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Abstract— The mobility allowance shuttle transit (MAST)
system is an innovative hybrid transit system in which vehicles
are allowed to deviate from a fixed route to serve flexible
demand. In this paper, we develop an insertion heuristic that
economically inserts the deviation requests into the schedule for
multiple-vehicle MAST system, which has never been addressed
in the literature. The proposed heuristic is validated and
evaluated by a set of simulations performed at different demand
levels and with different control parameters. By comparing
its performance versus the optimal solutions, the effectiveness
and quality of the heuristic is confirmed. Compared to its
single-vehicle counterpart, the multiple-vehicle MAST prevails
in terms of rejection rate, passenger waiting time and overall
objective function, among other performance indices.

I. INTRODUCTION

Public transit services are divided into two broad cat-
egories: fixed-route transit (FRT) and demand responsive
transit (DRT). The FRT systems are thought to be cost-
efficient because of their ride-sharing attribute and sufficient
loading capacity. But they are considered by the general
public to be inconvenient since the fixed stops and schedule
are not able to meet individual passenger’s desire. This
inherent lack of flexibility is the most significant constraint of
fixed-route transit. The DRT systems are much more flexible
to offer door-to-door pick-up and drop-off services. They
have been operated in quite a few cities and working as
an effective type of flexible transit service especially within
low-density residential areas, such as examples in Denver
(CO), Raleigh (NC), Akron (OH), Tacoma (WA), Sarasota
(FL), Portland (OR) and Winnipeg (Canada) [1]. However,
the associated high cost prevents the DRT to be deployed as
a general transit service. Thus, transit agencies are faced with
increasing demand for improved and extended DRT service
and a combination of these two types of transit systems
is needed to provide a relatively cost-efficient and flexible
transit type.

The mobility allowance shuttle transit (MAST) is an inno-
vative concept that combines the cost-efficient operability of
traditional FRT with the flexibility of DRT systems. It allows
transit vehicles to deviate from a fixed route consisting of a
few mandatory checkpoints to serve on demand customers
within a predetermined service area, and thus can be both
affordable and convenient enough to attract the general
public. For the MAST system, the fixed route can be either
a loop or a line between two terminals. The checkpoints
are usually located at major transfer stops or high demand
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zones and are relatively far from each other. A hard constraint
of the MAST system is the scheduled departure time from
checkpoints.

The design and operations of the MAST system has
attracted considerable attention in recent years. Quadrifoglio
et al. [2] evaluated the performance of MAST systems in
terms of serving capability and longitudinal velocity. Their
results indicate that some basic parameters are helpful in
designing the MAST system such as slack time and headway.
Quadrifoglio et al. later developed an insertion heuristic
scheduling algorithm to address a large amount of demand
dynamically [3]. In [4], Quadrifoglio and Dessouky carried
out a set of simulations to show the sensitivity analysis for
the performance of the insertion heuristic algorithm and the
capability of the system over different shapes of service area.
Zhao and Dessouky [5] studied the optimal service capacity
for the MAST system. Although these studies investigated
the design and operations of the MAST system from various
aspects, they are all for the single-vehicle MAST system.

Since the MAST system is a special case of the pickup and
delivery problem (PDP), it can be modeled as a mixed integer
program (MIP). The PDP has been extensively studied and
many of the exact algorithms are based on integer program-
ming techniques [6]–[10]. Other exact algorithms include
dynamic programming. Psaraftis used dynamic programming
to solve the single-vehicle DARP [11] and its variant with
time windows [12]. Both algorithms has a time complexity
of O(N23N ) (N for customers), and can solve an instance
of N up to 20 in a meaningful time.

Since the optimization problem of PDP is known to be
strongly NP-hard [13], researchers have been studying on
heuristic approaches to solve PDP with large instances in
a reasonable (polynomial) time, while not compromising
the quality of solution too much. Along these approaches,
insertion heuristics are the most popular because they can
provide meaningfully good results in very fast running time,
thus are capable of handling problems with large instances.
Another reason that justifies insertion heuristics in practice
is that they can be easily implemented in dynamic envi-
ronments [14] since they usually insert requests into the
existed schedule in a cost-efficient manner. Savelsbergh and
Sol [15] gave a complete review on pickup and delivery
problem and discussed the several variants of the problem in
terms of different optimization objectives, time-constraints,
and fleet sizes. Both exact algorithms based on mathematical
modeling and heuristics were reviewed. Some recent efforts
in insertion heuristics includes Lu and Dessouky’s [16]. A
major disadvantage of the insertion heuristics is usually it’s
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hard to bound its performance. Another disadvantage is its
myopic and greedy approach for current optimum at each
time step without having an overview of all the request. The
insertion heuristic controlled by ”usable slack time” resolved
this issue efficiently [3].

II. SYSTEMS DEFINITION AND MODEL DESCRIPTION

A. Definition of MAST System

A general MAST system has a fleet of vehicles serving
a set of customers’ requests (see [3] for definition). With
a fixed pre-defined time headway, vehicles travel along a
fixed-route line (back and forth between two terminals or
along a loop) which consists of an ordered set of checkpoints
associated with predefined departure times, which serve as
tight constraints.

The transit demand is defined by a set of requests. Each
request consists of pick-up/drop-off locations and a ready
time for pick-up. There are four possible types of customers:
• PD (Regular): pick-up and drop-off at a checkpoint
• PND (Hybrid): pick-up at a checkpoint and drop-off at

a random point
• NPD (Hybrid): pick-up at a random point and drop-off

at a checkpoint
• NPND (Random): pick-up and drop-off at random

points

Readers can refer to Section VI for a summary of notation
used in this paper. To give an example, we consider k = 4
customers (see Table I) with their corresponding pick-up and
drop-off stops according to the network in Fig. 1, describing
a simple single-vehicle MAST (1-MAST) system with TC =
TC0 = 3 checkpoints in N0 = {10, 20, 30}, two random
pick-up stops in Nn+ = {4+, 5+}, two random drop-off
requests in Nn− = {6−, 7−}, and one vehicle in vehicle
set V = {1}. Let N = N0 ∪ Nn+ ∪ Nn− . The network is
almost a complete graph, excluding the arcs violating the
conditions described above, namely (2, 1), (3, 2), (3, 1) and
(1, 3) that violate the predetermined sequence of checkpoints
(1 → 2 → 3) and (6, 4), (2, 5), (7, 1) that violate the pick-
up before drop-off precedence for each request. In addition,
since checkpoints 1 and 3 represent the beginning and the
end of the service, there are no arcs to 1 and no arcs from
3.

When another vehicle is added into the system (i.e.,
V = {1, 2}), the number of checkpoints stays the same
(TC0 = 3) but we need to double TC (TC = 2×TC0 = 6)
because the checkpoint are visited by different vehicles at

TABLE I
SAMPLE SET OF REQUESTS

k ps(k) ds(k)
1 4+ 6−

2 10 7−

3 5+ 20

4 10 30

Fig. 1. Sample 1-MAST network

Fig. 2. Sample 2-MAST network

different times. As a result, the arcs nearly double even if
the request set remains the same (see Fig. 2). Note that the
solid arcs are legal arcs for vehicle 1, while dash arcs are
for vehicle 2. The nodes 10 & 40 (so as 20 & 50 and 30 &
60) are essentially the same node geographically, but in the
perspective of scheduling they’re not, since they are visited
by different vehicles at different times. For the graph, the
same aforementioned precedence and time constraints still
apply in a m-MAST system. Besides, no arcs between nodes
representing checkpoints visited by different vehicles (such
as (1→ 4) and (1→ 5)) are allowed.

To formally introduce the multiple-vehicle MAST prob-
lem, we first present some definitions.

Definition 1 (m-MAST route). An m-MAST route Rtv for
vehicle v is a directed route through a subset Nv ⊂ N such
that:

1) Rtv starts in 1 + (v − 1)× TC0.
2) {1 + (v − 1)× TC0, ..., v × TC0} ⊂ Nv .
3) (ps(k)∪ ds(k))∩Nv = ∅ or (ps(k)∪ ds(k))∩Nv =

ps(k) ∪ ds(k) for all k ∈ K.
4) If ps(k) ∪ ds(k) ⊆ Nv , then ps(k) is visited before

ds(k).
5) Vehicle v visits each location in Nv exactly once.
6) Precedence constraint of pick-up and drop-off is not

violated.
7) Departure times at checkpoints {1 + (v − 1) ×

TC0, ..., v × TC0} are complied with.
8) Rtv ends in v × TC0.
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Definition 2 (m-MAST plan). An m-MAST plan is a set of
routes RT = {Rtv|v ∈ V } such that:

1) Rtv is a m-MAST route for vehicle v, for each v ∈ V .
2) {Nv|v ∈ V } is a partition of N .

Define f(RT ) as the price of plan RT corresponding to
a certain objective function f . Then we define the m-MAST
problem as:

min{f(RT |RT is a m-MAST plan)}

Particularly in this paper f is a combination of operation
cost and dissatisfaction of customers, defined by:

w1 ×M/vspeed + w2 ×RT × |K|+ w3 ×WT × |K|

where w1, w2, and w3 are the weights and M represents
the total miles driven by the vehicles, vspeed is the speed
of vehicles, RT is the average ride time per customer, WT
the average waiting time per customer from the ready time
to the pick-up time, and K is the set of customers. This
definition of the f allows optimizing in terms of both the
vehicle variable cost (first term) and the service level (the
last two terms); modifying the weights accordingly, we can
emphasize one factor over the others as needed.

Definition 3 (m-MAST problem). An optimization problem
m-MAST is a 4-tuple < IQ, SQ, fQ, optQ >, where:
• IQ: the set of all MAST graphs G
• SQ: the set of all m-MAST plans of the graph G
• fQ: f(RT ) is the price of m-MAST plan RT of G
• optQ: min.

Theorem 1. m-MAST problem is NP-hard in the strong
sense.

Proof: We prove by showing that pickup and delivery
problem (PDP) [15], which is known to be strongly NP-
hard [13], is reducible to m-MAST. Given an instance of
PDP, we can construct an instance of m-MAST by relaxing
the constraints on departure times at checkpoints, i.e., setting
the departure times to be a time window [0,∞]. In this way
a solution to the constructed m-MAST corresponds to the
original PDP. So solving PDP is no harder than solving
m-MAST. Since the reduction can certainly be done in
polynomial time O(|N |), we have proved that m-MAST is
strongly NP-hard.

MAST system handles the requests differently. Since PD
requests use the service like a fixed-route line, there’s no
need of booking for them. The other types of requests need
to make reservations to schedule their non-checkpoint service
stops. We consider the following two assumptions in the
multi-vehicle MAST problem: 1) the scenario is dynamic so
customers may book their rides at any time before or during
the service; and 2) each request only has one customer.

B. Model Description

Specifically, the multi-vehicle MAST system (m-MAST)
analyzed in this paper consists of a set of vehicles V with
predefined schedules along a fixed-route of C checkpoints

Fig. 3. Multi-Vehicle MAST System

(i = 1, 2, ..., C). These checkpoints include two terminals
(i = 1 and i = C) and the remaining C − 2 intermediate
checkpoints. A rectangular service area is considered in this
study as shown in Fig. 3, where L is the distance between the
two terminals and W/2 is the maximum allowable deviation
distance on each side of the fixed-route. A trip r is defined
as a portion of the schedule beginning at one of the terminals
and ending at the other after traversing all the intermediate
checkpoints. Each vehicle perform R trips back and forth
between the two terminals (see Fig. 3). Since the end terminal
of a trip r corresponds to the start terminal of the following
trip r + 1, the total number of stops at the checkpoints of
one vehicle is TC0 = (C−1)R+1, and the total number of
stops at the checkpoints of all vehicles is TC = TC0×|V | =
[(C − 1)R + 1] × |V |. Hence, the initial schedules array is
represented by an ordered sequence of stops s = 1, ..., TC.

We identify the checkpoints with s = 1, ..., TC, and
the non-checkpoint customers requests (NP or ND) with
s = TC + 1, ..., TS, where TS represents the current total
number of stops. Each stop s of vehicle v has an associated
departure and arrival times respectively identified by ts,v and
t′s,v . As mentioned, the scheduled departure times ts,v of
the checkpoints (∀s ≤ TC) are fixed and assumed to be
constraints of the system, which can not be violated, while
the ts,v of the non-checkpoint stops (∀s > TC) and all the
t′s,v are variables of the system.

Different from single-vehicle MAST, the optimization of
multi-vehicle MAST is a more restricted problem in which
three types of decisions have to be made: 1). Assignment:
the solution has to assign requests to vehicles in a way the
objective function is minimized. 2). Routing: the solution has
to specify routes for vehicles so that the total miles are small.
3). Scheduling: the solution has to give schedules (sequence)
to pick up and drop off customers so that the waiting and
ride times are small.

The objective of this research is to develop an inser-
tion heuristic algorithm that efficiently inserts the random
requests (deviations) into the schedule in an economical
manner. The algorithm is expected to reasonably approximate
the optimality of the problem in a polynomial time so that
the real-time dynamic operation of the service is possible. In
another perspective, let α(s) represent the current position
of stop s in the schedule, ∀s. The problem defined by a
m-MAST system is to determine the indices α(s) and the
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departure/arrival times ts,v , ∀s > TC,∀v, and t′s,v , ∀s, in
order to minimize objective function while not violating the
checkpoints fixed departure times ts,v , ∀s ≤ TC,∀v, and the
customers precedence constraints. The problem is solved by
means of an cheapest insertion heuristic algorithm described
in the following section.

It is assumed that vehicles are homogeneous, following
checkpoints back and forth with a predefined time headway.
And the vehicles have unlimited capacity. This simplifies the
mathematical problem, without compromising adherence to
reality, as even small vehicles will almost never be filled up
to capacity, due to much more restrictive time constraints.

III. ALGORITHM DESCRIPTION

A. Control Parameters

1) Usable Slack Time (st): Slack time is a crucial resource
in MAST system for vehicles to deviate from the main route
to serve NP and ND requests. The initial slack time of
vehicle v between two consecutive checkpoints s and s+ 1,
st

(0)
s,s+1,v , is defined by

st
(0)
s,s+1,v = ts+1,v − ts,v − ds,s+1/vspeed − hs+1,

∀s = 1, ..., TC − 1
(1)

where vspeed is the vehicle speed, hs+1 the time allowed
at stop s+ 1 for passengers boardings and dis-embarkments,
and ds,s+1 the distance between s and s+ 1. As more pick
ups and drop offs occur off the base route, the current slack
time sts,s+1,v available is progressively reduced. Initially,

sts,s+1,v = st
(0)
s,s+1,v ∀s = 1, ..., TC − 1 (2)

At time tnow, usable slack time stus,s+1,v of vehicle v
between vehicle s and s+ 1 is defined as:

stus,s+1,v =


π
(0)
s,s+1st

(0)
s,s+1,v, for tnow < ts,v

[1 + (π
(0)
s,s+1 − 1)(1− tnow−ts,v

ts+1,v−ts,v )]st
(0)
s,s+1,v

, for ts,v ≤ tnow ≤ ts+1,v

st
(0)
s,s+1,v for tnow > ts+1,v

(3)
where π

(0)
s,s+1 is the parameter controlling the usage of

slack time, the lower it is set, the more slack time is reserved
for future insertions.

Setting π(0)
s,s+1 too low would prevent the algorithm from

working properly. From [3], we know that the minimum
value of π(0)

s,s+1 should be:

π
(0)min
s,s+1 = (W/vspeed + hq)/st

(0)
s,s+1,v (4)

2) Backtracking Distance (bd): The vehicles could drive
back and forth with respect to the direction of a trip r while
serving customers in the service area, having a negative im-
pact on the customers already onboard, which may perceive
this behavior as an additional delay. Therefore, we limit the
amount of backtracking in the schedule. The backtracking
distance indicates how much the vehicle drives backwards
on the x-axis while moving between two consecutive stops
to either pick up or drop off a customer at a non-checkpoint

stop with respect to the direction of the current trip. Denote
backtracking distance between stop a and b by bda,b. We
define the control parameter BACK > 0 that is the
maximum allowable backtracking distance that the vehicle
can ride between any two consecutive stops. Clearly, with
BACK ≥ L, any backtracking is allowed.

B. Feasibility

While evaluating a customer request, the algorithm needs
to determine the feasibility of the insertion of a new stop
s = q between any two consecutive stops a and b already
scheduled. The extra time needed for the insertion is com-
puted as follows:

∆ta,q,b = (da,q + dq,b − da,b)/vspeed − hq (5)

Let m and m+1 be the checkpoints before and after stops
a and b in the schedule. It is feasible to insert q between a
and b if the following conditions hold:

∆ta,q,b ≤ min(stm,m+1,v, st
u
m,m+1,v)

bda,q ≤ BACK
bdq,b ≤ BACK

(6)

C. Cost Function

For each feasible insertion of a stop q, the algorithm
computes the following quantities along with ∆ta,q,b:
• ∆RT : the sum over all passengers of the extra ride time,

including the ride time of the customer requesting the
insertion.

• ∆WT : the sum over all passengers of the extra waiting
time.

Finally, the cost function is defined as:

COST = w1 ×∆ta,q,b + w2 ×∆RT + w3 ×∆WT (7)

D. Buckets

Considering the schedule’s array, Each checkpoint c is
scheduled to be visited by each vehicle a number of times,
with different stop indices s(r, c, v) (stop index of the r-
th occurrence of checkpoint c in the schedule of vehicle
v), depending on the fleet size and how many trips R are
planned.

For each intermediate checkpoint c = 2, ..., C − 1 and
each v ∈ V the indices s(k, c, v), which identify them in the
schedule, are computed by the following sequence:

s(r, c, v) =1 + (C − 1)(r − 1)

+
(C − 1) + (−1)r[(C − 1)− 2(c− 1)]

2
+ (v − 1)TC0 ∀r = 1, ..., R,∀v = 1, ..., |V |

(8)
For the terminal checkpoints 1 and C, since their fre-

quency of occurrence is halved, the sequences are the fol-
lowing:

s(r, 1, v) =1 + 2(C − 1)(r − 1) + (v − 1)TC0,

∀r = 1, ..., 1 + bR/2c,∀v = 1, ...|V |
(9)
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s(r, C, v) =C + 2(C − 1)(r − 1) + (v − 1)TC0,

∀r = 1, ..., 1 + dR/2e,∀v = 1, ...|V |
(10)

Definition 4. For every checkpoint c and every v ∈ V , a
bucket of c and v is a portion of the schedule delimited by
two successive occurrences of c by the same vehicle, namely
all the stops s in the current schedule’s array such that
α[s(r, c, v)] ≤ α(s) < α[s(r + 1, c, v)] for any allowable
r, as described in Eq. 8 - Eq. 10.

The buckets’ definition for NPND-type customers needs
to be slightly revised. We characterize the sequence repre-
senting the occurrences of any terminal checkpoint (c = 1
or C):

s(r, 1 or C, v) =1 + (C − 1)(r − 1) + (v − 1)TC0

∀r = 1, ..., R+ 1, ∀v = 1, ..., |V |
(11)

For NPND − type customers, a bucket represents all
the stops s such that α[s(r, 1 or C, v)] ≤ α(s) < α[s(r +
1, 1 or C, v)] for any allowable r as described in Eq. 11

E. Assignment and Insertion Procedure

1) PD type: PD-type requests do not need any insertion
procedure, since both pick-up and drop-off points are check-
points and they are already part of the schedule. However
assignment procedure is needed. The assignment is made by
choosing the vehicle traveling as the desired direction of the
customer that can provides the earliest pickup time .

2) PND type: PND-type customers need to have their ND
stop q inserted in the schedule. The algorithm checks for
insertions feasibility in the buckets of the P checkpoint. Since
the ND stop cannot be scheduled before P, the first bucket
to be examined is the one starting with the first occurrence
of P following the current position of the vehicle, that is
the bucket delimited by s(k, P, v) and s(k′ + 1, P, v), with
(k′, v) = mink,vs(k, P, v), s.t. ts(k,P,v) ≥ tnow. Among the
feasible insertions between all pairs of consecutive stops a, b
in the first bucket of all the vehicles, the algorithm selects the
one with the minimum COST and then stops. The customer is
therefore scheduled to be picked up at s(k, P, v) and dropped
off at the ND inserted stop q. If no feasible insertions
are found in the first bucket, the algorithm repeats the
procedure in the second bucket, assuming that the customer
will be picked up at the beginning of it corresponding to
the following occurrence of P, that is s(k′ + 1, P, v). This
process is repeated bucket by bucket until at least one feasible
insertion is found.

3) NPD type: NPD-type customers need to have their NP
stop q inserted in the schedule. The algorithm runs in a very
similar way except for changing the insertion from ND to
NP.

4) NPND type: A NPND-type customer requires the
insertion of two new stops q and q′; therefore, the insertion
procedure will be performed by a O(|V | · |TS|2) procedure,
where |TS| is the total number of stops. It means that
for each feasible insertion of the NP stop q, the algorithm
checks feasibility for the ND stop q′. A NPND feasibility is
granted when both NP and ND insertions are simultaneously
feasible. The search for NPND feasibility is performed with
the additional constraint of having q scheduled before q′.

The search for NPND feasibility is performed in at most
two consecutive buckets meaning that when checking for NP
insertion feasibility in bucket i and i+1, the algorithm looks
for ND insertion feasibility only in bucket i and i + 1. For
each of the vehicles, the algorithm starts checking the NPND
feasibility in the first bucket delimited by the current position
of the bus (xb, yb) and the end of the current trip r. This is
the first occurrence in the schedule of one of the terminal
checkpoints s = 1 or s = C, namely s(k′, 1 or C, v) =
mink,vs(k, 1 or C, v), s.t. ts(k,1 or C,v) ≥ tnow. Among all
the feasible NPND insertions in the first bucket, the algorithm
selects the one with the minimum COST. If no NPND
feasibility is found, the algorithm will then check pairs of two
consecutive buckets at a time, increasing the checking-range
by one bucket at each step (buckets 1/2, then buckets 2/3, . .
. , i/(i + 1), etc.). While checking buckets i/i + 1, we already
know that NPND insertion is infeasible in bucket i Therefore,
while NP insertion feasibility needs to be considered in both
buckets (since NPND insertion infeasibility in bucket i does
not prevent NP insertion to be feasible in i), ND insertion
needs to be checked only in bucket i + 1. The procedure will
continue until at least one NPND feasible insertion is found.

5) Rejection Policy: The general assumption while per-
forming the insertion procedure is a no-rejection policy
from both the MAST service and the customers. Thus, the
algorithm attempts to insert the customer requests checking,
if necessary, the whole existing schedule of all the vehicles
bucket by bucket. So generally pending requests will not be
rejected, rather be postponed. However, in a static environ-
ment, where the trips of service are very small, requests are
more likely to be rejected. But this still happens at only very
small probabilities.

F. Update Time Windows

The algorithm provides customers at the time of the
request with time windows for their pick-up and drop-off
locations. Assuming the customer is assigned to vehicle
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v, the earliest departure time etq,v from q is computed as
follows:

etq,v = ta,v + da,q/vspeed + hq (12)

where ta,v represents the current departure time from stop
a of vehicle v. Also the departure time of q is initialized
likewise:

tq,v = ta,v + da,q/v + hq = etq,v (13)

It can be easily shown that etq,v is a lower bound for
any further updates of tq,v. The algorithm then computes
the latest departure time from q, ltq,v , as follows:

ltq,v = etq,v + stm,m+1,v (14)

Quadrifoglio et al. [3] proved that ltq,v is an upper bound
for tq,v by a contradiction argument. Therefore, Eq. 14 says
that future possible insertions between m and q will delay
tq,v to a maximum total amount of time bounded by the
currently available slack time.

In a similar fashion, the earliest and latest arrival times,
et′q,v and lt′q,v , are computed. As a result, the customer, once
accepted, is provided with etq,v, ltq,v, et′q,v, and lt′q,v , being
aware that their actual times tq,v and t′q,v will be bounded
by these values:

etq,v ≤ tq,v ≤ ltq,v (15)
et′q,v ≤ t′q,v ≤ lt′q,v (16)

While a P request has etP,v = tP,v = ltP,v because the
departure time from a checkpoint is a constant in a MAST
system, a D request will have et′D,v ≤ t′D,v ≤ lt′D,v. Clearly,
NP and ND requests will also have etNP,v ≤ tNP,v ≤
ltNP,v and et′ND,v ≤ t′ND,v ≤ lt′ND,v.

G. Overall Approach

The overall approach is described by Algorithm 1. The
overall time complexity of the algorithm is O(T · |N | · |V |),
where T is the overall service horizon, |N | is the total
number of customers, |V | is the total number of vehicles.

IV. EXPERIMENTAL RESULTS

The target of this section is to show that the proposed
insertion heuristic can be used as an efficient scheduling
tool for m-MAST systems. Two series of experiments are
conducted. First, after tuning the control parameters, 2-
MAST system and 1-MAST system are compared to confirm
the potential of m-MAST to handle heavy demand. Then the
algorithm is compared to optimality obtained through solving
the mixed integer program of MAST using CPLEX c©.

Algorithm 1 Overall Scheme
1: for t = service start to service end do
2: if If customer request i received then
3: for each vehicle v (v = 1, 2, ..., |V |) do
4: while No feasible insertion found do
5: 1. Check the current bucket for the feasible

insertion spots for customer i’s NP or ND
request.

6: 2. Go to check the next bucket
7: end while
8: Record sub mincost(v), the min. cost of v
9: end for

10: if at least one vehicle have feasible insertion spot
then

11: 1. assign customer i to the v with minimum
sub mincost(v) for ∀v = 1, 2, ..., |V |

12: 2. customer i accepted
13: else
14: customer i rejected
15: end if
16: end if
17: end for

A. Performance Measures and System Parameters

The performance measures of interests include:
• WT : Average waiting time (the difference between

actual pick-up time and request time) per customer
• RT : Average ride time (the difference between drop-off

time and pick-up time) per customer
• M : Total mileage traveled by vehicles
• Rej. Rate: Rejection rate shows the percentage of cus-

tomers that are not accepted.
• Z: The objective function Z in this section is a slightly

different from Eq. 7. Instead, it is defined as Eq. 17,
indicating total operation cost and service level of
MAST. Note N is the total number of customers.

Z = w1×M/vspeed +w2×RT ×N +w3×WT ×N (17)

A summary of the parameters that are used in the ex-
periments and the customer types distribution are shown in
Table II. It is assumed that the checkpoint requests (P and
D) are uniformly distributed among the C checkpoints and
that non-checkpoint requests (NP and ND) are uniformly
distributed in the service area.

B. 2-MAST vs. 1-MAST

The performance of 2-MAST and 1-MAST are compared
under their tuned control parameter settings (see [3] for
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TABLE II
SYSTEM PARAMETERS

L 10 miles
W 1 mile
C 3
vspeed 25 miles/h
bs(s = 1, ..., TS) 18 sec
tv 50 min
w1/w2/w3 0.4/0.4/0.2
|PD|/|PND|/|NPD|/|NPND| 10%/40%/40%/10%

details of proper parameter setting for 1-MAST). The best
configuration for 2-MAST according to Z (and all other
performance measures) is found by setting BACK = 0.2

miles, and π
(0)
s,s+1 = 0.3. The detailed process of tuning

the parameters is omitted in this paper. The experiments
are conducted under three different levels of demand θ. The
simulation is run for 50 hours (equivalently, R = 60). The
results are summarized in Table III.

The following observation can be made: 1). 2-MAST
provides a service of WT nearly half of that of 1-MAST,
which is certainly more attractable to customers. RT and
Rej. Rate also has a better value. 2). Although M value
of 2-MAST is larger than 1-MAST due to the increase
in fleet size, the overall objective value Z of 2-MAST is
still significantly better than that of 1-MAST, indicating the
advantage of 2-MAST.

C. Heuristic vs. Optimality

Although the worst-case analysis of approximation scheme
is of theoretical interests, it becomes intractable in this
research because of the existence of complicated time con-
straints and weighted combination of objective function. As
a result we conduct several numerical experiments based on
random generated demand to evaluate the performance of
the algorithm. In this section, the results produced by the
proposed heuristic is compared with the optimal results by
solving the integer program using CPLEX c©, a commercial
solver.

The results of two different settings of R = 6 and R = 4
are shown in Table IV and Table V. Note that the demand
is represented by (|PD|, |PND|, |NPD|, |NPND|).

Based on the results of Table 3 and Table 4, the following
observations can be made: 1). From the ratio of apx/opt
we can see, the performance of the heuristic is reasonably
good. 2). The ratio is reasonably stable which isn’t growing
intractably big as the demand increases.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we first give the formal definition of the
optimization problem of scheduling m-MAST and give the
proof of its NP-hardness. Then we develop an O(T · |N | ·
|V |) insertion heuristic for scheduling m-MAST service.
The algorithm allows customers to place a request, and
once accepted, provides them with time windows for both
pick-up and drop-off points. The algorithm makes effective
use of control parameters to reduce the consumption of
slack time and enhance the algorithm performance. We
resort to experiments to evaluate the algorithm. The results
of simulations show the efficacy of the algorithm and its
optimal control parameter setting and demonstrate that the
algorithm can be used as an effective method to schedule m-
MAST service. By comparing the performance of 2-MAST
and 1-MAST, the potential of m-MAST to provide a more
attractable service and a better overall operation cost is
shown. In addition, a comparison versus optimality values
computed by CPLEX c© in a static scenario shows that the
results obtained by the heuristic are not far from optimum.

VI. NOTATION

Requests:
• K = set of requests
• ps(k) ∈ Nn+ = pick-up stop of random request k
• ds(k) ∈ Nn− = drop-off stop of random request k
Sets of Nodes:
• N0 = checkpoints
• Nn+/Nn− = random pick-up/drop-off stops
• N = N0 ∪Nn+ ∪Nn−

Parameters:
• R = number of trips
• C = number of checkpoints
• V = set of vehicles
• vspeed = vehicle speed
• TC0 = (C − 1)×R+ 1 = number of checkpoint stops

of one vehicle
• TC = TC0×|V | = total number of stops at checkpoints

in the schedule
• di,j = rectilinear distance between i and j, ∀i, j ∈ N
• w1/w2/w3 = objective function weights
Variables:
• s = stop index
• TS = current total number of stops, including check-

points and non-checkpoints
• ts,v = scheduled departure time at stop s of vehicle v
• t′s,v = scheduled arrival time at stop s of vehicle v
• etq,v = earliest departure time from stop q of vehicle v
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TABLE III
2-MAST VS. 1-MAST

2-MAST 1-MAST
θ (customers per hour) Z WT RT M Rej. Rate Z WT RT M Rej. Rate
15 10946.9 25.25 19.11 1487.8 0% 14965.1 51.92 21.35 862.0 0.4%
20 14814.4 26.09 20.24 1564.0 0% 20610.9 52.19 23.57 921.8 0.7%
25 17882.3 25.39 19.95 1626.9 0% 27533.2 58.64 24.36 969.9 0.88%

TABLE IV
HEURISTIC VS. OPTIMALITY, R=6

Heuristic Optimal
Demand apx/opt obj. M RT WT obj. M RT WT

(2, 5, 5, 2) 1.06 284.8 129.1 196.4 411.5 267.5 125.5 163.2 409.0
(2, 6, 6, 2) 1.09 292.1 131.8 214.9 398.2 268.5 126.1 166.7 403.8
(2, 7, 7, 2) 1.10 322.3 129.4 254.8 480.6 291.7 125.0 213.4 431.7
(2, 8, 8, 2) 1.13 364.8 140.8 324.9 498.3 321.5 128.6 281.6 426.8
(2, 9, 9, 2) 1.11 395.2 134.5 312.3 705.9 354.2 125.7 236.6 694.7

TABLE V
HEURISTIC VS. OPTIMALITY, R=4

Heuristic Optimal
Demand apx/opt obj. M RT WT obj. M RT WT

(2, 3, 3, 2) 1.04 224.6 88.9 223.8 248.5 215.1 86.1 193.5 275.4
(2, 4, 4, 2) 1.13 215.6 86.0 196.2 272.7 190.3 81.6 151.2 257.5
(2, 5, 5, 2) 1.14 275.7 90.6 203.8 536.0 242.5 89.5 176.6 429.5
(2, 6, 6, 2) 1.04 242.7 92.5 213.7 342.1 232.7 83.8 193.5 374.4
(2, 7, 7, 2) 1.12 284.3 88.7 255.2 485.2 252.8 83.0 213.2 439.0

• et′q,v = earliest arrival time from stop q of vehicle v
• ltq,v = latest departure time from stop q of vehicle v
• lt′q,v = latest arrival time from stop q of vehicle v
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