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An optimized ridesharing service is usually designed to minimize the system-wide travel cost. This is beneficial in the

society’s point of view, assuming each agent accepts the system’s assignment. This is, however, a strong assumption consid-

ering agents might form their own ridesharing groups if they find doing so is more of their own interest. 

Recall that the agents of ridesharing system participate in this system in the hope of saving travel cost. So it is up to

the ridesharing service provider to decide how the travel cost would be shared among customers after a ridesharing plan

is proposed and accepted by the customers. This is a non-trivial task because if the agents find the cost allocation scheme

unfair, they may leave the system and form their own ridesharing group in the long run. This fair cost-allocation situation

is critical to the sustainability of a ridesharing system and thus is the motivation of the study in this paper. 

The ridesharing cost allocation problem is modeled as a cooperative game. Cooperative game theory, due to its close

relation to combinatorial optimization, has drawn significant attention of the operations research community. Since its in-

troduction by von Neumannn and Morgenstern (1944) , cooperative game theory has developed several solution concepts

that aim to resolve the benefits (cost) allocation issues among cooperative players. In this paper, we are primarily con-

cerned with a particular cost allocation solution concept - the nucleolus. The nucleolus of a cooperative game has several

nice properties. Intuitively, it is a solution to the cost allocation problem that minimizes the maximal dissatisfaction among

the customers. 

The concept of nucleolus was first suggested by Schmeidler (1969) and since then was developed by Shapley (1967) and

Maschler et al. (1979) . Although the nucleolus has several game theoretic virtues, the computation of nucleolus is very

difficult. In fact, for a n-player game, as the size of the characteristic function grows exponentially with the number of

players, any enumeration algorithm that computes the nucleolus that requires the entire information of the characteristic

function takes O (2 n ) time, assuming the characteristic function is readily available. Moreover, as will be shown in later

section, finding the characteristic function value of ridesharing game involves solving an optim zation problem related to

the Traveling Salesman Problem (TSP), which is NP-hard itself. This means the computation of the nucleolus of ridesharing

game can easily become intractable and more efficient algorithm needs to be developed. 

In this paper, we propose a nucleolus-finding algorithm for the ridesharing game by successively solving a num-

ber of linear and integer programs. The linear programming (LP) problem for nuc eolus calculation was first studied by

Kopelowitz (1967) and stimulated several LP-based algorithms for nucleolus computation. Dragan (1981) suggested an algo-

rithm for computing the nucleolus by generating the minimal balanced sets of the player set. Our nucleolus-finding proce-

dure combine the LP-based algorithm with the constraint generation framework proposed in Hallefjord et al. (1995) , such

that the explicit information of the characteristic function of a ridesharing coalition is only computed when it is “dissatis-

fied”. In this way the computational burden is significantly reduced. 

Note that the constraint generation approach was first proposed in Gilmore and Gomory (1961) and was successfully

applied to solving the cutting stock problem. Utilizing a similar idea  Göthe-Lundgren et al. (1996) studied the basic ve-

hicle routing game (VRG) in which a fleet with homogeneous capacity are available. The authors analyzed the properties

of this game and proposed a nucleolus-finding procedure based on coalition generation. Engevall et al. (2004) generalized

the model of Göthe-Lundgren et al. (1996) to consider vehicles with heterogeneous capacities and studied a real-world case

based on their model. 

The recent prosperity of ridesharing services has spurred a growing attention from the research community. There are

some game-theoretic studies, either from a cooperative or non-cooperative perspective, that focus on the mechanism and

stability of ridesharing recommendations. Shen et al. (2016) proposed an online ridesharing mechanism that satisfy ex-post

incentive compatibility, individual rationality, and budget-balance in a non-cooperative context. Zhang et al. (2016) designed

a double auction based discounted trade reduction mechanism for dynamic ridesharing pricing that is individual rational,

incentive compatible, budget balancing and has a larger trading volume. Gopalakrishnan et al. (2016) studied the costs

and benefits of dynamic ridesharing by introducing the notion of sequential individual rationality and sequential fairness.

Wang et al. (2018) introduced the concept of stable matches, understanding and addressing the gap and trade-off between

the wholistic optimal matchings of and the optimal matchings from individual rider’s perspective. From a cooperative game

theoreti  perspective, Bistaffa et al. (2017, 2015a, 2015b) tackled the coalition formation and payment allocation for the so-

called social ridesha ing problem, in which the feasible coalitions of a set of commuters are restricted by a social network

represented by a graph. The authors focused on the solution concept of kernel-stable payments. 

To sum up, this paper advances the state of the art as the following. In contrast with the previous related work in which

the existence of several restrictions (fixed driver/rider roles, possible coalitions limited by social network, etc.) significantly

reduces the search space, our model has no such restrictions and therefore is more general. Second, to our best knowledge,

our work is the first attempt that computes the nucleolus which is provably the most stable payment allocation scheme,

compared to other concepts such as kernel and core, in the context of ridesharing cost allocation. 

This paper is organized as follows. In Section 2 , a formulation of the ridesharing cost allocation problem is developed

from a game theory perspective and the properties of the characteristic function are analyzed. Section 3 discusses the fair-

ness issues in the ridesharing game regarding the core and the nucleolus. A coalition generation scheme is then developed

to compute the nucleolus. The constraint generation subproblem is explicitly formulated by a mathematical formulation re-

lated to the ridesharing optimization problem. In Section 4 , numerical experiments are conducted and the performance of

the proposed nucleolus procedure is evaluated. Finally, conclusions and future research ideas are presented in Section 5 . 
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2. Ridesharing optimization problem from a game theory perspective 

Consider a set of ridesharing participants and denote it by N . Each participant wants to travel from her origin s i to her

destination t i . Each participant can potentially be the driver. Denote the capacity of a vehicle by Q . Consider the subsets of

participants that do not exceed the vehicle capacity, i.e. | S | ≤ Q . For each such participant subset s , assume the feasible route

with minimum cost is known. Here by feasible it means the following conditions are met 

1. the route r starts from an agent d ′ s origin and ends at his destination. 

2. Let s −d = s \{ d} . For every agent i ∈ s −d , s i precedes t i in r . 

Denote by c r the cost of such a feasible route and by R the set of feasible routes with minimal cost. Let a ir = 1 if partici-

pant i (both s i and t i ) is served by route r and 0 otherwise. The ridesharing optimization problem (RSP) can be formulated

as 

(RSP) z = min 

∑ 

r∈ R 
c r x r (1)

s.t. 
∑ 

r∈ R 
a ir x r = 1 , i ∈ N (2)

x r ∈ { 0 , 1 } , r ∈ R (3)

In the formulation x r = 1 if feasible route r is selected and 0 otherwise  Constraints (2) guarantee that each participant

is covered by exactly one route. Note that the coefficient c r in the objective function is obtained by finding the minimal

cost route that covers the participants for which a ir = 1 , that is, by finding the solution to the corresponding TSP with

precedence constraints. 

It is noted that this formulation is characterized by its large number of columns  Therefore, this formulation is practi-

cally solvable by a column generation solution method. Similar approaches were successfully applied to the vehicle routing

problems (VRP) ( Balinski and Quandt, 1964; Desrochers et al., 1992 , see). When we solve the RSP with a column generation

approach, it is of our interest to reduce the number of columns. We show this is possible as follows. 

We first introduce the definition of the profitable ridesharing route  

Definition 1 (profitability) . Denote by r ( S ) the corresponding minimum cost feasible route of participant subset S. r ( S ) is

non-profitable if there exists two non-empty subsets S 1 ∪ S 2 = S, S 1 ∩ S 2 = ∅ such that c r(S) > c r(S 1 ) 
+ c r(S 2 ) 

. A route is defined

profitable otherwise. 

Intuitively, a shared-ride route becomes non-profitable if by ridesharing the participants end up spending more money

on the transportation cost. 

The following proposition shows that we only need to consider a subset of the columns when solving RSP. 

Proposition 1. Let X = { x r 1 , x r 2 , . .  , x r m } be an opt mal solution to RSP, i.e. x r i = 1 , i = 1 , . . . , m . Then r i , ∀ i = 1 , . . . , m must be

a profitable route. 

Proof. Proof by contradiction. Let X = { x r 1 , x r 2 , . . . , x r m } be an optimal solution to RSP. Suppose there exists i ∗ such that r i ∗
is a non-profitable route. Let S ∗ e the corresponding participants that are covered by this route. Then by definition there

must be two non empty subsets S ∗
1 

∪ S ∗
2 

= S ∗, S ∗
1 

∩ S ∗
2 

= ∅ such that c r(S ∗) > c r(S ∗
1 
) + c r(S ∗

2 
) . Since all the customers that are

covered by r i ∗ are also covered by r (S ∗
1 
) and r (S ∗

2 
) , we can get a new feasible solution X 

′ to RSP by substituting x r i ∗ = 1 with

x r(S ∗
1 
) = 1 , x r(S ∗

2 
) = 1 and x r i ∗ = 0 while keep all the other x variables unchanged. This feasible solution has a strictly less cost

than X . Contradiction  �

From a game theory perspective, we denote each ridesharing participant, i ∈ N , by a player and each subset of participants,

S ⊆N , by a coalition  

The ridesharing cost allocation problem is the problem of finding a “fair” cost allocation scheme for the ridesharing

optimization problem (RSP). 

A cooperative ridesharing game is defined by specifying a travel cost for each coalition. The game is defined by a rideshar-

ing group S , and a characteristic function c(S) : 2 S → R from the set of all possible coalitions (sub-ridesharing group) of play-

ers in S to a set of payment schemes satisfying c (Ø) = 0. Here 2 S denotes the power set of S . In the context of RSP game the

characteristic function can be seen as the travel cost occurring if coalition S ⊆N is formed. Each coalition can be defined by

a binary vector s as 

s i = 

{
1 , if customer i is a member of the coalition , 

0 , otherwise , 
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Fig. 1. Profitable vs. nonprofitable coalition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Define c as the objective value of a mathematical program. For all coalitions S ⊆N, S � = ∅ , let c ( S ) be the solution to the

following mathematical program 

c(S) = min 

∑ 

r∈ R 
c r x r (4) 

s.t. 
∑ 

r∈ R 
a ir x r = s i , i ∈ N (5) 

x r ∈ { 0 , 1 } , r ∈ R (6) 

Intuitively, c ( S ) represents the cost of an optimal route that covers the players in S  i.e. the players for which s i = 1 . 

When studying a cooperative game, it is of great interest to study the propertie  of its characteristic function. Assuming

that the singleton coalitions have a positive cost, we prove that the characteristic function of the RSP game is monotonic

and subadditive . Interested readers can find the proof in the Appendix. It is noteworthy that subadditivity implies larger

coalitions save more. So it is always beneficial to include more people to participant in ridesharing and this is a desirable

property of the RSP game. 

Denote a coalition S whose cardinality is smaller than the vehicle apacity ( | S | ≤ Q ) as a feasible coalition and otherwise

as an infeasible coalition . Denote by S the set of feasible coalitions  Then we get 

c(S) = c r , ∀ r ∈ R and S ∈ S such that a ir = s i , i ∈ N. 

In addition, denote a coalition such that �i ∈ S c ( i ) ≥ c ( S ) by a profitable coalition and otherwise by a nonprofitable coalition .

Fig. 1 gives an example where form ng a coalition will not always produce desirable results: instead of reducing total

transportation cost as Fig. 1 (a) and (b) actually in reases the total cost, meaning it doesn’t make much sense to form such

a coalition. In this case the players are better off on their own. Note that the profitability of forming a coalition in a large

extent depends on the relative geo-locations of the players. 

3. Fairness and stabi ity in RSP game 

3.1. The core and the nucleolus 

3.1.1. The core 

Let y i be the cost allocated to agent i, i ∈ N . The core of the RSP game is the set of the cost allocation plans y , such that ∑ 

i ∈ N 
y i = c(N)  (7) 

∑ 

i ∈ S 
y i ≤ c(S) , ∀ S ⊂ N. (8) 

The above inequalities can be interpreted as no single player or coalition should make a payment that is greater than

their cost on their own. A cost allocation scheme that is in the core is a good allocation as no coalition has the incentive to

leave the grand coalition. An inequality in (8) is called a core defining inequality (CDI). 

It is observed that the number of CDIs is in the scale of O (2 N ). As will be shown in later sections, in order to find the

core and the nucleolus efficiently, it is important and of our great interest to reduce the number of CDIs. This is possible

through the following propositions. 

Proposition 2. Any CDI with a nonprofitable coalition S, S � = N, is not needed in (8) . 
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Proof. Consider any nonprofitable coalition 

ˆ S , ˆ S � = N. Denote by { 1 , 2 , . . . , m } the players in 

ˆ S . By definition of nonprofitable

coalition we have 
∑ 

i ∈ ̂ S 
c(i ) < C( ̂  S ) . Note that all individual players are also singleton coalitions. It follows that 

y i ≤ c(i ) , ∀ i ∈ 

ˆ S �⇒ 

∑ 

i ∈ ̂ S 

y i ≤
∑ 

i ∈ ̂ S 

c(i ) < c( ̂  S ) . �

Proposition 3. For a RSP game with non-empty core, any CDI with an infeasible coalition S, S � = N, is not needed in (8) . 

Proof. Similar to Göthe-Lundgren et al. (1996) , let ˆ S , ˆ S � = N be an infeasible coalition. Denote by { r 1 , . . . , r m 

} the corre-

sponding optimal routes and { s 1 , . . . , s m 

} the disjoint feasible coalitions corresponding to the optimal routes. Since we have∑ m 

j=1 

∑ 

i ∈ S j y i = 

∑ 

i ∈ ̂ S 
y i and 

∑ m 

j=1 c(S j ) = c( ̂  S ) , then we have the following ∑ 

i ∈ S j 
y i ≤ c(S j ) , ∀ j = 1 , . . . , m �⇒ 

∑ 

i ∈ ̂ S 

y i ≤ c( ̂  S ) . �

From Proposition 2 and Proposition 3 we have 

C = 

{ 

y | ∑ 

i ∈ S 
y i ≤ c(S) , S ∈ S ;

∑ 

i ∈ N 
y i = c(N) 

} 

. 

Thus, when the core of the RSP game is non-empty, the only characteristic function values of our interests are those

corresponding to profitable and feasible coalitions. This, as will be stated in later sections, reduces the size of the coalition-

generating subproblem dramatically. Note that the calculation of c ( S ) for a coalition S is equi alent to solving the corre-

sponding traveling salesman problem with pick-up and drop-off constraints (TSPPD) for the cus omers for which s i = 1 . 

3.1.2. The nucleolus 

In a cooperative ridesharing game, in which players share travel cost  allocations are the payments each player need to

pay. That is to say, cooperative ridesharing game (RSP game) is a cos  game. 

Let c : 2 S → R denote the cost characteristic function of a cooperative ridesharing game. Then the function gives the

amount of collective cost a group of players need to pay through forming a coalition. In an RSP game, the excess of y for a

coalition S ⊆N is defined as e (y, S) = c(S) − ∑ 

i ∈ S y i and measures the amount of cost-saving of coalition S in the allocation y ,

compared to c ( S ). Note that when e ( y, S ) is negative, it means the sum of the cost of S in the allocation y must exceed c ( S ).

Thus e ( y, S ) measures the dissatisfaction of S in the allocation y . Recall that the core is defined as the set of imputations

such that c ( S ) ≥�i ∈ S y i for all coalitions S , then we have that an imputation y is in the core if and only if all its excesses are

positive or zero. Denote by θ (y ) ∈ R 

2 N the excess vector of y whose elements c(S) − ∑ 

i ∈ S y i are arranged in non-decreasing

order, that is, θ i ( y ) ≤ θ j ( y ), ∀ i < j . Then a cost allocation vector y is in the core if and only if it is efficient and θ1 ( y ) ≥ 0.

Consider the lexicographic ordering of excess vectors: for two payment vectors x, y , we say θ ( x ) is lexicographically greater

than θ ( y ) if ∃ k such that θi (x ) = θi (y ) , ∀ i < k and θ k ( x ) > θ k ( y ). Denote this ordering by θ ( x ) �θ ( y ). 

Definition 2 (Nucleolus) . The nucleolus of a RSP game is the lexicographically maximal imputation. Denote the nucleolus

by y and let Ȳ be the set of impu ations, then we have 

θ (y ) � θ (y ′ ) , ∀ y ′ ∈ Y \ y. 

Intuitively, the nucleolus is by definition the fairest cost allocation plan because it minimizes the maximal dissatisfaction

of all the coalitions in the ridesharing system. Remember that a coalition is a subset of all the ridesharing groups. As a

result, on the condition that the core is nonempty, the nucleolus is the center of the core, and a ridesharing system that

implements the nucleolus as the cost sharing plan is provably the most stable. It is of our interest to investigate the non-

emptiness o  the core of RSP game because the definitions of nucleolus and the core are related. In fact, the following

example shows that he core of RSP game may be empty. 

The transportation costs of three players 1,2,3 are given in Fig. 2 . Assuming that each player’s vehicle has a capacity of

one extra passenger seats, the characteristic function of this 3-player game is then defined by c({ 1 } ) = c({ 2 } ) = c({ 3 } ) = 5 ,

c{ 1 , 2 } = c({ 2 , 3 } ) = 7 (e.g., 1 − 2 − 2 ′ − 1 ′ ), c({ 1 , 3 } ) = 9 (e.g., 1 − 3 − 3 ′ − 1 ′ ) and c({ 1 , 2 , 3 } ) = 12 . The optimal route con-

figuration is, for example, 2 − 3 − 3 ′ − 2 ′ and 1 − 1 ′ . We show the calculation of nucleolus of this example in Table 1 . 

As an initial guess, we try (4, 4, 4). In Table 1 , we find that the minimum excess happens at coalition (1, 2) and (2,

3). These are the coalitions with maximum dissatisfaction. To improve this, we must increase both y 1 and y 3 . This involves

decreasing y 2 , and will decrease the excess for (1, 3) at the same rate. Also note that player 1 and player 3 have symmetrical

roles in this game, thus we can conclude that the best scenario occurs when the excesses for (1, 2), (2, 3) and (1, 3) are all

equal. Solving the equations, 

y 3 − 5 = y 1 − 5 = y 2 − 3 

y 1 + y 2 + y 3 = 12 , 

we find the nucleolus of this game is y = (4 2 , 2 2 , 4 2 ) and C = ∅ (note that c(1 , 2) < y 1 + y 2 ). 
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Fig. 2. A three player example. 

Table 1 

Calculation of nucleolus - empty core. 

S c(S) e(y, S) (4, 4, 4) (4 2 
3 
, 2 2 

3 
, 4 2 

3 
) 

1 5 5 − y 1 1 1 
3 

2 5 5 − y 2 1 2 1 
3 

3 5 5 − y 3 1 1 
 

1 and 2 7 7 − y 1 − y 2 = y 3 − 5 −1 1 
 

2 and 3 7 7 − y 2 − y 3 = y 
 

− 5 −1 − 1 
3 

1 and 3 9 9 − y 1 − y 3 = y 2 − 3 1 − 1 
3 

Table 2 

Calculation of nucleolus - nonempty core. 

S c(S) e(y  S) (3, 3, 3) ( 11 
3 

, 5 
3 
, 11 

3 
) 

1 5 5 − y 1 2 4/3 

2 5 5 − y 2 2 10/3 

3 5 5 − y 3 2 4/3 

1 and 2 7 7 − y 1 − y 2 = y 3 − 2 1 5/3 

2 and 3 7 7 − y 2 − y 3 = y 1 − 2 1 5/3 

1 and 3 9 9 − y 1 y 3 = y 2 3 5/3 
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Interestingly, if we increase the capacity of the vehicles to two extra seat, then we obtain a game with a nonempty

core. In this case, the characteristic function is defined in the following fashion. For the singleton coalitions and the 2-

coalitions, characteris ic function values remain the same. However, for the grand coalition c({ 1 , 2 , 3 } ) = 9 . The optimal

route configuration is, for example, 1 − 2 − 3 − 3 ′ − 2 ′ − 1 ′ . The calculation of nucleolus of this example is shown in Table 2 .

Initially, we try (3, 3, 3). In Table 2 , we find that the minimum excess happens at coalition (1, 2) and (2, 3). These are

the coalitions with maximum dissatisfaction. To improve this, we must increase both y 1 and y 3 . This involves decreasing y 2 ,

and wil  decrease the excess for (1, 3) at the same rate. Also note that player 1 and player 3 have symmetrical roles in this

game, therefore we can conclude that the best scenario we can achieve happens when the excesses for (1, 2), (2, 3) and (1,

3) are all equal. Solving the equations, 

y 3 − 2 = y 1 − 2 = y 2 

y 1 + y 2 + y 3 = 9 , 

we find the nucleolus of this game is y = (11 / 3 , 5 / 3 , 11 / 3) . Here, C � = ∅ and the nucleolus of this game is the center of the

core. 

3.2. An algorithm to find the nucleolus 

As discussed before, finding a nucleolus will ensure the ridesharing system implements the provably fairest cost alloca-

tion plan to the users, which also ensures the stability of the system. A procedure to calculate the nucleolus is developed

in this paper and with sufficient amount of computational resources, a system that is able to handle realistically large-scale

ridesharing service system can be developed. In a nutshell, the proposed algorithm starts with the least core, and contin-
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ues with lexicographic optimization through iterating between the master problem and the subproblems. We detail this

procedure below. 

3.2.1. The master problem 

Since the nucleolus is in the least core, which minimizes the maximal dissatisfaction, we start with the solution to the

following maximin problem 

max 
y ∈ Y 

min ∀ S⊂N 

( 

c(S) −
∑ 

i ∈ S 
y i 

) 

, 

which can be transformed to a linear program 

(P 1 ) max w (9)

s.t. w ≤ c(S) −
∑ 

i ∈ S 
y i , S ∈ S (10)

∑ 

i ∈ N 
y i = c(N) . (11)

Notice that the LP program has O (| S | ) constraints, and computing c(S) , S ∈ S involves solving the corresponding

TSPPD. So the LP program can easily become intractable. We therefore approach this problem with a constraint gen-

eration procedure. Hallefjord et al. (1995) has suggested such an approach for linear programming games. Göthe-

Lundgren et al. (1996) has used a similar approach to solve the vehicle routing problem (VRP) game. 

Since before searching for the nucleolus, we should already know he solution to the corresponding RSP, thus the optimal

route configuration, we can start ( P 1 ) with the coalitions correspond ng to the optimal routes. Besides, the singleton coali-

tions’ cost values are readily available. Denote by � ∈ S the available coalitions, then ( P 1 ) can be replaced by the following

relaxed problem 

(P 1 M 

) max w (12)

s.t. w ≤ c(S) −
∑ 

i ∈ S 
y i , S ∈ � (13)

∑ 

i ∈ N 
y i = c(N) . (14)

If the solution to ( P 1 
M 

) is unique, let it be ( y ∗, w 

∗), i.e. θ1 ( y 
∗) > θ1 ( y 

′ ), ∀ y ′ ∈ Y \ { y ∗}, then y ∗ is the nucleolus of the game.

If the solution to ( P 1 
M 

) is not unique, we continue to find the greatest θ2 ( y ) among the y ∈ Y with θ1 (y ) = w 

∗. We continue

this process until the solution to the linear program is unique. At stage t the master LP problem to be solved is 

(P t M 

) max w t (15)

s.t. w t ≤ c(S) −
∑ 

i ∈ S 
y i , S ∈ S \ 

t−1 ⋃ 

τ=1 

�τ , (16)

w τ = c(S) −
∑ 

i ∈ S 
y i , S ∈ �τ , τ = 1 , . . . , t − 1 , (17)

∑ 

i ∈ N 
y i = c(N) . (18)

The solution to the last program in this series is the nucleolus of this game. Let �t, S be the dual variable corresponding

to constraint w ≤ c(S) − ∑ 

i ∈ S y i . Let �t denote the set of coalitions whose corresponding constraints are binding , that is,

�t = { S ∈ S 
⋃ t−1 

τ=1 �τ | �∗
t,S 

> 0 } . 
The essential idea of constraint generation approach is trying to find the nucleolus with explicit information of only

a small portion of the entire coalition set. This goal is realized by finding the most violated constraint that is not yet

included in � via a subproblem after the master problem is solved at each stage. Denote the optimal solution to (P 1 ) by
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y ∗ = (y ∗
1 
, . . . , y ∗n ) . The constraint that is violated the most, aka the most unhappy coalition given the cost allocation scheme

y ∗, is obtained through solving the following subproblem 

( P S ) min 

S∈ S \ � c(S) −
∑ 

i ∈ S 
y ∗i − w 

∗

This nucleolus-finding procedure for a ridesharing game is developed based on the theories and techniques proposed in

Dragan (1981) and Kopelowitz (1967) and a general constraint generation framework proposed in Hallefjord et al. (1995) .

The pseudocode of this procedure is given in Algorithm 1 . First, at stage t the master LP problem P t 
M 

is solved and both

Algorithm 1: Procedure of finding the nucleolus of a cooperative ridesharing game. 

input : Geolocations of customers 

output : Nucleolus of the ridesharing game 

t := 1 ; 

�INEQ ; 

STOP := false ; 

while !STOP do 

Solve a master problem P t 
M 

; 

Solve a subproblem P S ; 

c ∗ = min S c(S) − ∑ 

i ∈ S y ∗i − w 

∗ ; 

s ∗ = arg min c(S) − ∑ 

i ∈ S y ∗i − w 

∗ ; 

if c ∗ ≤ 0 then 

SP.addCut( s ∗) ; 

�INEQ := �INEQ ∪ { s ∗} ; 
end if 

else 

STOP := true ; 

for every active and binding constraint s do 

STOP := false ; 

�INEQ := �INEQ \{ s } ; 
�EQ := �EQ ∪ { s } ; 

end for 

t := t + 1 ; 

end if 

end while 

the primal and dual solutions are returned. Second  a subproblem P S is solved and the least satisfied constraint ( s ∗) that

is not yet included is ident fied  If c ∗ ≤ 0, then we include s ∗ in �INEQ and resolve P t 
M 

with newly included constraint

w t ≤ c(s ∗) − ∑ 

i ∈ s ∗ y ∗
i 
. This stage iterates between the master problem and the subproblem until no coalition violates the

rationality constraints of the master problem (i.e. c ∗ ≥ 0). When this is achieved, we identify the active and binding con-

straints, reformulate the master problem (modify �INEQ and �EQ ) and proceed to the next stage ( t = t + 1 ). This process

continues until the solution y ∗ o the master problem is unique. And this last solution is the nucleolus of the RSP game.

Note that in the procedure SP addCut( s ∗), a cut of the type of inequality (42) is added to the subproblem to prevent the

duplication of row associat d wi h coalition s ∗. 

The following two subsec ions will discuss two formulations of subproblem P S . In particular, we will discuss how the

second formulation educes the complexity of the overall procedure by utilizing the aforementioned propositions. 

3.3. Coalition generation subproblem – general 

Recall in the nucleolus-finding scheme described in Algorithm 1 , it involves finding the most violated constraint in the

subproblem. This is equivalent to finding the “least satisfied” subset of customers with a given allocation proposal. A general

formulation of the subproblem is thus 

(P 0 S ) min 

S∈ S \ � c(S) −
∑ 

i ∈ S 
y ∗i − w 

∗ (19) 

∑ 

{ i | s j 
i 
=0 } 

s i + 

∑ 

{ i | s j 
i 
=1 } 

(1 − s i ) ≥ 1 , j | S j ∈ � (20) 

s i ∈ { 0 , 1 } , i ∈ N (21) 
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Constraints (20) are preventing the re-generation of constraints. 

Note that calculating c ( S ) is equivalent to solving the RSP model for customers i ∈ S , i.e. those s i = 1 . This implies that we

can formulate the subproblem P 0 
S 

explicitly. Denote by G = (V, E) the graph of the RSP game with vertex set V = V O ∪ V D ∪ { 0 }
and edge set E = { (i, j) | i, j ∈ V, i � = j} . Here vertex 0 is the “dummy” depot such that any edge incident with it has a cost of

0. V O ( V D ) is the origin (destination) vertex set of players in N . Each player is associated with a profit (prize) equal to y ∗
i 
. The

subproblem of the constraint generation procedure is to find a subset of customers in N which maximizes the total prize

minus the total cost, while conforming to certain constraints. 

(P 1 S ) π = max 
∑ 

k ∈ N 
y ∗k s k −

∑ 

i ∈ V 

∑ 

j∈ V 
c i j λi j + w 

∗ (22)

∑ 

{ i | s j 
i 
=0 } 

s i + 

∑ 

{ i | s j 
i 
=1 } 

(1 − s i ) ≥ 1 , j | S j ∈ � (23)

λ0 i − λ(i + n )0 = 0 , i = 1 , 2 , . . . , n (24)

2 n ∑ 

i =0 

λik = s k , k ∈ N (25)

2 n ∑ 

i =0 

λki = s k , k ∈ N (26)

2 n ∑ 

i =0 

λi,k + n = s k , k ∈ N (27)

2 n ∑ 

i =0 

λk + n,i = s k , k ∈ N (28)

u i − u j + pλi j ≤ p − 1 , 1 ≤ i � = j ≤ 2 n (29)

u i < u i + n , i = 1 , 2 , . . . , n (30)

∑ 

k 

y ik = 1 , i = 1 , . . . , 2 n ; k = 1 , . . . , n (31)

y ik = y (i + n ) k , i = 1  . . . , n ; k = 1 , . . . , n (32)

λ0 i = y ii , i = 1 , . . . , n (33)

λi j ≤ M 1 (1 − z i j ) , 1 ≤ i � = j ≤ 2 n (34)

− M 2 z i j ≤ y ik − y jk ≤ M 2 z i j , 1 ≤ i � = j ≤ 2 n ; k = 1 , . . . , n (35)

λi j ∈ { 0 , 1 } , 0 ≤ i � = j ≤ 2 n (36)

y ik ∈ { 0 , 1 } , i = 1 , . . . , 2 n ; k = 1 , . . . , n (37)

z i j ∈ { 0 , 1 } , 1 ≤ i � = j ≤ 2 n (38)
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s k ∈ { 0 , 1 } , k ∈ N (39) 

This problem can be termed as prize-collecting RSP (see Balas, 1989 for an analogy of TSP and prize-collecting TSP).

Constraints (24) make sure that a tour starts at origin and ends at destination. Constraints (25) –(28) are the continuity con-

straints. Constraints (29) are a group of subtour-elimination constraints (SECs) first proposed by Miller et al. (1960) . Here

u i are continuous variables called node potentials that indicate the visit order of node i in the tour, while p denotes the

maximal number of nodes a vehicle can visit in a tour. This parameter can be used to specify the seat capability of vehicles.

Generally p won’t exceed 10. Constraints (30) ensure that a customer’s origin precedes his destination. Constraints (31) en-

sure that each node is visited by exactly one vehciel. Constraints (32) make sure that a customer’s origin and destination

are visited by the same vehicle. The intuitive meaning of constraints (34) and (35) is that if edge ( i, j ) is selected in the

solution then nodes i, j must be served by the same vehicle. This set of constraints serve as a bridge between λ variables

(indicating whether an edge is selected) and y variables (indicating whether a node is served by a particular vehicle). Here

M 1 and M 2 are large numbers. 

3.4. Coalition generation subproblem – non-empty core 

Recall that when the RSP game has a non-empty core, the only coalitions that are non-redundant are the feasible coali-

tions ( Proposition 3 ). Notice that c(S) , S ∈ S is the minimum cost of a feasible route that covers the origin and destination

of all the players in S , that is, those s i = 1 , i ∈ N. This inspires us to formulate the subproblem explicitly. Let G = (V, E) be

the graph with vertex set V = V O ∪ V D ∪ { 0 } and edge set E = { (i, j) | i, j ∈ V, i � = j} . Here vertex 0 is the “dummy” depot such

that any edge incident with it has a cost of 0. V O ( V D ) is the origin (destina ion) vertex set of players in N . Each player is

associated with a profit (prize) equal to y ∗
i 
. The constraint generation subproblem finds a feasible route in G which maxi-

mizes the total prize minus cost, while conforming to the ridesharing problem constraints, such as capacity, precedence and

maximum travel distance per passenger. 

Denote the edge selection variable in the graph by λ. This problem is represented by 

(P 2 S ) π = max 
∑ 

k ∈ N 
y ∗k s k −

∑ 

i ∈ V 

∑ 

j∈ V 
c i j λi j + w 

∗ (40) 

s.t. 
∑ 

k ∈ N 
s k ≤ Q (41) 

∑ 

{ i | s j 
i 
=0 } 

s i + 

∑ 

{ i | s j 
i 
=1 } 

(1 − s i ) ≥ 1 , j | S j ∈ � (42) 

λ0 i − λ(i + n )0 = 0 , i = 1 , 2 , .   , n (43) 

∑ 

k ∈ N 
λ0 k = 1 (44) 

∑ 

k ∈ N 
λk + n, 0 = 1 (45) 

2 n ∑ 

i =0 

λik = s k , k ∈ N (46) 

2 n ∑ 

i =0 

λki = s k , k ∈ N (47) 

2 n ∑ 

i =0 

λi,k + n = s k , k ∈ N (48) 

2 n ∑ 

i =0 

λk + n,i = s k , k ∈ N (49) 
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Table 3 

Data and approximate nucleolus of prob10c. 

Customer number Pickup coordinates Drop-off coordinates Nucleolus cost

1 (387, 137) (918 , 786) 346.2
2 (595, 4) (852, 236) 267.1
3 (514 , 483) ( 9 , 481) 627.5
4 (342, 655) (609, 55) 729.7
5 (715, 887) (372, 215) 434.3
6 (111 , 687) (777, 91) 250.4
7 (692, 933) (203, 173) 97.5
8 (791, 847) (488, 312) 226.1
9 (702, 762) (928, 755) 520.8
10 (543, 443) ( 90, 700) 92.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u i − u j + pλi j ≤ p − 1 , 1 ≤ i � = j ≤ 2 n (50)

u i < u i + n , i = 1 , 2 , . . . , n (51)

λi j ∈ { 0 , 1 } , i, j ∈ V, i � = j (52)

s k ∈ { 0 , 1 } , k ∈ N (53)

Constraints (42) put the restriction that a constraint that is generated before is not generated again. Con-

straints (41) are the capacity constraints and (43) forces a tour to start at origin and end at destination. Con-

straints (46) , (47) , (48) and (49) are the flow balancing onstraints for each vertex. Constraints (50) are the subtour elimi-

nation constraints and (51) are the precedence constraints. 

It is noteworthy that the propositions in Section 3.1 help reduce the complexity of Algorithm 1 significantly. This contri-

bution is twofold. First, when the RSP game has a non-empty core, only feasible coalitions need to be considered in the sub-

problem ( P 2 
S 

). Second, although both prize-co lecting RSP ( P 1 
S 

) and prize-collecting TSPPD ( P 2 
S 

) are NP-hard, prize-collecting

RSP involves rider partitioning, therefore is much more difficult to solve than prize-collecting TSPPD, which concerns a single

route with limited number of stops. 

4. Experiments 

We have implemented the nucleolus algorithm (with both P 1 
S 

and P 2 
S 

as subproblem) in Java with CPLEX 12.6 and the

Concert library. In this sec on, we first show the results of nucleolus algorithm with P 2 S as subproblem. Because P 2 S is much

easier to solve than P 1 
S 

 and the coalitions needed are much fewer in P 2 
S 

than in P 1 
S 
, nucleolus algorithm with P 2 

S 
can not

only calculate the nucleolus when the RSP has a non-empty core, but can also be used to find an approximate nucleolus

when the corresponding RSP has an empty core. Next, we show a comparison between the nucleolus and the approximate

nucleolus, obtained by using the nucleolus algorithm with P 1 S and P 2 S as the subproblem, respectively. 

4.1. Approximate nucleolus 

We report results for two instances of the 10-player problem, which is the largest problem we have solved. As will be

shown later, the computational bottleneck is not at the nucleolus algorithm but at solving the corresponding ridesharing

optimization problem (RSP). The data set 2 we used in the experiments were selected from Dumitrescu et al. (2010) . The

origins and destinations of customers were randomly generated in the square [0, 10 0 0] × [0, 10 0 0]. The Euclidean distances

were used. Table 3 shows the geographical locations of the players. After solving the RSP MIP model, the optimal ridesharing

plan is {1}, {3, 5}, {4, 6, 7}, {8}, {2, 9}, {10}. These, along with other singleton coalitions are used to generate the initial

constraints of the master LP problem. 

At stage 1 three constraints are generated by solving the subproblem. They correspond to the coalitions of {3, 4, 6}, {4,

6}, and {2, 3, 4, 5, 9}. Active constraints corresponding to coalitions {8}, {10} and {1} are then identified at the end of stage

1. At stage 2, we notice that the solution to the master problem (P 2 M 

) is unique, thus we find the approximate nucleolus.

The approximate nucleolus of this game is listed in the last column of Table 3 . 
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Table 4 

Data and approximate nucleolus of prob10d. 

Customer number Pickup coordinates Drop-off coordinates Nucleolus cost

1 ( 60, 742) ( 34, 697) 52.0
2 (730, 471) (390, 845) 444.1
3 (964, 151) ( 39, 78) 808.7
4 (336, 763) ( 11 , 332) 481.2
5 (330, 593) (570 , 862) 326.9
6 (496, 333) ( 88 , 346) 374.1
7 (168 , 403) (432, 341) 271.2
8 (343, 502) (525, 846) 173.3
9 (600, 534) (585, 615) 83.0
10 ( 18 , 952) (494, 605) 589.0

Table 5 

Nucleolus vs. approximate nucleolus – problem8a. 

Customer number Nucleolus cost Approximate nucleolus cost 

1 442.1 449.9 

2 505.0 512.8 

3 639.2 636.6 

4 409.3 406.7 

5 527.6 525.0 

6 465.8 463.2 

7 228.4 225.8 

8 519.4 516 8 

Table 6 

Nucleolus vs. approximate nucleolus – problem8b. 

Customer number Nucleolus cost Approximate nucleolus cost 

1 366 .5 366 .5 

2 507 1 457 .7 

3 594 .1 617 .1 

4 387 .6 456 .7 

5 1012 .5 1035 .6 

6 258 .1 235 .1 

7 545 .3 571 .8 

8 235 9 166 .8 
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In total, 10 + 3 + 3 = 16 out of 2 10 − 2 = 1022 constraints are needed to compute the approximate nucleolus, which is

only a very small fraction (1.6%)  

In our second experiment of prob10d (see Table 4 ), the optimal ridesharing configuration is {1}, {2, 3, 4, 6}, {7}, {5, 8},

{9} and {10}. At stage 1, four constraints are generated after via solving the subproblem. They correspond to the coalitions

of {2, 3, 4, 9}, {3, 6}, {2, 9} and {2, 3  4, 5, 6}. At stage 2, the master LP problem is found to have a unique solution. This

solution is thus the approximate nucleolus of this game. The approximate nucleolus is listed in the last column of Table 4 .

In total, (10 + 2 + 4) / 1022 ≈ 1  6% constraints were needed to compute the approximate nucleolus. 

It is noteworthy to point out that the computational time for both instances is very small (less than 10s), indicating the

bottleneck is the optimization solution method. 

4.2. Nucleolus vs. approximate nucleolus 

In this subsection we conduct two experiments to compare the actual nucleolus and the approximate nucleolus. Finding

the actual nucleolus by using Algorithm 1 with P 1 S as subproblem is a very time-consuming process. In our first example,

problem8a, it takes 5 h to find the actual nucleolus. In our second example, problem8b, the time it takes to find the actual

nucleolus goes up to 20 h. 

The actual nucleolus cost and approximate nucleolus cost are summarized in Tables 5 and 6 . As we can see, the solutions

obtained by the approximate nucleolus algorithm are a close approximation for the actual nucleolus in both cases. 

It is of our interest to see the computational performance of Algorithm 1 using P 1 
S 

and P 2 
S 

. In problem8a, a total of 193

constraints are generated by P 1 
S 
, comparing to a total of 9 constraints generated by P 2 

S 
. In problem10d, a total of 184 coali-

tions are generated by P 1 S , comparing to a total of only 9 coalitions generated by P 2 S . Note that the total number of coalitions

(not including the empty set and the universal set) is 2 8 − 2 = 254 for problem8a and problem8b. Therefore, Algorithm 1 us-

ing P 1 generated 193 / 254 = 76% and 184 / 254 = 72% of the total constraints to find the nucleolus in problem8a and prob-
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Fig. 3. Solution path – problem8a. 

Fig. 4. S lution path – problem8b. 
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lem8b, respectively. So Algorithm 1 using P 1 
S 

is more like an enumeration procedure. Thus P 2 
S 

is much more computationally

efficient than P 1 
S 
, since the number of constraints generated by P 1 

S 
are significantly higher than that of P 2 

S 
. This along with

the fact that P 1 S is much harder to solv  than P 2 S explains the significant time difference between Algorithm 1 using P 1 S and

P 2 S . 

In Figs. 3 and 4 we measure the Euclidean distance between the incumbent nucleolus and the actual nucleolus

( 
√ ∑ 

i ∈ N (y ∗
i 

− y i ) 
2 ) as the algorithm iterates. These two figures show the solution path of the algorithm in both cases. As

can be seen, in both cases, the algorithm found the nucleolus before it stopped. This happened before the 20th iteration

in problem8a, and before 75 constraints were generated in problem8b. It means the majority of the running time of this

algorithm is consumed after the actual nucleolus is found. 

5. Conclusions 

We studied an important problem faced by ridesharing service provider: how to allocate cost among ridesharing partic-

ipants to ensure sustainability and fairness. This fair cost allocation problem was modeled as a cooperative game. A special

property of the cooperative ridesharing game is that its characteristic function values are calculated by solving an optimiza-

tion problem. To better understand this game, we further studied the characteristic function and proved it to be monotone,

subadditive, but non-convex (meaning the core can be empty). The most fair allocation plan is identified by the nucleolus

of the RSP game. We then proposed an iterative constraint-generation algorithm ( Algorithm 1 ) for calculating it in two situ-

ations – the game has an empty core and the game has a non-empty core. In both cases the algorithm utilizes an explicitly

formulated MIP as the subproblem to generate constraints. When the game has an empty core, the algorithm uses P 1 
S 

as

the subproblem and becomes an enumeration procedure to find the nucleolus of the game. When the game has a non-

empty core, this algorithm uses P 2 
S 

as the subproblem which utilizes the special properties of the RSP game such that the

characteristic function values are computed only when they are needed. Therefore the number of subproblems (an NP-hard
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optimization problem) that need to be solved is significantly reduced. Experiments showed that by adopting this algorithm

with P 2 S only a small fraction (1.6%) of the coalition constraints were needed to find the nucleolus. It is also found in the

experiments where the emptiness of the RSP game is unclear, the algorithm with P 2 
S 

can be used to find an approximate

nucleolus that is close to the actual one. This indicates that our proposed algorithm is promising in finding nucleolus of dy-

namic, large-scale RSP game and that since a cooperative game theory modeling approach does not necessarily differentiate

drivers and riders explicitly, our model, the mathematical programs and the algorithm proposed in this paper also have very

promising application in an autonomous vehicle ridesharing systems. We can see a few interesting and promising future re-

search directions related to this study. First, efficient heuristics for the subproblems can be developed. Second, with such

efficient algorithms in hand, we can further investigate the interaction between the vehicle capacity and the cost allocation,

which we believe will provide insight on the intrinsic nature of ridesharing game. Besides, we started our study with the

motivation of designing mathematical models and algorithms for the most general case of ridesharing scenario with the

least amount of assumptions on the coalition etc. However in the real world, the existence of certain situations can signif-

icantly simplify the calculation. For instance, in the case some of the ridesharing participants have formed a coalition on

their own, we can exploit these structural properties to simplify the coalition generation scheme and expedite the nucleolus

calculation. 
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Appendix A 

We show the RSP game has the following properties. From here on we deno e by C ( · ) the mathematical program that

defines the characteristic function value of · , i.e. c ( · ). 

Proposition 4 (Monotonicity) . The characteristic function of the RSP game is monotone, that is, c ( S ) ≤ c ( T ), S ⊂ T ⊂ N. 

Proof. Proof by contradiction. Suppose there exists S ⊂ T ⊂ N and c ( S ) > c ( T ). Let X = { x r | r ∈ R } be an optimal solution to

C ( T ). Let R T = { r i | x r i = 1 } . 
For r ∈ R , we construct a feasible solution to C ( S ) in the following manner. Let 

x r = 

{
1 , if ∃ i ∈ S such that a ir = 1 , 

0 , otherwise . 

Let X 

′ be the solution constructed in the above way. Denote by R S the set of selected routes. Intuitively, we keep those

routes in R T that covers at least one player in S and discard those don’t. 

It is known that X must satisfy ∑ 

r∈ R 
a ir x r = 1 , i ∈ T 

∑ 

r∈ R 
a ir x r = 0 , i ∈ N − T 

Because S ⊂ T , then X 

′ must satisfy ∑ 

r∈ R 
a r x r = 1 , i ∈ S 

∑ 

r∈ R 
a ir x r = 0 , i ∈ T − S 

∑ 

r∈ R 
a ir x r = 0 , i ∈ N − T 

This is equivalent to ∑ 

r∈ R 
a ir x r = s i , i ∈ N 

So X 

′ is a feasible solution to C ( S ). In addition, since the cost matrix { c ij } is positive, the route cost is also positive. Therefore

the cost of X 

′ is less than c ( T ), which is less than c ( S ). Note that c ( S ) is the optimal cost, so this is a contradiction. �

Proposition 5 (Subadditivity) . The characteristic cost function of RSP game is subadditive, i.e., c(S) + c(T ) ≥ c(S ∪ T ) , S, T ⊂
N, S ∩ T = ∅ . 
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Proof. Let R S , R T be the optimal solution to C ( S ), C ( T ), respectively. Because S, T ⊂ N and S ∩ T = ∅ , R S,T = R S ∪ R T must cover

all the players in S ∪ T , i.e. R S, T is a feasible solution to C ( S ∪ T ). Since this solution has an objective value equal to c(S) + c(T ) ,

we have c(S) + c(T ) ≥ c(S ∪ T ) . �
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