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Abstract

In this paper, we develop an analytical model that aids decision-makers in designing a hybrid grid

network that integrates a flexible demand responsive service with a fixed route service. The objective of the

model is to determine the optimal number of zones in an area where each zone is served by a number of on-

demand vehicles. The function of the on-demand vehicles is to transfer passengers to a fixed route line if the

destination is to a different zone or to its final destination if it is within the same zone.
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1. Introduction

The passage of the American with Disabilities Act (ADA) has changed the landscape for de-
mand responsive transit (DRT) systems. First, the demand for this type of transit service has
experienced tremendous growth (Levine, 1997). As a result, DRT ridership has nearly doubled
and operating costs have increased to $1.2 billion annually, more than 6% of the national budget
for public transportation in 2000 (Federal Transit Administration 2000). Second, besides the
increase in demand, ADA also set strict guidelines for the providers on trip denials and on-time
performance (Lewis et al., 1998). In essence, transit agencies today are expected to provide better
services while experiencing increased usage for demand responsive transit systems.
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These systems are highly subsidized. The National Transit Summaries and Trends (NTST)

report for 2000, the most recent year available, indicates that the average cost per passenger trip
for DRT systems is $16.74 with fares ranging from $1.50–3.00. By way of contrast, the NTST
report indicates that the average cost per trip for fixed route lines is $2.19 with fares being roughly
25% of the cost. With this high of a subsidy for DRT systems and the continued growth, the
operation of these systems which is not optional for transit services as mandated by ADA, will put
a tremendous strain on the budget of transit agencies. We aim to address this important problem
by studying innovative methods that can reduce the cost for this type of service. In particular, we
study a grid hybrid transit service that integrates two modes of transportation: demand responsive
service and fixed route service. In this type of service, local service is provided by on-demand
vehicles and line-haul service is provided by a grid fixed route transit system, thus, minimizing the
amount of travel required by the on-demand vehicles.
There has been some work in developing operational scheduling and routing policies for hybrid

systems. Liaw et al. (1996) develop a scheduling heuristic based on a system in Ann Arbor,
Michigan. Hickman and Blume (2000) develop an insertion heuristic and test it on a data set from
Houston, Texas. Aldaihani and Dessouky (2003) develop a tabu search heuristic and test it on a
data set from Antelope Valley in California. They show that shifting some of the demand to a
hybrid service route (18.6% of the requests) reduces the on-demand vehicle distance by 16.6%
without significantly increasing the trip times.
The above research studied a hybrid service from an operational point of view by developing

algorithms to improve the scheduling of such a system. In this paper, we develop a model to aid
decision-makers in designing a hybrid network. We study a problem where the service area is
divided into zones with grid fixed route service. Each zone is served by a number of on-demand
vehicles, which transfer passengers to a fixed route line if the destination is to a different zone or to
its final destination if it is within the same zone. Our model determines the number of zones, the
number of on-demand vehicles, the number of fixed route lines, and the number of fixed buses in
each route that minimize the total cost which is a function of both operator and passenger cost.
The transit network design problem has been well studied by a number of researchers (see e.g.,

Newell, 1979; Mandl, 1980; Ceder and Wilson, 1986; LeBlanc, 1988; Chang and Schonfeld, 1991a;
Baaj and Mahmassani, 1991, 1995; Chien and Schonfeld, 1997; Shrivastav and Dhingra, 2001). In
these problems, the objective is to minimize some function that combines operator and passenger
cost. The operator cost is usually represented as a function of the number of vehicles and miles
traveled by the vehicles while the passenger cost is a function of their trip travel times.
There also have been studies that compare the performance of a fixed service with that of flexile

service using solely on-demand vehicles. Adebisi and Hurdle (1982) develop a model that deter-
mines which service is more cost-effective depending on the ridership. Clearly, under low ridership
the flexible service is cheaper while with high ridership the fixed route service is the more preferred
method. Their study focuses on a single line service. Chang and Schonfeld (1991b) perform the
comparison of feeder bus services. They show that a flexible subscription service is advantageous
with smaller service areas and as a function of a number of other parameters. Jacobson (1980)
compares a strictly flexible service (i.e., door-to-door) with a hybrid service (i.e., flexible feeder
with fixed route service). The comparison is based on using the analytical models of Daganzo
(1978) and Daganzo et al. (1977). This analysis shows that flexible service is less costly. However,
his analysis assumes a very low demand density (which is not reflective of the current demand for
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such systems) and each zone (subarea) is serviced by a single vehicle. Our approach differs from
this work by allowing for more than one on-demand vehicle in each zone. Furthermore, the ride
time on the fixed service in Jacobson’s model assumes direct service from the center of one zone to
another. Since our model assumes a grid structure, the ride time on the fixed route line is a
function of the number of zones. These differences necessitate the development of a different
analytical model from the previously developed models to determine the number of required zones
in a hybrid service. We note that a simulation analysis can be used to determine the number of
zones. However, this requires building a simulation model of the system. Our purpose is to de-
velop simple analytical equations to guide planners in determining the number of zones.y 
p du

2. Network design

We assume that transportation requests (trips) arrive in a square (service area) at a constant
rate k. The trips’ origin and destination locations are uniformly distributed within the square.
Origin and destination locations are assumed to be independent. The square (service area) is
partitioned into n2 zones, each a square of side 1=n. The system consists of two components:
demand responsive service for pickup/delivery within each zone, and fixed route service for travel
between zones. We assume that the number of on-demand vehicles in each zone is the same. The
purpose for the on-demand vehicles is to move passengers within the zone. It serves one passenger
at a time, directly from the pickup point to drop-off point, without intermediate stops and no
ridesharing. The fixed route service follows a grid structure, as shown in Fig. 1. The purpose of the
fixed route service is to transfer passengers traveling between zones. We define another decision
variable m to represent the number of buses per fixed route. The objective is to develop an
analytical model to determine the optimal number of service zones, n2.
Note that if n ¼ 1, there will be only one zone with no need for a fixed route service. As n

increases, passengers are more likely to require a fixed bus line to travel to their final destination.
Clearly, from a passenger perspective, they would prefer fewer zones, thereby minimizing the need
for a transfer. However, since typically the cost per passenger mile to an agency of an on-demand
trip is much higher than that of a fixed route trip, a transit agency from a cost perspective would
prefer more zones. Our analytical model trades-off these two factors to determine the optimal
number of zones. tho
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Fig. 1. Hybrid network (n ¼ 3).
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The decision variables, n and m, which need to be optimized in this problem, affects the network

in different ways. For example, by increasing n, we will have:

1. More and smaller zones, which leads to more bus stops.
2. More fixed bus lines, which lead to more buses (number of fixed bus lines¼ 2nm).
3. Shorter distance between bus stops (distance¼ 1=n).
4. Shorter average traveling distance from origin points to entry bus stops and from exit bus stops

to destination points.
5. Smaller likelihood that the pickup and delivery points for a trip are located in the same zone.

On the other hand, by increasing m, we will clearly have reduced average passenger waiting time
at the bus stop, but also increased fixed costs. op

y 
od

u

C r
3. Model

We next describe the model that determines the optimal number of zones, n2, and the number of
buses on each fixed route, m.

3.1. Assumptions

The assumptions of the model are as follows:

1. Maximum number of transfers for a passenger during an entire trip is three. That is, a passenger
can only ride at most two on-demand vehicles and two buses to reach his/her final destination.

2. The network is symmetric and the distance between any two points in each zone is the Euclid-
ean distance.

3. Ridesharing on an on-demand vehicle is not considered in the model, and there is no waiting
costs associated with on-demand vehicles. We note that with a high demand rate the waiting for
on-demand vehicles may not be negligible.

4. The number of on-demand vehicles in each zone is the same.
5. The trips are classified into three types:

a. Type 1. Origin and destination are located in the same zone. These trips are served using
strictly the demand responsive (curb-to-curb) service. The probability of having this type
of trip is P1.

b. Type 2. Origin and destination are located in two zones that have a common fixed bus line.
These trips can be satisfied by exactly one fixed bus line and two different on-demand vehi-
cles, one at each zone. Also, for this type, the passenger waits for the fixed route bus only
once, which is at the entry bus stop. The probability of having this type of trip is P2.

c. Type 3. Origin and destination are located in two zones that do not have a common fixed bus
line. These trips can be satisfied by exactly two fixed bus lines and two on-demand vehicles.
Moreover, this kind of trip has two alternative paths. In this type, the passenger waits for the
fixed route bus twice, first at the entry bus stop and second at the connection bus stop. The
probability of having this type of trip is P3.
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6. Based on assumption 5, the passenger can be in three states: in an on-demand vehicle, waiting
at a bus stop for a fixed route bus, or in a fixed route bus. We assume the different states of a
passenger may have a different cost to a passenger. That is, the inconvenience to a passenger for
waiting at a stop for a bus may be higher than traveling on a bus.

7. The fixed line bus speed is independent of the demand. Fewer buses would mean more passen-
gers per bus. The assumption is that the time between stops will not be affected by the demand.
In practice, this time depends on the demand due to the dependence on the number of boar-
dings and disembarkments. However, for model simplification we assume independence.

8. The on-demand vehicle is assumed to wait at the last delivery spot until the next demand arrives.

3.2. Parameters and notation

The following are the parameters of the model.

k arrival rate (passengers/day)
L edge’s length of the square service area (miles)
av passenger cost of traveling in an on-demand vehicle ($/passenger/min)
ab passenger cost of traveling in a fixed route bus ($/passenger/min)
aw passenger cost of waiting at a bus stop ($/passenger/min)
Vv variable operating cost for an on-demand vehicle ($/vehicle/min)
Fv fixed cost of an on-demand vehicle ($/vehicle/day)
Tb total cost (fixed+ variable) of a fixed route bus ($/bus/day)
sv average speed of an on-demand vehicle (miles/min)
sb average speed of a fixed route bus (miles/min)
l maximum distance that can be traveled per on-demand vehicle per day (miles)
tv the time required to board and disembark an on-demand vehicle (min)
tb the time required to board and disembark a fixed route bus (min)

Note that, for the buses, Tb includes both fixed and variable costs; while, for the on-demand
vehicle, they are separated: Fv represents the fixed costs and Vv the variable costs.
The computed variables in the model, that are a function of n and m, are:

dv1 average distance traveled by a passenger on an on-demand vehicle between any pickup/
delivery point in the zone and the bus stop

dv2 average distance traveled by a passenger on an on-demand vehicle between any pickup
and delivery point within a zone (for type 1 request)

de1 average distance traveled by an on-demand vehicle empty from a delivery point to the bus
stop in the zone

de2 average distance traveled by an on-demand vehicle empty from a delivery point to the next
pickup point within the zone

db average distance traveled by a passenger on a fixed route bus (on only one fixed bus line)
wb average passenger waiting time at the bus stop
d expected total daily distance traveled by on-demand vehicles in each zone
g number of on-demand vehicles required per zone
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Note that the above variables (except g) are computed in miles and refer to a square mile service

area. We will need to multiply them by L to fit our model. Although the given parameters are
based on a per day basis, we do not imply a uniform rate throughout the day. The system design
should be based on a peak time demand.

3.3. Average on-demand vehicle distance traveled per passenger

In computing the total miles traveled by an on-demand vehicle within a zone, we assume that
after a drop-off, a vehicle moves directly to pickup another passenger. Depending on the pas-
senger type, the average on-demand vehicle distance traveled per customer is determined as fol-
lows:

• For passenger type 1 the distance is de2 þ dv2; one trip empty to pickup the passenger (de2) and
one trip with the passenger to drop him/her off (dv2).

• For passenger types 2 and 3 the distance is de2 þ 2dv1 þ de1; in the pickup zone one trip empty
to pickup the passenger (de2) and one trip with the passenger to drop him/her off at the fixed
bus stop (dv1), in the drop-off zone one trip empty to pickup the passenger at the fixed bus stop
(de1) and one trip with the passenger to drop him/her off at destination (dv1).

Fig. 2 illustrates how the expected on-demand vehicle travel distance is computed on a hybrid
network consisting of 4 zones (n ¼ 2). In this figure, we show two different requests. Passenger
type 1 needs to travel only within zone II. Passenger type 2 needs to travel from zone I to zone III.
The dots mark the current location of the on-demand vehicles.

3.4. Total Cost function definition

The total cost of designing the network consists of three major components: passenger cost, on-
demand vehicle cost and fixed route bus cost. The passenger cost has only a variable cost, which
depends on the trip time. However, each state of a passenger has a different variable cost. The on-
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Fig. 2. Expected vehicle travel distance.
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demand vehicle cost has both a variable and fixed cost component. The bus cost has only a fixed
cost component. Thus:

y

2 ThD
Total Cost ¼ Passengers Cost þ On-demand Vehicle Costþ Bus Cost

Passengers Cost ¼ Type 1 Costþ Type 2 Costþ Type 3 Cost

On-demand Vehicle Cost ¼ Fixed Cost þ Variable Cost

Bus Cost ¼ Total bus Cost

8><
>:
Total Cost 2 ¼ P1kðLdv2=sv þ tvÞav þ P2k½2ðLdv1=sv þ tvÞav þ LðwbÞaw þ ðLdb=sb þ tbÞab�

þ P3k½2ðLdv1=sv þ tvÞav þ Lð2wbÞaw þ 2ðLdb=sb þ tbÞab� þ FvðgÞLn2

þ Vvk½ð1� P1ÞðLðde2 þ 2dv1 þ de1Þ=sv þ 2tvÞ þ P1ðLðde2 þ dv2Þ=sv þ tvÞ�
þ Tbð2nÞm ð1Þrso
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4. Derivation of the terms used in the Total Cost function

In this section, we derive the terms used in the Total Cost function in terms of n and m. These
terms are dv1, dv2, de1, de2, P1, P2, P3, db and wb.

4.1. Average on-demand vehicle distance traveled by customers (dv1 and dv2)

In each zone, we would like to find the expected distances dv1 and dv2 as a function of n. dv1 is
the expected distance from the bus stop, which represents the center of the zone, to any other
point in the zone, while dv2 is the expected distance between any two points in the zone (Fig. 3).
For uniformly distributed points in a unit square area, Larson and Odoni (1981) showed that:uth
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dv1 ¼ 0:383 � ð1=nÞ ð2Þ
dv2 ¼ 0:5214 � ð1=nÞ ð3Þ
A T
4.2. Average distance traveled empty by the on-demand vehicle (de1 and de2)

Upon completion of a trip, the on-demand vehicle must travel to a new pickup to begin its next
assignment. This travel distance depends on the dispatching strategy and traffic level. If vehicles

 N
O

e last term of the expression [Tb(2n)m] should be zero when n=1, because no buses are needed.

O



Table 1

Average per passenger on-demand vehicle distance

Demand assumption Average on-demand vehicle distance

Passenger type 1 (de2 þ dv2) Passenger types 2 and 3

(de2 þ 2dv1 þ de1)

Low (de1 ¼ dv1; de2 ¼ dv2) 2dv2 3dv1 þ dv2
High (de1 ¼ de2 ¼ 0) dv2 2dv1

518 M.M. Aldaihani et al. / Transportation Research Part A 38 (2004) 511–530

y ce

are dispatched on a first-come-first-serve basis, as might be expected under light traffic, then de1
and de2 are well approximated by Eqs. (2) and (3). Under heavy traffic, the queue of requests
awaiting service could become long, in which case vehicles might be dispatched to the nearest
available pickup request, making de1 and de2 close to zero. Table 1 summarizes the average on-
demand vehicle distance traveled per passenger for the two above cases. In reality, the average
distance traveled will be between these two cases depending on the level of demand. In the
experimental section, we analyze the sensitivity of the results to the assumption of low and high
demand.

4.3. Probability of the three passenger types P1, P2, and P3

In this section, we find the probability of each type of trip in terms of n. The probability of each
passenger type equals its number of outcomes divided by the total number of outcomes. Next, the
number of outcomes is determined with respect to the value of n.

1. Outcome¼ trip (origin zone, destination zone) (e.g. (2,3) of a trip means that the origin point is
in zone 2 and the destination point is in zone 3).

2. Number of zones¼ n2.
3. Total number of outcomes¼ n4.
4. Total number of type 1 trip outcomes (both endpoints are in the same zone)¼ n2.
5. Total number of type 2 trip outcomes (endpoints are located in two zones that have a common

fixed bus line)¼ 2ðn� 1Þn2.
6. Total number of type 3 trip outcomes (endpoints are located in two zones that do not have a

common fixed bus line)¼ðn2 � 2ðn� 1Þ � 1Þn2.uth
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P1 ¼
n2

n4
¼ 1

n2
ð4Þ

P2 ¼
2ðn� 1Þn2

n4
¼ 2ðn� 1Þ

n2
ð5Þ

P3 ¼
ðn2 � 2nþ 1Þn2

n4
¼ ðn� 1Þ2

n2
ð6Þ

X3
i¼1

Pi ¼
1

n2
þ 2ðn� 1Þ

n2
þ ðn� 1Þ2

n2
¼ 1 ð7Þ
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4.4. Average bus distance traveled by customers (db)

Below we find the average distance traveled by the passengers using the bus on one fixed bus
route. This average distance is for passenger types 2 and 3. Note that passenger type 1 does not
use buses, passenger type 2 uses one fixed bus line (db), and passenger type 3 uses two fixed bus
lines (2db). The tables below show the methodology for calculating the average distance for
different values of n. Table 2 classifies the bus trips for each value of n according to the number of
bus stops that the passenger may visit and counts the number for each category.
For example, when n ¼ 3, there are only two types of bus trips, which are ‘‘1’’ when the

passenger visits only one bus stop and ‘‘2’’ when the passenger visits exactly two bus stops. Also,
note that there are 4 possible outcomes of the ‘‘1’’ type and 2 possible outcomes of the ‘‘2’’ type.
To illustrate the idea in more detail, the set of all the possible outcomes of the ‘‘2’’ type when n
equals 3 is {(1,2), (2,1), (2,3),(3,2), (1,3), (3,1)}. Note that outcome (1,2) of a trip means that the
pickup point is located in zone 1 and the delivery point is located in zone 2. Let:

Nn all possible outcomes of type 2 requests on a fixed bus line with n zones
Dn cumulative distance for all possible outcomes of type 2 requests on a fixed bus line with n

zones
dbn expected distance traveled by type 2 passengers on the fixed route bus with n zones

na
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Numb
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4
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NnD
Nn ¼
Xn�1
i¼1

2i ð8Þ

Dn ¼
1

n

Xn�1
i¼1

2iðn� iÞ ð9Þ

dbn ¼
Dn

Nn
¼

1
n

Pn�1
i¼1 2iðn� iÞPn�1

i¼1 2i
ð10Þ's 
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n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14 16

2 4 6 8 10 12 14

2 4 6 8 10 12

2 4 6 8 10

2 4 6 8

2 4 6

2 4
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In the previous step, the objective is to only count the number of each type of bus trip. These
trips are distinct from each other in terms of the distance. In Table 3, the number of each bus trip
type is converted into distance by applying Eq. (9). By applying Eq. (10), Table 4 shows the
average distance traveled by the passenger using the fixed route buses for different values of n.
For the purpose of simplicity, we set the average distance dbn to its converging value of 0.34

(Fig. 4). Note that db100 	 db1000 	 0:34.
Table 3

Length of bus trips

# of visited

stops

n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

1 1 1.333 1.5 1.6 1.667 1.714 1.75 1.778 1.8

2 1.333 2.0 2.4 2.667 2.857 3.00 3.111 3.2

3 1.5 2.4 3.000 3.429 3.75 4.000 4.2

4 1.6 2.667 3.429 4.00 4.444 4.8

5 1.667 2.857 3.75 4.444 5.0

6 1.714 3.00 4.000 4.8

7 1.75 3.111 4.2

8 1.778 3.2

9 1.8

Dn 1 2.667 5.0 8.0 11.667 16.000 21.00 26.667 33.0

Table 4

Average bus trip

# of visited

stops

n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

Dn 1 2.667 5.000 8.0 1.667 16.000 21.000 26.667 33.000

Nn 2 6.000 12.000 20.0 30.000 42.000 56.000 72.000 90.000

dbn 0.5 0.444 0.417 0.4 0.389 0.381 0.375 0.370 0.367

Fig. 4. db as a function of n.
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4.5. Average waiting time at the bus stop (wb)

Osuna and Newell (1972) show that the expected waiting time of passengers at a bus stop, wb,
who arrive at random times and are independent of the bus schedule is equal to:
D

wb ¼ H=2 � ð1þ C2
vÞ ð11AÞ
uc
e
where H is the mean headway (service interval) and Cv is the coefficient of variation of the

headways. Assuming that Cv is zero and each fixed route has only one bus, the expected passenger
waiting time can be represented by one half of the service interval at each bus stop. A bus arrives
at each bus stop every 2ðn� 1Þ=n unit distance. This is the time it takes to make a round trip
assuming that the stops are located in the center of the zone. Therefore, for a unit square service
area (L ¼ 1): op

y d

wb ¼ ðn� 1Þ=ðn � sbÞ ð11BÞro
However, if we have more than one bus in the fixed line, an arbitrary length L of the square service
area and the time between these buses are equal, the average waiting time at the bus stop is given
by Eq. (11B) divided by the number of buses in the fixed line (m), multiplied by L;al 

C ep

wb ¼ L � ðn� 1Þ=ðn � m � sbÞ ð11CÞn R
If the fixed bus schedules are appropriately synchronized, the waiting time at transfer points
between two fixed lines (for passenger type 3) could be close to zero; but assuming unsynchronized
timing, wb is a correct estimate for those cases too.

4.6. Fixed cost of on-demand vehicles

To find the fixed cost of the on-demand vehicles, we need to compute the expected total daily
on-demand vehicle travel miles in each zone, d, which depends on the arrival rate and the
probability of the three passenger types. Eq. (12) states that the vehicles fixed cost equals the cost
of having an on-demand vehicle times the number of on-demand vehicles per zone times the
number of zones. Eq. (13) states that the number of vehicles per zone, g, equals the expected daily
on-demand vehicle travel miles in each zone divided by the maximum number of miles that can be
traveled by a vehicle.ho
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Vehicles Fixed Cost ¼ Fvgn2 ð12Þ
g ¼ dd=le ð13Þ

ut  D

Although g is a discrete variable, we will assume it is a continuous variable in order to get a
continuous function for n. Below we determine the expected daily on-demand vehicle travel miles
in each zone:

A OT

d ¼ kP1ðde2 þ dv2Þ

n2
þ kP2ðde2 þ 2dv1 þ de1Þ

n2
þ kP3ðde2 þ 2dv1 þ de1Þ

n2

¼ kP1ðde2 þ dv2Þ
n2

þ kð1� P1Þðde2 þ 2dv1 þ de1Þ
n2

¼ kðde2 þ 2dv1 þ de1Þ þ kð1=n2Þðdv2 � 2dv1 � de1Þ
n2

ð14aÞ
O N
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Therefore:
For low demand ðde1 ¼ dv1; de2 ¼ dv2Þ; d ¼ 1:6704ðk=nÞ � 0:6276ðk=n3Þ
n2

ð14bÞ

For high demand ðde1 ¼ de2 ¼ 0Þ; d ¼ 0:766ðk=nÞ � 0:2446ðk=n3Þ
n2

ð14cÞ
ce
4.7. Total Cost function

In order to formulate the Total Cost function we assume low demand density (de1 ¼ dv1,
de2 ¼ dv2). A sensitivity analysis will be performed at the end of the paper to observe the effect of
high demand density assumption (de1 ¼ 0, de2 ¼ 0) over the optimality.
After finding all the terms needed in terms of n and m, the Total Cost function (Eq. (1)) can be

stated as follows: Cop
y 
rod
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Rearranging and ordering the terms of the equation, the function becomes:r' ri
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We next show the parameter values for which the Total Cost function is convex. A function of
two variables is convex if its Hessian matrix is positive definite. Also, for a convex function, the
global minimum can be found by identifying the value of the decision variables that makes theDO
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gradient equal zero (unless the minimum is attained on the border of the variables’ set, in our case
m ¼ 1 or n ¼ 1).
Assuming n and m continuous, the gradient and the Hessian matrix are as follows:
uc
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We note that if the fractional optimal value of n is small that rounding should not be used and
the total cost for the two integer neighborhood solutions should be compared and the smallest
selected.

A OT

 N
5. Computational experiment

In this section, we demonstrate the capabilities of the model in determining the optimal con-
figuration for a given set of parameters. Two cases are analyzed:DO
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1. a relatively small service area of 100 square miles (L ¼ 10), with a total demand k of 1000 cus-

tomers/day, a relatively high bus total costs (Tb) and a small customers’ waiting costs
ðav; ab; awÞ;

2. a large metropolitan area of 900 square miles (L ¼ 30), with a total demand k of 10,000 custom-
ers/day, a relatively low bus total costs (Tb) and higher customers’ waiting costs ðav; ab; awÞ.

For both cases we find the minimum of the Total Cost function with respect to m and n. In
addition, for Case 1 only, we perform sensitivity analysis over a various set of parameters.

5.1. Case 1

Table 5 shows the base case values of the input parameters to the model.
In order to find the optimal n and m which minimize the Total Cost function, we first take the

partial derivative with respect to m (Eq. (19)) and show that it is positive for all values of n and m
(in the relevant set nP 1, mP 1). Rearranging the terms of the equation, it is simple to verify that:l C

op
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Let us define s o

gðnÞ ¼ ðn� 1Þ2

n3
; C ¼ Tbsb

kLaw
ð25Þer e 
t
The function gðnÞ achieves its maximum for n ¼ 3 (in the space nP 1), with a value of
gð3Þ ¼ 0:148. Therefore since gðnÞ6 max½gðnÞ� and C6Cm2 for any value of mP 1, Eq. (24) is
verified for all n and m as long as:'s 

P bu

C > 0:148 ¼ max½gðnÞ� ð26Þr ri

5

eter values

ameter Value Unit

1000 Customers/day

10 Miles

0.1 $/customer/Min

0.1 $/customer/Min

0.1 $/customer/Min

120 Miles/vehicle

1.5 $/vehicle/Min

15 $/vehicle/day

1000 $/bus/day

0.4 Miles/Min

0.25 Miles/Min

0.1 Min

0.1 Min
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Fig. 5. Total Cost function vs. m.
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The value of C depends on the input parameters. Assuming the above ones, we have C ¼ 0:25,
therefore Eq. (19) is always positive and we ascertain that the Total Cost function is monoton-
ically increasing with m, for any value of n for this data set. Consequently the minimum of the
Total Cost function, with respect to m, is reached for m ¼ 1. Fig. 5 plots the Total Cost function
vs. m, for three different values of n: as expected the function is monotonically increasing with m,
confirming the above considerations.
We can now treat the Total Cost function as a function of only one variable, n, having

determined that m ¼ 1. Taking in consideration Eq. (21), that is the second derivative of the Total
Cost function with respect to n, it is clear that it will be positive for all relevant values of n, in fact:

ers
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or 
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3 ThD
d2f ðnÞ
dn2

¼ 95; 806

n3
þ 47; 040

n4
� 299; 172

n5
> 0; 8nP 2 ð27Þs P bu
Therefore, the Total Cost function is a convex function for these parameter values and any local
minimum in the function is also a global minimum. Fig. 6 plots the Total Cost function vs. n.
According to the figure, the minimum value 3 of n, among its integer values, is 5 (for n ¼ 1, the
convexity does not hold anymore, but it is easy to check that f ð1Þ > f ð5Þ). Hence, for this set of
parameters a network design consisting of 25 service zones and 10 fixed bus lines is optimal.
Table 6 shows a breakdown of the components of the total cost as a function of n. As the table

shows, as n increases there are less type 1 and 2 passengers and more type 3 passengers since it is
more likely that a passenger will have origin and destination points located in different zones when
there are many small zones. Also, the passenger cost and fixed bus cost increases with increasing
number of zones since the passengers will have longer trip times due to transfers and there will be
more fixed bus lines. However, the number of miles traveled by on-demand vehicles decreases. As
this analysis shows, our model trades off these cost factors to determine the optimal number of
zones.
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Fig. 6. Total Cost function vs. n (at m ¼ 1).

Table 7

Sensitivity analysis over k and Tb

Tb k

250 500 1000 2000 3000 5000

250 5 7 10 11 (m ¼ 2) 13 (m ¼ 2) 17 (m ¼ 2)

500 3 5 7 10 12 12 (m ¼ 2)

1000 1 3 5 7 9 11

2000 1 1 3 5 6 8

3000 1 1 1 4 5 6

Table 6

Total cost values

n Probability Cost components Total cost

P1 P2 P3 Passenger On-demand

vehicle

Fixed bus

1 1.000 0.000 0.000 1313 40,559 0 41,872

2 0.250 0.500 0.250 4268 29,587 4000 37,855

3 0.111 0.444 0.444 6017 20,958 6000 32,975

4 0.063 0.375 0.563 7044 16,092 8000 31,136

5 0.040 0.320 0.640 7710 13,045 10,000 30,755

6 0.028 0.278 0.694 8175 10,971 12,000 31,146

7 0.020 0.245 0.735 8518 9473 14,000 31,991

8 0.016 0.219 0.766 8781 8342 16,000 33,122

9 0.012 0.198 0.790 8988 7457 18,000 34,445

10 0.010 0.180 0.810 9157 6747 20,000 35,904
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5.1.1. Sensitivity analysis

Table 7 shows the results of sensitivity analysis for the parameters k and Tb on selecting the
optimal number of zones. The other parameters described earlier remain unchanged. As the tableDO
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illustrates, the optimal number of zones increases as we increase k and decrease Tb. Note that the
sufficient condition C > 0:148 (Eq. (26)) needed to guarantee optimality at m ¼ 1 does not hold
for some of the cases, where optimal values are reached for m ¼ 2.
We now consider how demand density affects the solution. The minimum value of the Total

Cost function, with respect to the m variable, is still reached for m ¼ 1, since Eq. (26) is not af-
fected by the demand density assumption and the above considerations about the optimality over
m still hold. On the other hand, the optimality over n is indeed influenced by the demand density.
In fact, assuming high demand (de1 ¼ de2 ¼ 0), the optimality is attained for n ¼ 1. Since the
assumptions of case a and b in Section 4.2 describe two asymptotic cases regarding the values of
de1 and de2, we can further reasonably assume that their actual estimates will be something in
between those limit values, depending on the real demand density. Fig. 7 compares the Total Cost
function curves assuming low demand (de1 ¼ dv1; de2 ¼ dv2), high demand (de1 ¼ de2 ¼ 0) and
the middle point value (de1 ¼ 0:5dv1; de2 ¼ 0:5dv2). As we can observe the minimum for the
middle point assumption is reached for n ¼ 4, 16 service zones and 8 fixed bus routes.

5.2. Case 2

As a second experiment we analyze a case where the service area represents a large metropolitan
region. Table 8 lists the parameters’ values for this case.
Note that in this case Eq. (26) is not valid anymore, because C ¼ 0:0042, therefore optimality is

not necessarily attained at m ¼ 1. This is not surprising, since we decreased the total cost for buses
(Tb) and we increased the customers’ waiting costs (other than increasing both L and k), intuitively
causing the optimal m that minimizes the cost to become larger.
The optimality conditions, in terms of n and m, are found by imposing the Gradient of the

Total Cost function (Eq. (17)) equal to zero. Hence, setting Eq. (19) to zero and rearranging the
terms, we are able to find m as a function of n:
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Table 8

Parameter values

Parameter Value Unit

k 10,000 Customers/day

L 30 Miles

av 1.5 $/customer/Min

ab 1.5 $/customer/Min

aw 1.5 $/customer/Min

l 120 Miles/vehicle

Vv 1.5 $/vehicle/Min

Fv 15 $/vehicle/day

Tb 500 $/bus/day

sv 0.4 Miles/Min

sb 0.25 Miles/Min

tv 0.1 Min

tb 0.1 Min
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Substituting this value of m in Eq. (18) and setting it equal to zero, a function of a single variable,
n, is obtained:
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Note that the second, fourth and last terms of Eq. (18), which contain the m variable, merge
together to generate the last term of Eq. (29).
With the above parameters, Eq. (29) is solved for n ¼ 24:1 and, using Eq. (28), m ¼ 3:02. Since

the solution has to be in the integer domain, the minimum value of the Total Cost function is
reached at n ¼ 24 and m ¼ 3, as shown also in Fig. 8, where the Total Cost function is plotted. We
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Fig. 8. Total Cost function vs. n and m.
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also note that this optimal solution yields a high headway and constraints can be added to restrict
the search space if headway considerations need to be included in the model.
Hence, a network design consisting of 576 service zones and 48 fixed bus lines, and 3 buses for

each line is optimal.
Note that the Total Cost function is monotonically increasing with m, for m > 4, for any n, as

shown in Fig. 9. so
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6. Conclusions

An analytical model has been developed to aid decision-makers in designing a hybrid grid
network that consists of two modes of transportation. The objective of the model is to determine
the optimal number of zones in an area. Each zone is served by a number of on-demand vehicles,
which transfer passengers to a fixed route line if the destination is in a different zone or to its final
destination if it is within the same zone. Our model trades off the cost to passengers, on-demand
vehicles, and fixed bus lines to determine the optimal number of zones.
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