,, represents the current departure time from stop 4: while No feasible insertion found do
a of vehicle v. Also the departure time of ¢ is initialized 5 1. Check the current bucket for the feasible
likewise: insertion spots for customer i’s NP or ND
request.
tgw = taw + daq/v+hg = et (13) 6 2. Go to check the next bucket
It can be easily shown that et,, is a lower bound for 7: end while . .
any further updates of t,,. The algorithm then computes 8 Record sub-mincost(v), the min. cost of v
the latest departure time from ¢, lt,, , as follows: % Fnd for . . . .
10 if at least one vehicle have feasible inserti
ltq,v = 6tq,v + Stm,m-t,-l,v (14) then Q
11: 1. assign customer i to the v wi um
Quadrifoglio et al. [3] proved that I, , is an upper bound sub_mincost(v) for Yo = 1,2
for ¢4, by a contradiction argument. Therefore, Eq. 14 says . 2. customer i accepted 0
that future possible insertions between m and ¢ will delay 3. else
140 to a maximum total amount of time bounded by the (4. custo i rejected

currently available slack time.
In a similar fashion, the earliest and latest arrival times,

ety , and ltfl » » are computed. As a result, the customer, once
accepted is provided with et ., It 4, etq v» and Ity . being

aware that their actual times ¢, , and ¢/, will be bounded

q,v
by these values: rformance l\&res and System Parameters
ety <tgo <ltgw 2\i The perfor asures of interests include:

et , <t <t « WT: Aver waltmg time (the difference between
k-up time and request time) per customer
While a P request has etp, = tp, = ltp @age ride time (the difference between drop-off
departure time from a checkpoint is a const AST nd pick-up time) per customer
system, a D request will have et , < t7, #=€ @ Clearly, : Total mileage traveled by vehicles
NP and ND requests will also hav@ < tNP‘Q- . Rate: Rejection rate shows the percentage of cus-

ltnpy and ety p , < thp o, <IN e tomers that are not accepted.
G. Overall Approach @

\\ e Z: The objective function Z in this section is a slightly

\ different from Eq. 7. Instead, it is defined as Eq. 17,

The overall approach is cribed b 13‘1% The indicating total operation cost and service level of
overall time complexi f the BtgorithmyiewQ( N V), MAST. Note N is the total number of customers.

where T is the %che hori# is’ the total Z = w1 X M [Vspeed +wa X RT x N +w3 x WT x N (17)

number of customgrs, | he total nu pof vehicles

A summary of the parameters that are used in the ex-

PERIME&ESULTS periments and the customer types distribution are shown in

Table II. It is assumed that the checkpoint requests (P and

D) are uniformly distributed among the C' checkpoints and

that non-checkpoint requests (NP and N D) are uniformly
distributed in the service area.

Wo series of experiments are
g the control parameters, 2-
ST system are compared to confirm
AST to handle heavy demand. Then the B 2-MAST vs. I-MAST

ed to optimality obtained through solving The performance of 2-MAST and 1-MAST are compared
& program of MAST using CPLEX®, under their tuned control parameter settings (see [3] for
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TABLE I
SYSTEM PARAMETERS

L 10 miles

w 1 mile

C 3

Vspeed 25 miles/h
bs(s=1,...,TS) 18 sec

to 50 min

w1 /w2 /w3 0.4/0.4/0.2
|PD|/|[PND|/|NPD|/|NPND|  10%/40%/40%/10%

details of proper parameter setting for 1-MAST). The best
configuration for 2-MAST according to Z (and all other
performance measures) is found by setting BACK = 0.2
miles, and Wg?s) 11 = 0.3. The detailed process of tuning
the parameters is omitted in this paper. The experiments
are conducted under three different levels of demand 6. The
simulation is run for 50 hours (equivalently, R = 60). The

results are summarized in Table III.

The following observation can be made: 1). 2-MAST
provides a service of WT' nearly half of that of 1-MAST,
which is certainly more attractable to customers. R7 and
Rej. Rate also has a better value. 2). Although M value
of 2-MAST is larger than 1-MAST due to the incre
in fleet size, the overall objective value Z of 2-M

AS x
still significantly better than that of 1-MAST, indicatin%

advantage of 2-MAST.

C. Heuristic vs. Optimality

@95;

Although the worst-case analysis of 1
intractable i
licated

is of theoretical interests, it bec n 4Ny
research because of the existesg C%ﬂ n-
straints and weighted comp jective function. As

a result we conduct several
random generated demand to

the algorithm. In Qi sgetjon, the resl
sc red with th

proposed heuristi )
solving the inte e%)gram usi PLEX®
solver.

© o diffg tingS of R =6 and R =4
%able IV, a
& d by (

ed on

ce of
uctd by the
al results by
, a commercial

Th
are V. Note that the demand
isr |INPD|,|[NPND]|).
é on the rest iable 3 and Table 4, the following
s8sfations can be Made: 1). From the ratio of apz/opt

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we first give the formal definition of the
optimization problem of scheduling m-MAST and give the
proof of its A'P-hardness. Then we develop an O(T - |N]| -
|[V|) insertion heuristic for scheduling m-MAST service.
The algorithm allows customers to place a request, and
once accepted, provides them with time windows for both
pick-up and drop-off points. The algorithm makes effective
use of control parameters to reduce the consumption of
slack time and enhance the algorithm performance. We

resort to experiments to evaluate the algorithm. The res @
of simulations show the efficacy of the algorithm L@
optimal control parameter setting and demonstrate, th

algorithm can be used as an effective method to Sehe

MAST service. By comparing the performance @

and 1-MAST, the potential of m-MAST tg Vi€ a more

0,
attractable service and a better overion cost 1is

shown. In additidh, a comparison optimality values
computed by X© in a statd 10 shows that the
results obt; by the heurist@ far from optimum.
Q OTAPION
Re: :
o = set of reguests
e ps(k) € ick-up stop of random request k

o ds(k) € drop-off stop of random request k

Sets des:
QN0

cBeckpoints

- = random pick-up/drop-off stops

Q: NoU Nyt UN,-
ameters:

R = number of trips

C = number of checkpoints

V = set of vehicles

Uspeed = vehicle speed

TCy = (C —1) x R+ 1 = number of checkpoint stops

of one vehicle

TC = TCyx|V| = total number of stops at checkpoints

in the schedule

d; ; = rectilinear distance between i and j, Vi,j € N
w1 /wa /w3 = objective function weights

Variables:
e § = stop index

e T'S = current total number of stops, including check-

points and non-checkpoints
e t,, = scheduled departure time at stop s of vehicle v
o t, = scheduled arrival time at stop s of vehicle v

etq,» = earliest departure time from stop ¢ of vehicle v
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TABLE III
2-MAST vs. 1-MAST

2-MAST 1-MAST
0 (customers per hour) Z wT RT M Rej. Rate Z wT RT M Rej. Rate
15 109469 2525 19.11 1487.8 0% 14965.1  51.92  21.35 862.0 0.4%
20 148144  26.09 20.24 1564.0 0% 206109  52.19 2357  921.8 0.7%
25 17882.3 2539 1995 1626.9 0% 275332 58.64 2436 969.9 0.88%
TABLE IV
HEURISTIC VS. OPTIMALITY, R=6
Heuristic Optimal
Demand apx/opt  obj. M RT WT obj. M RT WT
(2,5,5,2) 1.06 284.8 129.1 196.4 4115 267.5 1255 1632 409.0
(2,6,6,2) 1.09 292.1 131.8 2149 3982 268.5 126.1 166.7 403.8 0
(2,7,7,2) 1.10 3223 1294 2548 480.6 291.7 125.0 2134 4317
(2,8,8,2) 1.13 364.8  140.8 3249 4983 321.5 1286 281.6 4268
(2,9,9,2) 1.11 3952 1345 3123 7059 3542 1257 236.6 694.7
TABLE V O
HEURISTIC VS. OPTIMALITY, R=4 \ K
Heuristic Optimal
Demand apz/opt  obj. M RT WT
(2,3,3,2) 1.04 2246 889 223.8 2485 XCP
(2,4,4,2) 1.13 2156 86.0 . O] b
(2,5,5,2) 1.14 2757 90.6 . 2425  89.5 6.6 4295
(2,6,6,2) 1.04 24277 925 232.7 8 1955 3744
(2,7,7,2) 1.12 2843 887 252, 2132 439.0

o et , = earliest arrival time from stop ¢ of v @

o ltq, = latest departure time from stop q o icl®v

o Ity ,, = latest arrival time from stop g of] @ v
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