
J Sched (2007) 10:25–40

DOI 10.1007/s10951-006-0324-6

An insertion heuristic for scheduling Mobility Allowance Shuttle
Transit (MAST) services
Luca Quadrifoglio · Maged M. Dessouky · Kurt Palmer

C© Springer Science + Business Media, LLC 2007

Abstract In this paper, we develop an insertion heuristic

for scheduling Mobility Allowance Shuttle Transit (MAST)

services, an innovative concept that merges the flexibility of

Demand Responsive Transit (DRT) systems with the low cost

operability of fixed-route systems. A MAST system allows

vehicles to deviate from the fixed path so that customers

within a service area may be picked up or dropped off at

their desired locations. Such a service already exists in Los

Angeles County, where MTA Line 646 is a MAST nighttime

service, transporting passengers between a business area and

a nearby bus terminal. Since the current demand is very low,

the service is entirely manageable by the bus operator, but

a higher demand would certainly require the development

of a scheduling algorithm. The proposed insertion heuristic

makes use of control parameters, which properly regulate

the consumption of the slack time. A set of simulations per-

formed in the service area covered by the existing MTA Line

646 at different demand levels attests the effectiveness of

the algorithm by comparing its performance versus a first-

come/first-serve (FCFS) policy and optimal solutions gen-

erated by a commercial integer program solver. The results

show that our approach can be used as an effective method

to automate scheduling of this line and other services similar

to it.
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1 Introduction

Today’s urban transit systems are at a crossroads. On the one

hand, demands on transit agencies for improved and extended

services are increasing. Yet on the other, there is little public

support for increases in fares or subsidies. Therefore, tran-

sit agencies are currently seeking ways to improve service

flexibility in a cost efficient manner.

Most transit systems fall into two broad categories: fixed-

route and Demand Responsive Transit (DRT) systems. Fixed-

route systems are typically more cost efficient because of the

predetermined schedule, the large loading capacity of the

vehicles, and the consolidation of many passenger trips onto

a single vehicle (ridesharing). However, the general public

considers them to be inconvenient because of their lack of

flexibility, since either the locations of pick-up and/or drop-

off points or the service’s schedule do not match the indi-

vidual rider’s desires. Moreover, the total trip time is per-

ceived as being too long, and for longer trips there is often

a need for transfers between vehicles. DRT systems instead

provide much of the desired flexibility with a door-to-door

type of service but they are much more costly to deploy and

therefore largely limited to specialized operations such as

taxicab, shuttle vans or Dial-a-Ride services mandated un-

der the Americans with Disabilities Act (paratransit DRT).

The National Transit Summaries and Trends (NTST) report

for 2002 indicates that the average cost per passenger trip for

DRT systems is US$ 20.8 with fares ranging from US$ 2 to 3.

By way of contrast, the average cost per trip for fixed-route

lines is US$ 2.4 with fares being roughly 25% of the cost

(Palmer et al., 2004).

Thus, there is a need for a transit system that provides flex-

ible service at a reasonable price. The Mobility Allowance

Shuttle Transit (MAST) system is an innovative concept that

merges the flexibility of DRT systems with the low cost
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operability of fixed-route bus systems. A MAST service has

a fixed base route that covers a specific geographic zone, with

one or more mandatory checkpoints conveniently located at

major connection points or high-density demand zones; the

innovative twist is that, given an appropriate slack time, vehi-

cles are allowed to deviate from the fixed path to pick up and

drop off passengers at their desired locations. The only re-

striction on flexibility is that the deviations must lie within a

service area designed around the base fixed-route. Customers

make a reservation in order to add their desired pick-up and/or

drop-off stops in the schedule of the service. The MAST sys-

tem works under a dynamic environment, since the majority

of the requests occur while the vehicle is on duty.

Such a system already exists in a reduced and simpli-

fied scale. The Metropolitan Transit Authority (MTA) of Los

Angeles County has recently introduced MAST as part of

its feeder-line 646. Line 646 transports passengers between

a large business hub in the San Pedro area of Los Angeles

County and a nearby bus terminal. The area that Line 646

serves is located close to the Los Angeles harbor and is one

of the county’s busiest commercial hubs, consisting of several

warehouses, factories and offices. However, for safety rea-

sons, employees of local firms working in night shifts have

been finding it extremely inconvenient to walk to and wait

at a bus stop. Therefore, Line 646 offers a MAST nightline
service. During daytime, this line serves as a fixed-route bus

system. During nighttime, the line changes to a MAST ser-

vice and allows specific deviations of half a mile from either

side of the fixed-route. Customers may call in to be picked

up or may ask the operator to be dropped off at their desired

locations if within the service area.

The demand of Line 646 is currently low enough to allow

the bus operator to make all the decisions concerning accept-

ing/rejecting requests and routing the vehicle. Clearly, in case

of heavier demand in a potential daytime MAST operation

and several requests for deviations, the operator would not

be able to handle this task efficiently by himself/herself and

would need help from the recent developments in commu-

nication and computation technologies that allow real-time

information about pick-up/drop-off requests and vehicles sta-

tus to be used to re-route the vehicles dynamically by means

of a scheduling algorithm.

While DRT systems focus strictly on point-to-point trans-

port services, the hybrid characteristic of the MAST service

adds additional and significant time and space constraints to

the problem mainly due to the need of having the vehicles

arrive at the checkpoints on or before their scheduled depar-

ture time. This is because the checkpoints typically represent

major transfer centers and serve simultaneously as pick-up

and drop-off points, like regular fixed-route stops. Delays at

the checkpoints would result in undesirable deviations from

a predetermined fixed schedule and passengers missing their

connections in case of late arrivals.

Although MAST systems can be considered as a special

case of the Pickup and Delivery Problem (PDP) with time

windows and there has been a significant amount of research

on DRT systems like the PDP, systems such as the MAST

service have not yet been extensively studied by researchers.

The purpose of this paper is to describe these types of ser-

vices and develop an insertion heuristic algorithm suitable

for a MAST system. An insertion heuristic approach is used

because they are computationally fast and they can easily

handle complicating constraints in a dynamic environment

(Campbell and Savelsbergh, 2004). The vehicle route and

schedule are updated in real time after each request and cus-

tomers are immediately notified whether their request has

been accepted and are provided with time windows for their

pick-up and/or drop-off stops.

The remainder of this paper is divided into the follow-

ing sections. After reviewing the literature in Section 2, we

describe the MAST services in Section 3 and the Model in

Section 4. We then define the scheduling problem in Section

5 and the control parameters in Section 6. Section 7 illustrates

the algorithm. In Section 8, we describe the experimental re-

sults and the performance evaluation. Section 9 provides the

conclusions.

2 Literature review

Hybrid types of transportation systems have been only re-

cently approached by researchers. Zhao and Dessouky (2005)

studied the optimal service capacity through a stochastic ap-

proach. Malucelli et al. (1999) also approached the problem

including it in a general overview of flexible transportation

systems. Crainic et al. (2001) described the MAST concept

and incorporated it in a more general network setting provid-

ing also a mathematical formulation.

The hybrid type of service that we are studying consists of

the same vehicle performing the fixed and variable portions

of the trip. There has been some work in studying hybrid

systems in which different vehicles perform the fixed and

variable portions. In the latter case, local service is provided

by on-demand vehicles and line-haul service is provided by a

fixed-route line. Passengers switch vehicles at a transfer sta-

tion. Aldaihani et al. (2004) developed a continuous approx-

imation model for designing such a service. There has been

some work in developing operational scheduling and rout-

ing policies for this latter type of hybrid system. Liaw et al.

(1996) developed a scheduling heuristic based on a system

in Ann Arbor, Michigan. Hickman and Blume (2000) devel-

oped an insertion heuristic and tested it on a data set from

Houston, Texas. Aldaihani and Dessouky (2003) developed

a tabu search heuristic and tested it on a data set from Ante-

lope Valley in California. They showed that shifting some of

the demand to a hybrid service route (18.6% of the requests)
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reduces the on-demand vehicle distance by 16.6% without

significantly increasing the trip times.

As previously mentioned, there is a significant body of

work in the literature on scheduling and routing DRT sys-

tems. Desaulniers et al. (2000) and Savelsbergh and Sol

(1995) provide a detailed review of the PDP and its re-

lated problems. Most of this work is intended for Dial-a-

Ride systems for the delivery of the elderly and handicapped.

Pioneering research on the Dial-a-Ride problem dates back

to the 1970s. Wilson et al. (1971) formulated the problem as a

dynamic search procedure, inserting newly arriving passen-

ger’s origin and destination into the prospective route of one

of the buses. Continuing work is presented by Wilson and

Hendrickson (1980). Daganzo (1978) presented a model to

evaluate the performance of a Dial-a-Ride system. Theoret-

ical studies and exact algorithms for the scheduling prob-

lem include the work by Psaraftis (1980, 1983a), Sexton

and Bodin (1985a,b), Sexton and Choi (1986), Desrosiers

et al. (1986), and Lu and Dessouky (2004). Heuristic ap-

proaches include the works by Psaraftis (1986), Jaw et al.

(1986), Bodin and Sexton (1986), Desrosiers et al. (1988),

and Madsen et al. (1995). Parallel insertion heuristics are

proposed by Toth and Vigo (1997), Dessouky et al. (2003),

Diana and Dessouky (2004), and Lu and Dessouky (2006).

3 Description of MAST services and systems definition

A MAST system is represented by a fleet of vehicles serving

a set of customers’ requests. Vehicles follow a fixed-route

line (back and forth between two terminal checkpoints or

around a loop, see Fig. 1) composed by an ordered set of stops

(checkpoints) associated with prescheduled departure times.

The demand is defined by a set of requests. Each request

is defined by pick-up/drop-off service stops and a ready time

for pick up. The MAST service can respond to four differ-

ent types of requests: pick up (P) and drop off (D) at the

checkpoints; non-checkpoint pick up (NP) and drop off (ND),

representing customers picked up/dropped off at any location

within a service area designed around the base fixed-route.

A certain amount of slack time between any consecutive pair

of checkpoints is needed in order to allow deviations to serve

NP or ND requests.

There are consequently four different possible types of

customers’ requests:

• PD (“regular”): pick up and drop off at the checkpoints.

• PND (“hybrid”): pick up at the checkpoint, drop off not at

the checkpoint.

• NPD (“hybrid”): pick up not at the checkpoint, drop off at

the checkpoint.

• NPND (“random”): pick up and drop off not at the check-

points.

PD requests rely only on already scheduled checkpoints,

and they use the service like a regular fixed-route line; there-

fore, they just show up at their pick-up checkpoint, with-

out any need of a booking or scheduling procedure. The

other types of requests need to make reservations instead (by

phone, internet or at terminals located at the checkpoints) to

schedule one or both their non-checkpoint service stops. The

service can work dynamically, so that customers may book

their rides (or show up at the checkpoints) at any moment

before or during the service.

3.1 MTA Line 646

The MTA Line 646 in San Pedro, Los Angeles County, of-

fers a MAST nightline service. Line 646 consists of a single

vehicle covering a quasi-rectangular service area (approx-

imately 10 × 1 miles), with two terminal checkpoints and

one intermediate checkpoint located in the middle. The du-

Checkpointss Service area

Fig. 1 Possible configurations

of MAST systems
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ration of each trip between terminal checkpoints is 30 min

and the headway is 1 h. The service operates for 4.5 h (nine

trips) each night. The system has very little slack time, but

this is justified by the very low actual demand (four to five

customers per hour, most of them being of type PND and

NPD). These “light” conditions allow the bus operator to

easily make in real time all the decisions concerning ac-

cepting/rejecting customer requests and routing the vehicle,

since the system needs to deal with only two to three non-

checkpoint requests per trip.

4 Model

The MAST system model analyzed in this paper is essen-

tially based on the existing MTA Line 646 in San Pedro (Los

Angeles County) and consists of a single vehicle, initially

associated with a predefined schedule along a fixed-route,

consisting of C checkpoints, identified by c = 1, 2, . . . , C ;

two of them are terminals located at the extremities of the

route (c = 1 and c = C) and the remaining C − 2 interme-

diate checkpoints are distributed along the route. The vehicle

is moving back and forth between 1 and C . A trip r is de-

fined as a portion of the schedule beginning at one of the

terminals and ending at the other one after visiting all the

intermediate checkpoints; the vehicle’s schedule consists of

R trips. Since the end terminal of a trip r corresponds to the

start terminal of the following trip r + 1, the total number of

stops at the checkpoints is TC = (C − 1)R + 1. Hence, the

initial schedule’s array is represented by an ordered sequence

of stops s = 1, . . . , TC.

The service area is represented by a rectangular region

defined by L × W , where L (on the x-axis) is the distance

between terminals 1 and C and W/2 (on the y-axis) is the

maximum allowable deviation from the main route in either

side (see Fig. 2).

4.1 Demand

We assume that the total demand rate θ (including any type of

request) is constant over time and that the non-checkpoint’s

stops (NP and ND) are uniformly distributed in the service

area. At any moment, a customer may call in (or show up at

L

W/2

W/2

r

r+1

1

x

y

2 3 c C C-1

Fig. 2 MAST system model

the checkpoints), specifying the locations of pick-up and/or

drop-off points. We assume that customers are immediately

ready to be picked up at the moment of their request, even

though the system could easily handle reservations for future

pick ups.

We identify the checkpoints with s = 1, . . . , TC, and the

non-checkpoint customers’ requests (NP or ND) with s =
TC + 1, . . . , TS, where TS represents the current total num-

ber of stops. Each stop s has an associated departure and ar-

rival times respectively identified by ts and t ′
s . As mentioned,

the scheduled departure times ts of the checkpoints (∀s ≤
TC) are fixed and assumed to be constraints of the system,

which can not be violated, while the ts of the non-checkpoint

stops (∀s > TC) and all the t ′
s are variables of the system.

4.2 Slack time

In order to allow deviations from the main route to serve

NP and ND requests between two consecutive checkpoints,

identified by s and s + 1, there needs to be a certain amount

of initial slack[-3.7pc] time st(0)

s,s+1 available in the schedule,

given by

st(0)

s,s+1 = ts+1 − ts − ds,s+1/v − hs+1 ∀s = 1, . . . , TC − 1

(1)

where v is the vehicle speed, hs+1 the time allowed at stop

s + 1 for passengers’ boardings and disembarkments, and

ds,s+1 the distance between s and s + 1. As more pick ups

and drop offs occur off the base route, the current slack time

sts,s+1 available is progressively reduced. Initially,

sts,s+1 = st(0)

s,s+1 ∀s = 1, . . . , TC − 1 (2)

4.3 Vehicle assumptions

We assume that the vehicle follows a rectilinear metric, al-

lowing the vehicle to move only along the horizontal or ver-

tical directions only, since vehicles ride along roads which

often form a grid especially in urban areas. In addition, we

assume the vehicle capacity to be infinite, since most DRT

systems are more constrained by time rather than capacity.

These are both reasonable assumptions as outlined by an

analysis of a large DRT system in Los Angeles County per-

formed by Dessouky et al. (2005).

5 Problem definition

Given the number of customers NC served by the MAST

systems, the overall objective function Z (in time units) of

the problem is defined as

Z = w1 × M/v + w2 × RT × NC + w3 × WT × NC (3)
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where w1, w2, and w3 are the weights and M represents the

total miles driven by the vehicle, RT is the average ride time

per customer, WT the average waiting time per customer

from the ready time to the pick-up time.

This definition of the Z allows optimizing in terms of both

the vehicle variable cost (first term) and the service level (the

last two terms); modifying the weights accordingly, we can

emphasize one factor over the others as needed.

Let α(s) represent the current position of stop s in the

schedule, ∀s. The problem defined by a MAST system is

to determine the indices α(s) and the departure/arrival times

ts, ∀s > TC, and t ′
s, ∀s, in order to minimize Z while not vi-

olating the checkpoints’ fixed departure times ts, ∀s ≤ TC,

and the customers’ precedence constraints. The problem is

solved dynamically by means of an insertion heuristic algo-

rithm described in the following sections.

6 Control parameters

The challenge of operating a MAST system mainly resides

in defining the logic to best operate the vehicle under a dy-

namic multi-criteria environment. In particular, we need to

set the insertion feasibility rules for any given customer at

any point in time because inserting a new request in the ve-

hicle’s schedule even if feasible at that time, might not be

best overall. For this purpose, we make use of parameters

that are a function of the slack time (usable slack time) and

the relative position of the new request with respect to the

already scheduled stops (backtracking distance).

6.1 Usable slack time

The slack time is a crucial resource needed to serve customers

requesting deviations of the vehicle from its current route.

When this resource is scarce, the system is not able anymore

to satisfy new incoming requests. Therefore, a MAST service

needs to be particularly careful about accepting customer

requests that can consume a lot of the slack time, whereby

preventing future requests from being satisfied. Thus, we

define a parameter that properly controls the consumption of

slack time.

We define the usable slack time stu
s,s+1 as the maximum

amount of slack time that any request is allowed to consume

for its placement between checkpoints s and s + 1. It repre-

sents an upper bound on the amount of slack time utilizable

by a single request, preventing a single request from con-

suming too much of it. stu
s,s+1 is defined as a function of the

future expected demand between s and s + 1 and is not di-

rectly related to the actual unused slack time sts,s+1; in fact,

stu
s,s+1 can be greater or lower than sts,s+1 depending on the

circumstances. As we will see in Section 5.1, a request will

be allowed to consume the minimum value among stu
s,s+1 and

L

W

x

s s+1

xs+1xs

Λs,s+1

1 C

L

W

x

s s+1

xs+1xs

Λs,s+1

1 C

Fig. 3 Portion of service area covered by the segment between s and

s + 1

sts,s+1 in order to be feasible and be scheduled between s and

s + 1. Otherwise, it will be considered for placement in suc-

ceeding portions of the schedule; thus, they are not rejected,

but postponed.

Let λ be the demand rate of non-checkpoint’s stops (NP

and ND), uniformly distributed in the service area and con-

stant over time (note that λ is closely related but not equal to θ

defined earlier). The time interval between two checkpoints

s and s + 1 is defined by ts+1 − ts , while the ratio between

the area covered by the segment of the route from s and s + 1

and the total service area is given by (|xs − xs+1|)/(L) (where

xs and xs+1 are the longitudinal coordinates of s and s + 1).

Consequently, the expected total number �s,s+1 of requests

between s and s + 1 during the time interval from ts to ts+1

is estimated as (see Fig. 3):

�s,s+1 = λ
|xs − xs+1|

L
(ts+1 − ts) (4)

As soon as the vehicle departs from s at ts , the expected

residual demand drops linearly from �s,s+1 until reaching

the zero value at ts+1. Hence, the expected residual demand

as a function of the current clock time tnow, �
(tnow)

s,s+1, may be

expressed as (see Fig. 4):

�
(tnow)

s,s+1 =

⎧⎪⎪⎨⎪⎪⎩
�s,s+1 tnow < ts

�s,s+1

(
1 − tnow − ts

ts+1 − ts

)
ts ≤ tnow ≤ ts+1

0 tnow > ts+1

(5)

tnow

( )nowt
ss 1, +Λ

Λs,s+1

ts ts+1 tnow

( )nowt
ss 1, +Λ

Λs,s+1

ts ts+1

Fig. 4 Expected residual demand between s and s + 1 as a function of

tnow
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We define the parameter πs,s+1 as a function of the ex-

pected demand as follows:

πs,s+1 = 1 +
(

π
(0)

s,s+1 − 1

�s,s+1

)
�

(tnow)

s,s+1 with 0 ≤ π
(0)

s,s+1 ≤ 1

(6)

Since 0 ≤ �
(tnow)

s,s+1 ≤ �s,s+1, we have that π
(0)

s,s+1 ≤ πs,s+1

≤ 1 and π
(0)

s,s+1 can be set accordingly.

We finally define the usable slack time stu
s,s+1 as

stu
s,s+1 = πs,s+1st(0)

s,s+1 (7)

If the residual expected demand �
(tnow)

s,s+1 → 0, then

πs,s+1 → 1 and stu
s,s+1 → st(0)

s,s+1. Whereas, when �
(tnow)

s,s+1

attains its maximum (�s,s+1), πs,s+1 reaches its minimum

value, π
(0)

s,s+1, and so does stu
s,s+1 = π

(0)

s,s+1st(0)

s,s+1.

Combining Eqs. (5)–(7), we finally derive the expression

for the usable slack time stu
s,s+1 as a function of tnow (see

Fig. 5):

stu
s,s+1 =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π
(0)

s,s+1st(0)

s,s+1 tnow < ts[
1+(

π
(0)

s,s+1 − 1
)(

1 − tnow − ts
ts+1 − ts

)]
st(0)

s,s+1 ts ≤ tnow ≤ ts+1

st(0)

s,s+1 tnow > ts+1

(8)

Let us now consider a non-checkpoint request q located at

the edge of the service area, such that yq = 0 or yq = W and

xs ≤ xq ≤ xs+1, and let us assume that the schedule between

s and s + 1 is empty (no previously placed stops). In order to

be placed here, the q request would require an amount of slack

time stq given by the time needed by the vehicle to deviate

from the x-axis, serve the q request, and come back to the x-

axis (stq = W/v + hq ). Since the minimum amount of usable

slack time from Eq. (8) is given by stu
s,s+1 = π

(0)

s,s+1st(0)

s,s+1, we

tnow
ts ts+1

u
ssst 1, +

( )0
1, +ssst

( ) ( )0
1,

0
1, ++ ssss stπ

tnow
ts ts+1

u
ss 1, +

( )0
1, +ss

( ) ( )0
1,

0
1, ++ ssss

Fig. 5 Usable slack time

need to have stu
s,s+1 ≥ stq to prevent the q request from being

rejected in this situation. Hence, we define:

π
(0) min

s,s+1 = (W/v + hq )/st(0)

s,s+1 (9)

as the minimum value of π
(0)

s,s+1 that guarantees every non-

checkpoint request q to be feasibly placed between s and

s + 1 with the schedule empty, regardless of the location of

q as long as xs ≤ xq ≤ xs+1.

Setting π
(0)

s,s+1 < π
(0) min

s,s+1 would prevent the algorithm

from working properly because some customers would be

rejected because of an improper parameter setting. Clearly,

setting π
(0)

s,s+1 = 0 would result in having stu
s,s+1 = 0 for

tnow < ts , preventing any requests before ts from being satis-

fied. In contrast, π
(0)

s,s+1 = 1 causes stu
s,s+1 = st(0)

s,s+1 at any

time and customers requests would have no limit on the

amount of slack time they could consume.

A proper value of π
(0)

s,s+1 in between π
(0) min

s,s+1 and 1 allows

the system to control the consumption of slack time. Looking

at Fig. 5, any request occurring before ts can use at most the

minimum value of stu
s,s+1 = π

(0)

s,s+1st(0)

s,s+1, allowing the future

expected customers to be properly served with the remaining

slack time. Whereas, if a customer request occurs towards the

end of the trip from s to s + 1, it is allowed to consume a

bigger portion of the slack time until a maximum of st(0)

s,s+1

because the chance of having additional requests before the

vehicle reaches the next checkpoint s + 1 is very low.

We want to point out that the choice of shaping the usable

slack time function as shown in Fig. 5 is arbitrarily derived

from an empirical approach and could have been developed in

different ways, for example, by replacing�s,s+1 with the total

expected demand occurring in a whole cycle (the duration of

two trips and not only the time interval between ts and ts+1),

with the result of having the location of the corner of the

function (currently at ts) moved earlier. However, the concept

of limiting the consumption of the slack time by setting a

parameter such as π
(0)

s,s+1 would have been analogous.

6.2 Backtracking distance

The vehicle could drive back and forth with respect to the

direction of a trip r while serving customers in the service

area, not only consuming the extra slack time but also having

a negative impact on the customers already onboard, which

may perceive this behavior as an additional delay. There-

fore, we limit the amount of backtracking in the schedule.

The backtracking distance indicates how much the vehicle

drives backwards on the x-axis while moving between two

consecutive stops to either pick up or drop off a customer

at a non-checkpoint stop with respect to the direction of

the current trip. More formally, as shown in Fig. 6, given

any two consecutive stops identified by a and b, such that
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rd̂rd̂

bda,b>0 bda,b=0

bad ,
ˆ

bad ,
ˆ

Fig. 6 Backtracking distance

α(a) + 1 = α(b), and the vector d̂a,b representing the dis-

tance from a to b, the backtracking distance bda,b is defined

as the negative component of the projection of d̂a,b along the

unit vector d̂r , representing the direction of the current trip r
(1 → C or vice versa, parallel to the x-axis) as follows:

bda,b = −min(0, d̂r ◦ d̂a,b) (10)

We define the control parameter BACK > 0 that is the

maximum allowable backtracking distance that the vehicle

can ride between any two consecutive stops. BACK can be

set accordingly; clearly, with BACK ≥ L , any backtracking

is allowed.

7 Algorithm description

The proposed dynamic insertion heuristic is described in

this section. We define the feasibility of an insertion in

Section 7.1. We describe how to evaluate the cost of each

feasible insertion in Section 7.2. We introduce the definition

of “bucket” in Section 7.3, needed to describe the insertion

procedure outlined in Section 7.4. In Section 7.5, we finally

illustrate the update procedure after a feasible insertion can-

didate has been chosen by the algorithm to be placed in the

schedule.

7.1 Feasibility

While evaluating a customer request, the algorithm needs to

determine the feasibility of the insertion of a new stop s = q
between any two consecutive stops a and b already sched-

uled. The extra time needed for the insertion is computed as

follows:

�ta,q,b = (da,q + dq,b − da,b)/v − hq (11)

Let m and m + 1 be the checkpoints before and after stops

a and b in the schedule. The algorithm computes stu
m,m+1 by

Eq. (8) and the backtracking distances bda,q and bdq,b by

Eq. (10). Finally, it is feasible to insert q between a and b if

a b

q
da,q

da,b

dq,bm m+1

bdq,b
,

,

,

Fig. 7 Insertion feasibility of q

(see Fig. 7):⎧⎪⎨⎪⎩
�ta,q,b ≤ min

(
stm,m+1, stu

m,m+1

)
(12)

bda,q ≤ BACK (13)

bdq,b ≤ BACK (14)

7.2 Cost function

The cost function considered by the dynamic algorithm is

similar to Eq. (3), which represents the overall objective func-

tion of a MAST system, suitable for a static environment.

The system’s entities affected by an insertion in a dynamic

environment are:

i. The vehicle, in terms of how many extra miles it has to

drive.

ii. The customer requesting the insertion, in terms of how

long the waiting time until the pick up is and how long

the ride time is.

iii. The passengers already onboard and waiting to be

dropped off, in terms of how much longer they have to

stay onboard.

iv. The previously inserted customers in the schedule waiting

to be picked up at the NP stops, in terms of how much

longer their pick-up time is delayed and also in terms of

how much their ride time changes.

For each feasible insertion of a stop q, the algorithm com-

putes the following quantities:

• �RT: the sum over all passengers of the extra ride time,

including the ride time of the customer requesting the in-

sertion.

• �WTE: the sum over all passengers of the extra waiting

time at the already inserted NP stops.

Finally, the cost function is defined as:

COST = w1 × �ta,q,b + w2 × �RT + w3 × �WTE (15)

where �ta,q,b, from Eq. (11), represents the consumption of

the slack time. During heavy demand periods, it should be

assigned a higher value to this scarce resource by increasing

w1 with respect to w2 and w3. In contrast, during periods

of low demand, the opposite is true and the COST function

should emphasize more the service quality for the customers

rising w2 and w3 over w1.
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In a dynamic insertion procedure, we can distinguish

among two different types of waiting time. The first type

is the waiting time spent by the customer initially from the

ready time to the pick-up time at the moment of their request

(mentioned in point ii mentioned earlier), that customers

may spend at their home, office, or a comfortable location

of their NP pick-up location (or at the checkpoints in case of

P pick up) and that we define as WTI (as average per cus-

tomer). The second type is the extra waiting time defined as

WTE, as average per customer (�WTE as sum, defined ear-

lier) that customers have to spend at their NP stops, due to

other insertions in the schedule (mentioned in point iv given

earlier).

The objective function Z defined in Eq. (3) measures the

total WT = WTI + WTE because it is defined for a static

environment. The COST function instead measures the in-

cremental cost and is directly related to the objective function

Z, but it does not account for WTI that is indirectly minimized

by working with “buckets” that we define in the following

section and describe their use in Section 7.4.

7.3 Buckets

Let us consider the schedule’s array as shown in Table 1,

illustrating the checkpoints only with their corresponding

stop index s. Each checkpoint c is scheduled to be visited

by the vehicle a number of times, with different stop indices

sk(c) (stop index of the kth occurrence of checkpoint c in the

schedule), depending on how many trips R are planned.

For each intermediate checkpoint c = 2, . . . , C − 1 the

indices sk(c), which identify them in the schedule, are com-

puted by the following sequence:

sr (c) = 1 + (C − 1) (r − 1)

+ (C − 1) + (−1)r [(C − 1) − 2 (c − 1)]

2

∀k = 1, . . . , R (16)

For the terminal checkpoints 1 and C , since their fre-

quency of occurrence is halved, the sequences are the fol-

lowing:

sr (1) = 1 + 2 (C − 1) (k − 1) ∀k = 1, . . . , 1 + 	R/2

(17)

sr (C) = C + 2 (C − 1) (k − 1) ∀k = 1, . . . , �R/2� (18)

Definition 1. For every checkpoint c, we define a bucket of

c, in general, as a portion of the schedule delimited by two

successive occurrences of c, namely all the stops s in the cur-

rent schedule’s array such that α[sk(c)] ≤ α(s) < α[sk+1(c)]

for any allowable k, as described in Eqs. (16)–(18).

The buckets’ definition for NPND-type customers needs

to be revised, since they do not rely on the checkpoints for

pick ups and drop offs; so we identify the buckets with the

Table 1 Schedule’s array and

buckets
trip s Checkpoints c

1 1 
2 2 
3 3 
… … 
c c 

… … 
C-1 C-1 

 
 
 
1 

C C 
C+1 C-1 
… … 

2(C-1)+1-(c-1) c 
… … 

2C-2 2 

2 

2C-1 1 
2C 2 
… … 

2(C-1)+1+(c-1) c 
… … 

3 

3C-2 C 
… … … 

r(C-1)+1-(c-1) c 
… … r 

r(C-1)+1 1 
… … 

r(C-1)+1+(c-1) c 
… … 

r+1 

(r+1)(C-1)+1 C 
… … … 
R TC=R(C-1)+1 1 or C 

1st bucket of c=1 bucket of c=2 

another bucket of c=2 
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trips. More formally, let us characterize the sequence repre-

senting the occurrences of any terminal checkpoint (c = 1 or

C):

sk (1 or C) = 1 + (C − 1) (k − 1) ∀k = 1, . . . , R + 1

(19)

We have that, for NPND-type customers, a bucket rep-

resents all the stops s such that α[sk(1 or C)] ≤ α(s) <

α[sk+1(1 or C)] for any allowable k as described in Eq. (19).

7.4 Insertion procedure

7.4.1 PD type

PD-type requests do not need any insertion procedure, since

both pick-up and drop-off points are checkpoints and they

are already part of the schedule. However, once the PD-type

customers are onboard, they are important in evaluating the

COST of any other insertion.

7.4.2 PND type

PND-type customers need to have their ND stop q inserted in

the schedule. The algorithm checks for insertion’s feasibility

in the buckets of the P checkpoint. Since the ND stop cannot

be scheduled before P , the first bucket to be examined is the

one starting with the first occurrence of P following the cur-

rent position of the vehicle, that is the bucket delimited by

sk ′ (P) and sk ′+1(P), with k ′ = mink sk (P), s.t. tsk (P) ≥ tnow.

Among the feasible insertions between all pairs of consec-

utive stops a, b in the first bucket, the algorithm selects the

one with the minimum COST and then stops. The customer is

therefore scheduled to be picked up at sk ′ (P) and dropped off

at the ND inserted stop q. If no feasible insertions are found

in the first bucket, the algorithm repeats the procedure in the

second bucket, assuming that the customer will be picked up

at the beginning of it corresponding to the following occur-

rence of P , that is sk ′ + 1(P). This process is repeated bucket

by bucket until at least one feasible insertion is found.

7.4.3 NPD type

NPD-type customers need to have their NP stop q inserted in

the schedule. Similarly, the algorithm checks for insertion’s

feasibility in the buckets of the D checkpoint. The first bucket

to be examined is the one delimited by the current posi-

tion of the bus (xb, yb) and the first occurrence of D fol-

lowing the current position of the bus, that is, sk ′ (D), with

k ′ = mink sk ′ (D), s.t. tsk (D) ≥ tnow. In general, (xb, yb) does

not correspond to a stop. Therefore, the first pair of points,

between which the algorithm checks for feasibility, is repre-

α(s) (xb,yb)

q

α (s)+1

Fig. 8 Insertion from current vehicle position

sented by (xb, yb) and the first stop to be visited afterwards,

as shown in Fig. 8. Among the feasible insertions in the

first bucket, the algorithm selects the one with the minimum

COST and then stops. The customer is therefore scheduled

to be picked up at the inserted NP stop q and dropped off at

sk ′ (D). If no feasible insertions are found in the first bucket,

the algorithm repeats the procedure in the second bucket,

forcing the customer to be dropped off at the end of the sec-

ond bucket, corresponding to the following occurrence of D,

sk ′+1(D). This process is repeated bucket by bucket until at

least one feasible insertion is found.

7.4.4 NPND type

A NPND-type customer requires the insertion of two new

stops q and q ′; therefore, the insertion procedure will be per-

formed by a O(TS2) procedure, meaning that for each feasible

insertion of the NP stop q, the algorithm checks feasibility

for the ND stop q ′. A NPND feasibility is granted when

both NP and ND insertions are simultaneously feasible. The

search for NPND feasibility is performed with the additional

constraint of having q scheduled before q ′.
Recall that buckets correspond to the trips for a NPND-

type customer. The search for NPND feasibility is performed

in at most two consecutive buckets meaning that when check-

ing for NP insertion feasibility in bucket i and i + 1, the al-

gorithm looks for ND insertion feasibility only in bucket i
and i + 1.

The algorithm starts checking the NPND feasibility in the

first bucket delimited by the current position of the bus (xb,

yb) and the end of the current trip r. This is the first oc-

currence in the schedule of one of the terminal checkpoints

s = 1 or s = C , namely sk ′ (1 or C) = mink sk (1 or C), s.t.

tsk (1 or C) ≥ tnow. Among all the feasible NPND insertions in

the first bucket, the algorithm selects the one with the mini-

mum COST. If no NPND feasibility is found, the algorithm

will then check pairs of two consecutive buckets at a time,

increasing the “checking-range” by one bucket at each step

(buckets 1/2, then buckets 2/3, . . . , i/(i + 1), etc.). While

checking buckets i/ i + 1, we already know that NPND in-

sertion is infeasible in bucket i (because it has been already

established before in the procedure while checking buckets

(i − 1)/ i). Therefore, while NP insertion feasibility needs to

be considered in both buckets (since NPND insertion infeasi-

bility in bucket i does not prevent NP insertion to be feasible

in i), ND insertion needs to be checked only in bucket i + 1.
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The procedure will continue until at least one NPND feasible

insertion is found.

7.4.5 Working with buckets

The insertion procedure performed by bucket assures that the

ride time of each customer is upper bounded. In addition, it

attempts to minimize the waiting time of each request un-

til their pick up (measured by WTI) by placing them in the

earliest bucket where feasibility is found, avoiding postpone-

ments of the whole ride as much as possible.

7.4.6 Rejection policy

The general assumption while performing the insertion pro-

cedure is a no-rejection policy from both the MAST service

and the customers. Thus, the algorithm attempts to insert the

customer requests checking, if necessary, the whole existing

schedule bucket by bucket, and rejection may occur only if

there is no feasibility at all due, for example, to an over satu-

rated system or when a customer request arrives towards the

end of the service. However, in our simulation (Section 8),

for MAST systems below or up to saturation level, rejected

customers are only a very small percentage (due to end of

the service) and they are removed from consideration. In ad-

dition, customers are assumed to never reject the insertion

proposed by the algorithm and there is no negotiation be-

tween the MAST system and the customers.

7.5 Update procedure

Once a minimum COST feasible insertion is selected, a new

stop q (either a NP or a ND request) has been successfully

scheduled between two points a and b in a portion of the

schedule delimited by checkpoints m and m + 1, and the

variables of the system need to be updated.

The slack time will be updated as follows:

stm,m+1 = stm,m+1 − �ta,q,b (20)

The departure and arrival times will also be updated (delayed)

as follows:

ts = ts + �ta,q,b ∀s s.t. α(s) ∈ [α(b), α(m + 1)) (21)

t ′
s = t ′

s + �ta,q,b ∀s s.t. α(s) ∈ [α(b), α(m + 1)] (22)

Since the departure times ts of checkpoints (∀s ≤ TC) are

constraints of the system and act as “time-barriers,” all the

stops that are not in the portion of the schedule where the

insertion takes place (between m and m + 1) are not affected.

We can therefore identify six different cases:

• Customers having both pick-up and drop-off stops sched-

uled before q are not affected by the insertion.

• Customers having their pick-up stop before q and their

drop-off stop in between q and m + 1 will have their ride

time increased because their drop-off stop will be delayed

as given by Eq. (22).

• Customers having their pick-up stop before q and their

drop-off stop after m + 1 will not be affected by the in-

sertion because the departure time tm+1 will remain un-

changed.

• Customers having both their pick-up and drop-off stops in

between q and m + 1 will have both of them delayed by

the same amount as given by Eqs. (21) and (22). Therefore,

their waiting time at the pick-up stop will be increased but

their ride time will remain unchanged.

• Customers having their pick-up stop in between q and m +
1 and their drop-off stop after m + 1 will have their waiting

time at the pick-up stop increased as given by Eq. (21), and

their ride time decreased by the same amount because their

drop-off stop will not be affected.

• Customers having both their pick-up and drop-off stops

after m + 1 will not be affected.

7.5.1 Time windows

The algorithm provides customers at the time of the request

with time windows for their pick-up and drop-off locations.

To do so, it computes the earliest departure time etq from q
as follows:

etq = ta + da,q/v + hq (23)

where ta represents the current departure time from stop a.

Also the departure time of q is initialized likewise:

tq = ta + da,q/v + hq = etq (24)

It can be easily shown that etq is a lower bound for any further

updates of tq .

The algorithm then computes the latest departure time

from q, ltq , as follows:

ltq = etq + stm,m+1 (25)

We prove that ltq is an upper bound for tq by the following

contradiction argument. Let us use the superscript β (with

β = 0, . . . , f ) to indicate the βth update of a variable and

suppose that t ( f )
q > ltq , we have t ( f )

q − t (0)
q > ltq − t (0)

q . By

Eq. (21), we also know that:

t ( f )
q − t (0)

q = (
t ( f )
q − t ( f −1)

q

) + · · · + (
t (β)
q − t (β−1)

q

) + · · ·

+(
t (1)
q − t (0)

q

) = �t f + · · · + �tβ + · · · + �t1 =
f∑

k=1

�tk

(26)
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and from Eqs. (24) and (25), ltq − t (0)
q = ltq − etq = stm,m+1,

but this would imply
∑ f

k=1 tk > stm,m+1, meaning that the

sum of the extra time needed for insertions after the insertion

of q had exceeded the total slack time available after the

insertion of q and this is a contradiction, since the feasibility

check would have prevented this from happening. Therefore,

Eq. (25) says that future possible insertions between m and

q will delay tq to a maximum total amount of time bounded

by the currently available slack time.

In a similar fashion, the earliest and latest arrival times,

et′q and lt′q , are computed. As a result, the customer, once

accepted, is provided with etq , ltq , et′q , and lt′q , being aware

that their actual times tq and t ′
q will be bounded by these

values:

etq ≤ tq ≤ ltq (27)

et′q ≤ t ′
q ≤ lt′q (28)

While a P request has etP = tP = ltP because the depar-

ture time from a checkpoint is a constant in a MAST sys-

tem, a D request will have et′D ≤ t ′
D ≤ lt′D . Clearly, NP

and ND requests will also have etN P ≤ tN P ≤ ltN P and

et′N D ≤ t ′
N D ≤ lt′N D .

8 Experimental results

In this section, we discuss the results obtained by simulation

analysis. The target is to show that the insertion heuristic de-

veloped in this paper can be used as an efficient scheduling

tool for real MAST systems. We compare the performance

of the algorithm to a simple first-come/first-serve (FCFS)

policy, and we progressively improve the insertion heuristic

effectiveness by modifying the values of the control parame-

ters. Then, the algorithm is compared to optimality assuming

a static scenario.

8.1 System saturation and performance measures

The saturation level is the maximum demand θ that a sys-

tem configuration can satisfy without becoming unstable. We

have that:� WTI: Average time interval between request/show up and

earliest pick-up time (etP or etNP) per customer, as men-

tioned in Section 7.2.� PST: Percentage of the total initial slack time (=∑TC−1

s=1 st(0)

s,s+1) consumed.

The saturation level can be estimated by looking at the

WTI values. Given that the demand is uniform over time,

for systems well below their saturation level, the WTI values

should be around half the headway of the system. A slightly

larger value of WTI, but constant over the simulation time,

shows that the system is near the saturation level, but still

below it. Even if a few customers have to wait longer to

be picked up due to temporary congestions created by the

randomness of the demand, the system on average is stable.

If instead the WTI value increases over the simulation time,

then the system is unstable and the demand rate is above the

saturation level. An indication of how much the demand rate

is below the saturation level may be given by the PST; values

around 90% indicate that the demand rate is more or less at

saturation level, for an insertion algorithm. In addition, since

the slack time consumption is directly proportional to the

miles driven, the PST and M values are related to each other.

Therefore, bigger values of M also indicate a higher level of

saturation.

We slightly redefine the objective function Z introduced in

Section 5 to conform it to a dynamic environment by modify-

ing the waiting time term in accordance to the COST function

of Eq. (15). Therefore, we have

Z = w1 × M/v + w2 × RT × NC + w3 × WTE × NC

(29)

where WTE is the average extra waiting time (t − et) per

customer served by the system.

8.2 Algorithm performance

As noted in Section 3, the MAST system modeled in this

paper is based on the existing MTA Line 646, which has

very little slack time (st(0)

s,s+1 = 2.5 min, ∀s = 1, . . . , TC −
1, with a v = 25 miles/h; therefore, about 5 min per trip), and

very low demand (four to five customers per hour, mostly

PND and NPD types). Since MTA is interested in testing

the MAST concept for higher demand levels, we assume a

larger slack time for our simulation experiments in order to

allow the system to accommodate more insertion requests

and evaluate the performance of the insertion algorithm. The

rest of the data are consistent with MTA Line 646. A summary

of the parameters values that are used in the experiments are

shown in Table 2.

Table 2 System parameters

L 10 miles

W 1 mile

C 3

ds,s+1(s = 1, . . . , TC − 1) 5 miles

ts+1 − ts (s = 1, . . . , TC − 1) 25 min (t1 = 0)

v 25 miles/h

hs (s = 1, . . . , TS) 18 s

w1/w2/w3 0.25/0.25/0.5
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Table 3 Customer type

distribution
PD PND NPD NPND

10% 40% 40% 10%

From Eq. (1), we compute the values of the initial slack

times st(0)

s,s+1 = 12.7 min (s = 1, . . . , TC − 1) that are about

50% of the time intervals between two consecutive check-

points’ departure times (ts+1 − ts = 25 min).

In setting the COST function’s weights, we assume that

customers perceive the extra waiting time at stops (w3) with

more discomfort than the ride time on the vehicle (w2) and

that slack time consumption (w1) and passengers’ ride time

(w2) are equally weighted.

Given a constant demand rate θ , we also assume that the

customer types are distributed as shown in Table 3.

The distribution mentioned earlier assumes that most of

the customers need to be transported from a checkpoint to

a desired location (home/office) and vice versa (PND and

NPD types) as actually is the case for Line 646. We further

assume that the checkpoint requests (P and D) are uniformly

distributed among the C checkpoints and that non-checkpoint

requests (NP and ND) are uniformly distributed in the service

area. The simulation is run for 50 h. We verified that this

length of simulation time was sufficiently long to have all

the performance parameters converge to their steady-state

values for stable systems. According to the parameter values

shown in Table 2, we have R = 60.

We first perform a set of runs setting the control parameters

BACK = L and π
(0)

s,s+1 = 1(∀s = 1, . . . , TC − 1) allowing

any backtracking and any slack time consumption if avail-

able, thus giving the most freedom to the algorithm when

checking for insertion feasibility. At these parameter settings

(configurations A) we seek the saturation level of the system,

by examining the WTI and PST values for different values

of θ .

We compare the results to the saturation level of a straight-

forward FCFS policy, where each request is placed one by

one in the schedule in the earliest current feasible spot and

then never moved nor postponed, behaving like hard con-

straints of the system. The results are shown in Table 4.

The system scheduled by the FCFS policy reaches satu-

ration (looking at the WTI value, already over half the head-

way) with only θ = 2 customers per hour, even with little

slack time used (a PST value of about 25% only). Although

the FCFS policy is very simple to implement, it is very inef-

ficient. The spatial and hard time constraints imposed by the

myopic assignments of spots in the schedule do now allow

this policy to make a wise use of the slack time and force the

system to reach saturation very easily.

The saturation level of the configurations A is instead

around θ = 20 customers per hour (configuration A2). While

A1 is a stable system relatively far from saturation (PST =

Table 4 Saturation level for the FCFS policy and configurations

A

Configuration FCFS A1 A2 A3

θ (customers per hour) 2 15 20 25

BACK (miles) / L L L
π

(0)

s,s+1s = 1, . . . , TC − 1 / 1 1 1

WTI (min) 68.16 56.52 61.67 236.74

PST (%) 25.7 81.3 91.3 98.9

Saturation level? Yes Below Yes Above

WTE (min) 0.00 1.07 1.23 1.75

RT (min) 24.44 23.86 25.86 30.39

M (miles) 742.6 1012.7 1051.4 1083.8

81.3%), A2 is right at the boundary because the WTI value

is higher than half the headway (50 min), but it does not in-

crease over time. Hence, the system is stable, but since the

slack time consumption is very high (PST = 91.3%), it is

near the demand limit. Anything above θ = 20 would lead

to system instability as shown by the results from A3, where

the WTI value is very high and keeps increasing with the

simulation run time and the PST is close to 100%.

Therefore, Table 4 shows that the system benefits drasti-

cally by using the insertion heuristic algorithm instead of a

FCFS policy. In addition, MTA Line 646 would be able to

serve a demand θ with up to 20 customers per hour by al-

lowing more slack time in the schedule (st(0)

s,s+1 = 12.7 min,

∀s = 1, . . . , TC − 1) and setting BACK = L and π
(0)

s,s+1 = 1

(configurations A), assuming a customer-type distribution

given by Table 3.

Now, keeping the demand at the saturation level (con-

figuration A2), we want to observe the effect of modifying

the usable slack time stu
s,s+1. For this purpose, maintaining

BACK = L , we vary the values of π
(0)

s,s+1(∀s = 1, . . . , TC −
1) in the range from 1 to π

(0) min

s,s+1 (configurations B) to ob-

serve the effect of this control parameter. We compare the

performances of each case by means on the object function,

Z, as defined in Eq. (29). The simulation run time is again

50 h. Each configuration is tested with exactly the same de-

mand using Common Random Numbers (CNR). The results

are summarized in Table 5. From Eq. (9), π
(0) min

s,s+1 is approx-

imately equal to 0.22.

The figures reveal the positive effect of decreasing π
(0)

s,s+1

from 1 to almost π
(0) min

s,s+1 . All the performance parameters sig-

nificantly improve their values, with the exception of WTE,

showing initially a progress, but then a progressive worsen-

ing. Also, the Z-values gradually drop and reach their min-

imum value with configuration B5 at π
(0)

s,s+1
∼= 0.3, slightly

greater than π
(0) min

s,s+1 . Due to the increased efficiency of the

algorithm, all the configurations drop well below their satura-

tion levels. Note that configuration B6 has lower PST and M
values, indicating a better performance in terms of the slack
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Table 5 Effect of

π
(0)

s,s+1—configurations B Configuration B1 = A2 B2 B3 B4 B5 B6

θ (customers per hour) 20 20 20 20 20 20

BACK (miles) L L L L L L
π

(0)

s,s+1s = 1, . . . , TC − 1 1 0.75 0.5 0.4 0.3 π
(0) min

s,s+1 = 0.22

WTI (min) 61.67 55.87 54.59 51.56 52.26 51.60

PST (%) 91.3 87.4 82.3 79.2 76.6 72.0

Saturation level? Yes Below Below Below Below Below

WTE (min) 1.23 1.15 1.25 1.32 1.41 1.37

RT (min) 25.86 24.68 24.13 23.09 22.60 22.76

M (miles) 1051.4 1021.7 989.0 968.2 951.5 921.7

Z 7149 6987 6853 6624 6533 6551

Table 6 Effect of

BACK—configurations C Configuration C1 = B5 C2 C3 C4 C5 C6 C7 C8

θ (customers per hour) 20 20 20 20 20 20 20 20

BACK (miles) L 1.5 0.8 0.5 0.3 0.2 0.1 0

π
(0)

s,s+1s = 1, . . . , TC − 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

WTI (min) 52.26 52.26 52.35 51.70 52.19 52.23 51.28 51.84

PST (%) 76.6 76.6 75.8 74.2 72.8 72.4 71.2 70.9

Saturation level? Below Below Below Below Below Below Below Below

WTE (min) 1.41 1.41 1.39 1.38 1.37 1.37 1.42 1.43

RT (min) 22.60 22.60 22.62 22.46 22.34 22.28 22.36 22.94

M (miles) 951.5 951.5 946.4 936.1 927.2 924.2 916.8 914.5

Z 6533 6533 6528 6478 6435 6419 6451 6596

time consumption, but the overall performance Z shows a

worsening of the service quality with respect to B5. These

results show the benefit of controlling the consumption of

slack time and saving some of it for future insertions.

Now, starting from configuration B5, we would like to ob-

serve the effect of limiting the backtracking distance. We per-

form another set of simulations (configurations C), keeping

θ = 20 and π
(0)

s,s+1 = 0.3 and varying the BACK parameter

from L to 0. The results are shown in Table 6.

There are no changes in the performance by lowering

the value of the BACK parameter from L (configuration

C1) down to about 1.5 miles (C2). This means that in the

simulation there are no cases of an insertion with a back-

tracking distance bigger than 1.5 miles. Therefore, setting

BACK to a value larger than 1.5 has no effect on the sched-

ule. On the contrary, improvements in all the performance

measures can be progressively seen in cases C3, C4, C5,

and C6 (BACK = 0.8, 0.5, 0.3, and 0.2), while C7 and C8

(BACK = 0.1 and 0) show better values for PST and M , but

the overall performance Z slightly worsens due to the in-

creasing values of WTE and RT. All the cases are well below

their saturation level and the best configuration according to

Z is found by setting BACK = 0.2 miles, corresponding to

case C6. These experiments illustrate the positive effect of

limiting to a certain degree the amount of backtracking that

the vehicle is allowed to do.

Case C6 represents a better configuration than A2 with

respect to the overall performance Z and almost all the other

parameters (with the exception of WTE, slightly increased).

In particular, the improved efficiency of the algorithm causes

the M and PST values to drop and the system is now well be-

low saturation. We therefore look for the new saturation level

for these more efficient parameter settings by performing an-

other set of runs (configurations D, see Table 7) starting from

configuration C6 and progressively increasing θ .

As done for configurations A, we can estimate the satura-

tion level for configurations D by looking at the stability of

the WTI value over the simulation time. The figures show that

θ = 25 customer per hour (D2) approximately represent the

limit for the system. Anything above this value would cause

instability.

Therefore, the adjustments made on the control parame-

ters allow the insertion heuristics to handle a demand rate

Table 7 New saturation level—configurations D

Configuration D1 = C6 D2 D3

θ (customers per hour) 20 25 30

BACK (miles) 0.2 0.2 0.2

π
(0)

s,s+1s = 1, . . . , TC − 1 0.3 0.3 0.3

WTI (min) 52.23 55.98 77.58

PST (%) 72.4 86.8 95.9

Saturation level? Below Yes Above

WTE (min) 1.37 1.72 1.92

RT (min) 22.28 23.93 29.00

M (miles) 924.2 983.4 1020.6
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Table 8 System parameters spe-

cific to each case

Cases

Parameter 1a and 2a 1b and 2b

R 4 6

TC 9 13

PD 2 1

PND 6 8

NPD 6 7

NPND 2 1

TS 25 30

25% larger than the initial configuration A2 (and drastically

larger than the demand that a FCFS policy would be able to

handle).

8.3 Comparison vs. optimality

We now provide an evaluation of the insertion heuristic algo-

rithm by comparing its performance against optimality com-

puted by CPLEX 9.1, a commercial integer program solver.

In order to perform this task, we consider static cases, with

all the demand known in advance, and therefore we can use

Z defined by Eq. (3) to measure the performance. However,

we need to slightly revise the COST function defined in Eq.

(15), modify the waiting time term to match the Z for the

static case. Thus,

COST = w1 × �ta,q,b + w2 × �RT + w3 × �WT (30)

where �WT represents the sum over all passengers of the

total waiting time, similarly to WT. Also, the weights are

redefined because the waiting time measured here is of dif-

ferent nature. In this case, we assume that customers would

rather wait for their pick up instead of spending time onboard

the vehicle setting w1 = w2 = 0.4 and w3 = 0.2.

We run two sets of experiments: in set 1, we assume the

system parameters of Table 2 (except the weights). In set

2, we use the same data except for the difference between

the scheduled departure times of consecutive checkpoints

(ts+1 − ts, ∀s = 1, . . . , TC − 1) being 17.5 min instead of

25 min. As a result, the slack time for set 2 is approximately

25% instead of 50%.

In each set, we consider two different cases. In cases 1b

and 2b, we assume larger number of trips R compared to

cases 1a and 2a. We assume a different number of requests

of each type, as shown in tab Table 8, trying to maintain

the ratio between the different types of requests as close as

possible to the real data of MTA Line 646 in Los Angeles,

which have a distribution described in Table 3. The NP and

ND locations are sampled from a spatial uniform distribution

over the whole service area (W × L); while the ready times

are sampled from a uniform distribution starting from half

an hour before the beginning of the service to the end of it.

The size of these cases in terms of R and the demand

(and therefore TS) is considerably smaller compared to the

experiments performed in Section 8.2, in order to find an

optimal solution. All the runs are performed utilizing CPLEX

9.0 with default settings on a 3.2 GHz CPU with 2 GB RAM

and we allowed a maximum CPU time of 10 h for each case.

In Table 9, for each case, we provide the Z value obtained

by the insertion heuristic and by CPLEX. For the heuristic

results, we show the Z obtained with no control and with the

best setting of the control parameters found for each case

(if any). The CPLEX results show the optimal value (opt),

when reached, the upper (ub), and lower (lb) bounds and the

corresponding gap.

The figures show that in cases 1a and 1b the heuristic

with no control reaches the Z values of 323.2 and 344.1, re-

spectively, that are higher than the upper optimality bounds

found by CPLEX (312.8 and 332.8 correspondingly); a

proper setting of the control parameters allows to improve

the solutions substantially, down to 314.1 and 332.8, respec-

tively. In case 2a, the heuristic reaches the optimal value of

242.4 even with the default settings of the control param-

eters (π
(0)

s,s+1 = 1 and BACK = L). In case 2b, the heuristic

reaches a Z value of 294.1 (corresponding to the upper op-

timality bound) with the default values of the control pa-

rameters, and we could not improve the result by modifying

them.

Table 9 Heuristic vs. optimality

Heuristic CPLEX

No control (π
(0)

s,s+1 = 1; BACK = L) Best control

Case Z Z π
(0)

s,s+1 BACK (miles) opt ub lb gap

1a 323.1 314.1 0.3 0.2 ? 312.8 293.0 6.3%

1b 344.1 332.8 0.9 5 ? 332.8 278.7 16.3%

2a 242.4 Already optimal 242.4 / / 0.0%

2b 294.1 No improvement ? 294.1 274.7 6.6%
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9 Conclusions

In this paper, we presented an insertion heuristic for schedul-

ing MAST services. The algorithm allows customers to

place a request, and once accepted, provides them with time

windows for both pick-up and drop-off points. Due to the

dynamic nature of the environment, the algorithm makes

effective use of a set of control parameters to reduce the

consumption of slack time and enhance the algorithm per-

formance. The results of simulations performed on a sys-

tem representing the existing MTA Line 646 of Los Angeles

show the efficacy of the algorithm and its control parameters

and demonstrate that the algorithm can be used as an effec-

tive method to automate scheduling of this line and other

similar services. In addition, a comparison versus optimal-

ity values computed by CPLEX in a static scenario shows

that the results obtained by the heuristic are not far from

optimum.

Future research on MAST systems could focus on im-

proving the solution by introducing local search techniques,

studying the system under different demand distributions and

stochastic environments, finding the optimal slack time for

a given demand distribution, developing heuristics for the

multiple vehicle MAST system to handle daytime heavy de-

mand environments, and comparing MAST systems to con-

ventional transportation services like fixed-route bus or DRT.
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