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We study a hybrid transportation system referred to as Mobility Allowance Shuttle Transit (MAST) 
where vehicles may deviate from a fixed path consisting of a few mandatory checkpoints to serve 
demand distributed within a proper service area.  In this paper we propose a Mixed Integer 
Programming (MIP) formulation for the static scheduling problem of a MAST type system.  Since the 
problem is NP Hard, we develop sets of logic cuts, by using reasonable assumptions on passengers’ 
behavior.  The purpose of these constraints is to speed up the search for optimality by removing 
inefficient solutions from the original feasible region.  Experiments show the effectiveness of the 
developed inequalities, achieving a reduction up to 90% of the CPU solving time for some of the 
instances. 

Summary1 

We study a hybrid transportation system referred to as Mobility Allowance Shuttle Transit (MAST) 
where vehicles may deviate from a fixed path consisting of a few mandatory checkpoints to serve demand 
distributed within a proper service area.  A MAST system is described by a set of vehicles driving along a 
base fixed-route and serving a specific geographic area.  The base route can be laid out around a loop or 
between two terminals.  Vehicles must stop at a set of checkpoints along the main path.  The checkpoints 
are conveniently located at major transfer points or high density demand zones, are relatively far from each 
other and have fixed departure times.  Given a proper amount of slack time, vehicles are allowed to deviate 
from the fixed path to serve (pick-up and/or drop-off) customers at their desired locations, as long as they 
are within a service area. 

The MAST system considered consists of a single vehicle, associated with a predefined schedule along a 
fixed-route consisting of C checkpoints.  A trip r is defined as a portion of the schedule beginning at one of 
the terminals and ending at the other one after visiting all the intermediate checkpoints.  The service area is 
represented by a rectangular region defined by L×W, where L (on the x axis) is the distance between 
terminals 1 and C and W/2 (on the y axis) is the maximum allowable deviation from the main route in 
either side (see Error! Reference source not found.). 

The demand is defined by a set of requests.  Each request is defined by pick up/drop off service stops 
and a ready time for pick up.  The MAST service can respond to four different types of requests: pick up 
(P) and drop off (D) at the checkpoints; non checkpoint pick up (NP) and drop off (ND), representing 
customers picked up/dropped off at any location within the service area.  A certain amount of slack time 
between any consecutive pair of checkpoints is needed in order to allow deviations to serve NP or ND 
requests.  There are consequently four different possible types of customers’ requests: PD (“Regular”), pick 

                                                           
1 This is a summary of the following paper: Quadrifoglio L., Dessouky M., Ordóñez F., “Mobility Allowance Shuttle 

Transit services: MIP formulation and strengthening with logic constraints”, European Journal of Operational 
Research, 2008, 185, 481–494 
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up and drop off at the checkpoints; PND (“Hybrid”), pick up at the checkpoint, drop off not at the 
checkpoint; NPD (“Hybrid”), pick up not at the checkpoint, drop off at the checkpoint; NPND (“Random”), 
pick up and drop off not at the checkpoints.  In this paper we consider a static scenario in which all the 
demand is known in advance.  We also assume one customer per request, no vehicle capacity constraint and 
a deterministic environment. 
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Fig. 1. MAST system 

The MAST scheduling problem can be formulated as a mixed integer linear program: 
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SETS of TRIPS
RD = all trips
HRD(k) ⊂ RD, ∀k∈KHYB = feasible trips of k

VARIABLES
xi,j = {0, 1}, ∀(i, j) ∈ A
ti, ∀i∈N = departure time from i

, ∀i∈N/{1} = arrival time at i
pk, ∀k∈K = pick-up time of request k
dk, ∀k∈K = drop-off time of request k
zk,r = {0,1}, ∀k∈KHYB, ∀r∈HRD(k)

PARAMETERS
δi,j, ∀(i, j)∈A = distance from i to j
v, vehicle speed
bi, boarding/disembarking time at i
θi, ∀i∈N0 = departure times from checkpoints
τk, ∀k∈K = ready time of request k
ω1/ω2/ω3 = objective function weights

SETS of NODES
N0 = checkpoints
Nn = non-checkpoints
N = N0 ∪ Nn

SETS of ARCS
A = all arcs

SETS of CUSTOMERS
KPD = PD requests
KPND = PND requests
KNPD = NPD requests
KNPND = NPND requests
KHYB = KPND ∪ KNPD
K = KPD ∪ KHYB ∪ KNPND

pu(k)∈N, ∀k∈K/KPND = pick-up of k
do(k)∈N, ∀k∈K/KNPD = drop-off of k
pu(k,r)∈N, ∀k∈KPND = pick-ups of k
do(k,r)∈N, ∀k∈KNPD = drop-offs of k
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Where xi,j indicates whether an arc (i,j) is used (xi,j = 1) or not (xi,j = 0) and zk,r indicates whether the 
checkpoint stop of the hybrid request k (a pick-up if k∈KPND or a drop-off if k∈KNPD) is scheduled in trip r, 
∀r∈RD. 

 
The above formulation is sufficient to find the optimal solution of the problem, but it is ineffective in the 

sense that it includes many feasible inefficient solutions and thus has a weak LP relaxation. 
A way to speed up the search for optimality is the development of constraints and their addition to the 

math program formulation.  These constraints are called valid if they reduce the dimensions of the relaxed 
feasible region, but all integer feasible solutions of the original model are not touched.  The ideal purpose 
of these constraints is to produce the convex hull of the integer feasible solutions which would allow LP 
algorithms to solve the problem much faster.  Another category of constraints, the so called “logic cuts”, 
have the purpose to eliminate some integer feasible solutions that are provably suboptimal.  Thus, they can 
not be considered valid, but they can be indeed very effective.  They may significantly shrink the feasible 
region, even by some orders of magnitude, and they allow improving the quality of the LP relaxation 
bound, considerably speeding up the reduction of the optimality gap throughout the iterations of the solver.  
As a result, they can be extremely beneficial in reducing the CPU time in the search for optimality. 

In this paper we develop and add “logic cuts” to strengthen the above MAST formulation.  The 
underlying concept behind all the developed inequalities is that hybrid customers will be choosing their P 
or D checkpoints as close as possible to their corresponding ND or NP stop, once these are placed in the 
schedule.  More formally, we can state (proofs in the full paper) the following Propositions 1 and 2: 

 
Proposition 1.  A necessary condition for optimality is that NPD customers must disembark the vehicle 

at the first occurrence of their D checkpoint following their scheduled NP pick-up stop. 
Proposition 2.  If ω2>ω3, a necessary condition for optimality is that PND customers must board the 

vehicle at the last occurrence of their P checkpoint prior to their scheduled ND drop-off stop. 
 
Although the logic behind the above Propositions may seem obvious to a human mind, it is not explicitly 

stated in the formulation and the solver would still consider several feasible but inefficient solutions 
(violating the above Propositions) as possible candidates while searching for optimality.  Therefore, based 
on the above Propositions, we develop three different groups of valid inequalities to add to the formulation. 

 
Group #1: The first group of inequalities is developed by directly applying Propositions 1 and 2.  They 

include constraints linking the z variables to the t variables (departure times) of non checkpoint stops of 
hybrid requests and constraints linking the z variables to some of the x variables.  An example is 

 
tdo(k) < zk,rθj + M(1-zk,r), with j = pu(k,r+1), ∀k∈KPND, ∀r∈RD/{R} 
 
Group #2: A second group of inequalities includes constraints linking z and x variables by making use 

of Propositions 1 and 2 along with the ready times τ of the requests.  An example is 
 
τq(i) + δi,j + bj ≤ zk,rθj + M(2-zk,r-xdo(k),i), 
with i = pu(q(i)), j = pu(k,r+1), ∀k∈KPND, ∀r∈RD/{R}, ∀(do(k),i)∈An 
 
Group #3:  A third group of inequalities links z and x variables by applying the results from the 

Propositions to pairs of hybrid requests.  An example is 
 
zh,sθi - zk,rθj < M(3-zh,s-zk,r-xdo(k),do(h)), 
with i = pu(h,s), j = pu(k,r+1), ∀k,h∈KPND, ∀r∈RD/{R}, ∀s∈RD 
 
Experimental results on several instances (which we are omitting in this summary, but are explained in 

details in the full paper) show the effectiveness of the developed inequalities, which are able to reduce the 
CPU solution time by up to more than 90% for some cases.  Specifically, Group “#1” provide the best 
overall results that always effective, followed in general by Group “#2” and Group “#3”, which are not 
always effective.  The synergistic effect of including all the cuts together further reduces the CPU solution 
time in many cases.  We provide the result for one case in the following Table 1.: 
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Table 1.  

Case: B1a TS=10: R=2; |KPD|=1; |KPND|=2; |KNPD|=1; |KNPND|=1 

cuts var bin lin con sec n i rel opt ub lb gap 
none 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0% 
#1 67 43 24 91 0.03 27 221 81.8 114.7 / / 0.0% 
#2 67 43 24 87 0.04 50 324 81.2 114.7 / / 0.0% 
#3 67 43 24 85 0.04 64 403 81.2 114.7 / / 0.0% 
all 67 43 24 93 0.03 25 217 81.8 114.7 / / 0.0% 

Case: B1b TS=15: R=4; |KPD|=1; |KPND|=2; |KNPD|=2; |KNPND|=1 

cuts var bin lin con sec n 103 i rel opt ub lb gap 
none 124 89 35 156 0.56 695 7.91 105.8 164.9 / / 0.0% 
#1 123 88 35 199 0.19 126 1.39 105.8 164.9 / / 0.0% 
#2 124 89 35 188 0.50 643 5.46 105.8 164.9 / / 0.0% 
#3 124 89 35 256 0.62 815 7.25 105.8 164.9 / / 0.0% 
all 123 88 35 309 0.25 89 1.55 105.8 164.9 / / 0.0% 

Case: B1c TS=20: R=4; |KPD|=1; |KPND|=5; |KNPD|=4; |KNPND|=1 

cuts var bin lin con sec 103 n 106 i rel opt ub lb gap 
none 247 197 50 299 619.0 723.3 5.58 132.8 217.8 / / 0.0% 
#1 244 195 49 351 49.0 60.7 0.47 132.8 217.8 / / 0.0% 
#2 247 197 50 400 355.7 319.9 3.33 132.8 217.8 / / 0.0% 
#3 247 197 50 639 508.1 460.2 4.03 132.8 217.8 / / 0.0% 
all 244 195 49 742 32.0 27.2 0.31 132.8 217.8 / / 0.0% 

Case: B1d TS=25: R=4; |KPD|=2; |KPND|=6; |KNPD|=6; |KNPND|=2 

cuts var bin lin con sec 106 n 106 i rel opt ub lb gap 
none 398 336 62 452 36,000 20.2 249 193.0 ? 312.8 293.0 6.3% 
#1 398 336 62 506 36,000 17.5 235 193.0 ? 312.8 304.4 2.7% 
#2 398 336 62 552 36,000 17.0 246 193.0 ? 312.8 293.4 6.2% 
#3 397 335 62 590 36,000 14.4 215 193.0 ? 312.8 295.6 5.5% 
all 397 335 62 744 36,000 15.3 219 193.0 ? 312.8 299.8 4.1% 

 
Where TS is the total number of stops in the network, R is the number of trips, we solved the same 

instance without adding any groups of inequalities (“none”), adding only one group at a time (“#1”, “#2” or 
“#3”) or adding all the groups together (“all”).  For each run we show the size of the problem solved: total 
variables (“var”), divided into binary (“bin”) and linear (“lin”) and total number of constraints (“con”).  
The following columns show the time to reach optimality in seconds (“sec”), the number of nodes visited in 
the branch and bound tree (“n”), the number of simplex iterations performed (“i”), the relaxed optimal 
value (“rel”) and the real optimum (“opt”). 
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