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Article history: The general lack of first/last mile challenges faced by

Received 7 June 2012 today’s public transit. One of the Qs jon to this problem is

Received in revised form 22 January 2013 the planning, design and impl § ansit services. This paper

Accepted 23 January 2013 develops an analytical v@ tation of near optimal termi-
nal-to-terminal cycle 1 mand responsl feeder service to maximize service

quality provided to cus fined as th erse of a weighted sum of waiting and rid-

g?; ‘i"r/g;‘]jsc:yde ing times. The m l esti the recompag cycle length by only plugging in geomet-
Demand responsive rical parameters emand data, w1t elying on extensive simulation analyses or
Feeder transit rule of thumb ion experlments omparisons with real services validate our
Transit performance model, wh low plann ecision makers and practitioners to quickly identify
Continuous approximations the best sit oper of any given residential area.
First/last mile © 2013 Elsevier Ltd. All rights reserved.
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1. Introduction and background &

The US Department of T recently 1&&1 the general lack of connectivity as one of the main challenges
faced by public transit. Poli 1ch encourgge ed reduction of Vehicle Miles Traveled (VMT), reduction of green-

house gases and even an incredSg of “livab
modal connectivity, O he possiblgfa
implementation of t emand ReS

transit networks, a

K on solutions to the issue of first/last mile access to transit and multi-
wards providing a solution to this problem is the planning, design and
> Feeder Transit services, connecting residential areas to major fixed-route

systems, also known as dial-a-ride transit (DART) or call-n-ride (CnR) systems, have
ading (§the need of low demand density areas and are welcomed by passengers as they pro-
Mgher service level compared to ‘regular’ fixed-route services. These services are, however,

brid systems, like “route deviation” services.

t often used types of flexible transit service, especially within low density residential areas.

in quite a few cities (Koffman, 2004); examples can be found in Denver (CO), Raleigh (NC), Akron

Sarasota (FL), Portland (OR) and Winnipeg (Canada). They are characterized by having a flexible routing
gy for serving passengers. The bus/shuttle operates as a shared-ride mode in which the passengers are
the connecting terminal from/to their desired location within a predetermined service area. Typically,

departure times are set at the terminal and passengers have a means by internet or phone call to book their
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other times, private transit operators or managers are responsible for their operations. Over the recent years, feeders have
experienced a surge in ridership among commuters. However, transit managers often discontinue operating them mainly for
lack of proper strategies related to scheduling at different demands during the day or season. In fact, a recent survey con-
ducted among 1100 transit managers, representing public transit systems of different sizes and types, indicated that flexible
transit services were discontinued mainly due to “Problems with scheduling—can’t make time points when demand for flex-
ible trips is high or have too much extra time when demand for flexible is low” (Potts et al., 2010).

Better planning, design and operation of these services may provide a potential solution to the first/last mile problem,
which ultimately contribute towards greater goals like reducing traffic, mitigating related pollution and congestion problems
and ultimately increase the overall “livability”. What stops this from happening is the lack of existing research and informa-
tion for transit managers in improving the state-of-the-art practice in operating these flexible transit services, especially re-
lated to the ‘problems with scheduling.’ In this paper, we are focusing our research efforts to partially fill the above gap. More
specifically, we propose a model to describe the relationship between the level of service provided to passengers and th@
terminal-to-terminal cycle length (one of the decision variables of the service), allowing for a manageable computati
its optimal value that could otherwise be estimated only using extensive simulation analyses or by trial-and- r@
rule-of-thumb procedures, as often done in practice. Several sets of simulation experiments and some co a@1
existing services appear to validate our model, which would allow planners, decision makers and practition, ckly
identify a good estimate of the best feeder transit operating design within a given service area under given tances.

reviews of the proposed methodologies and solutions for dial-a-ride’ @ 1al-a-ride used as door-to-

door transportation services can be frequently found in the f of aratransit Sgfvices (Dlana and Dessouky, 2004;

Melachrinoudis et al., 2007; Quadrifoglio et al., 2008). These Sgrvicesshave often hgen m@gleled with time window settings

for passenger requests (Ropke et al., 2007; Cordeau, 200% it providers% rely on DRT systems, due to low pop-
O

2. Literature review
Demand responsive systems resemble dial-a-ride transit in terms of itgf@peratioms, which Q extensively studied
(Roos, 1971). Savelsbergh and Sol (1995), Desaulniers et al. (2002), and EE % and”Lapante ( ided comprehensive

ulation density not allowing traditional fixed-route servic@&go be sufficiently . These low demand density areas are
especially those that often lack a reasonable transporta i structure. A's mmunity called El Cenizo along the US-
Mexico border in Texas serves as a good example (Quag ﬂ? Glio et al., ).

Mathematical formulations are often carried ot fORQP 1m121r1g @gmg fleet size for demand responsive or dial-a-
ride systems (Horn, 2002; Diana et al., 2006, apropge or would prefer to minimize fleet to lower oper-
ating costs (Ahouissoussi and Wetzstein, 199 m ould suffice if the demand responsive is meant for

e
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residential areas and those in particular yged ong the umty (TriMet Paratransit Program, 2012). Single vehi-
cle study for dial-a-ride can be found t ﬂ ork of Psor 80) as an exact dynamic programming solution. The single
vehicle case deals with mostly g route dur. 1 time, and waiting time of the passengers. Chandra et al.
(2011) studied a simulation ach using hlcle case to estimate optimal cycle length for the feeder ser-
vices within a residential ese kind s, however, require considerable data input a priori that often are
not available in a new area: %

Scheduling problems of flexible transis or DART often fall in the category of TSP that is known to be NP-hard.

t1® for a time-constrained version of the many-to-many DART Problem. The

Previously, Jaw e described§@
algorithm descrlb e ial-d roblem with Time Windows (ADARTW) with service quality constraints and

identifies feambl%rtions of to vehicle work-schedules. As a test on the performance of the heuristic, Barr
et al. (1995)

wdhury and Chien, 2011; Zhao and Zeng, 2008). The same for flexible transit systems, such as
tlll not prop ressed due to complex service request times and demand uncertainty. Surely, researchers have
i por ce of using an optimal bus dlspatch pollcy by varying shuttle capacity and under stochastlc lead

atch systems data (Dessouky et al., 1999; Bertini and El-Geneidy, 2004). It is emphasized that linking pas-
g times with feeder frequency is very critical in designing an optimal schedule. Longer and unreliable feeder

Analytical modeling, simulation and continuous approximations have been used to analyze flexible transit services.
Cortés and Jayakrishnan (2002), Pages et al. (2006), Aldaihani et al. (2004), Clarens and Hurdle (1975), Langevin et al.
(1996) and Szplett (1984) provide good examples and reviews on these type of research approach. Research specifically
on decision tool for the design of feeder transit services is somewhat limited. Quadrifoglio and Li (2009) approached the
problem to estimate the critical demand density at which a switch from fixed-route to demand responsive policy would
be appropriate. Other works on these services can be found in Cayford and Yim (2004) and Khattak and Yim (2004).
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Serving passengers with a shuttle in demand responsive operations can be treated as a problem similar to those found in
queuing theory, where the shuttles can be considered as dynamic service windows, passengers as service objects, and dis-
patch time from service windows as waiting times (Daganzo, 1990). However, the influence of service area characteristics
cannot be easily integrated with performance in these studies. This paper fits in this category by proposing a model to esti-
mate the most appropriate cycle length to operate the service given the demand and the shape of the service area.

3. Methodology
3.1. Service area, demand and optimal cycle

We are considering a generic residential area whose shape can be approximated with a rectangle with length L and width
W, served by a single shuttle. The terminal (designated as D) with coordinates (0,0) is located in the middle of an edge (at W/
2). The shuttle is departing from D at constant time intervals (cycle) C to serve passengers, which can request to go from Pt
the service area (“drop-off’ customers) or vice versa (“pick-up” customers). Demand within the area is assumed to -
tially uniformly distributed as well as temporally uniformly distributed (Poisson process) within a target timeq t&of
the day. This demand assumption is reasonable if at the terminal there are enough transit lines with high frequ
the terminal is also a trip production/attraction site, such as a shopping mall or similar.

rif

3.2. Existence of optimal cycle and performance definition O

In a given time slot of the day T, the shuttle performs a number of cycles to the given de @ he longer the cycle
length, the more ride sharing will be used, but passengers will experience Qav age ridi ithgg time, so shorter cy-

cle lengths are intuitively more desirable for customers. However, the s cycle le rethe cycles, the more
extra driving will be needed to go to/from the terminal and fewe be sé the limit, one customer at a
time can be served, not taking advantage of any ride sharing. Wi demand, thiftaxi-like operating practice would
be plausible and best for customers; but with high enough demafd, thefservice woul@ be ov@rsaturated and queues and spill-
overs will more likely occur, average waiting time will inagease, owering th &el of service. These two combined ef-
fects cause an optimal cycle length to exist with the rightMt of ride—shar mizing disutility U, thus maximizing
the average level of service), at which the system will b ptimally serve stomers and that we aim to find in this
paper.

It is generally difficult to identify a unique definifi perform %ransit system as priorities differ among stake-

holders. Several authors have used measures s ssenger cos ers per vehicle hour, vehicle miles per operator,
cost per vehicle mile, cost per vehicle hour, the & of cost to fage bO¥ revenue and fleet fuel efficiency for the urban public
‘% 1

us

transit (Gleason and Barnum, 1982; Fieldi aider, 2007). However, all seem to agree that transit

. 1985; Bad
performance can generally be identified{as mbinati ating costs and service quality. In our model, the service
quality is expressed as passengers’ gisutlity (cost): a e® sum of expected waiting time and the expected in-vehicle
t

travel time of passengers (thepew king time -t0-door services). Thus, the disutility (cost) U = pyw¢ + yar (W, =
expected waiting time and e riding tipwe; d y, are the weight factors for the waiting time and riding time
respectively, to be properly cibrated). This i®us entify the optimal C to maximize serving quality. Within each oper-
ating cycle C, the operatigns are®hen co at total distance is minimized (like a Traveling Salesman Problem) to
minimize operatinxo%Ig

The proposed ho y consists o ing an analytical queuing model for estimating the optimal cycle length in
two steps. The fi % consists gffidentifying equations linking a given cycle length C and the average number of passengers
n that can be E@a most by ttle within C; the second part consists of building the model of our objective function
(disutilj nction findthe optimum.

3.3. & Is

n o

q
ime or @ of the individual passengers. We call these relationships between average C and n as designs and address

themg@ gn (1)-(IV)

Des Nearest-neighbor approach: The average closest distance between two uniformly distributed passenger de-
mands, aSeveloped by Quadrifoglio et al. (2006) for a very high demand density p, can be used for this approach. This mod-
el provides a good approximation for the optimal C and n relationship with very high demand density. After adapting the
model to our case by including a needed newly developed mathematical derivation, the relationship can be written as
(see Appendix A for details),

1.15\  0.63n
C:(Wﬁ)+v\/p+(n+l)ts (1)
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where t; is the time taken at each stop or terminal to pick-up/drop-off of a passenger, and V is the average speed of the feeder
bus. For a very high demand density p, the expression in (1) can be approximated as,

C~ 70‘63\/‘/5\/1“—‘” +(n+ 1)t (2)

Design (II). Approximate TSP solution approach: Results from work of Beardwood et al. (1959) and Jaillet (1988) can also be
used to express another approximate relationship between C and very large n, with

nLWw
174

Design (III). No-backtracking approach: Exploiting the scheduling guideline as proposed by Daganzo (1996) and Quadrif@

C=

+(n+ 1)t (3)

glio and Li (2009), a strategy can be set for serving passengers for a lower passenger demand (low n) and a high length-t
width ratio of service area (see Fig. 1). In this case, the vehicle would move through the upper half of the region in a no-iack
tracking policy left-to-right, and move through the bottom half in a no-backtracking policy right-to-left. The relation

tween C and n is expressed in this case by the following,

2 (k) + B+
%

With the further assumption (n +1) ~ 1, the relationship between C and n in (4 )¢pbecomes linear aif &De expressed as

C=

+(n+ 1)t (4)

2L +2W | Wn
N 3 % (5)

~ 1
C v (n+1)
Using (5) for computing C does not change its values significantly w1t

3 hlgher values of n (Quad-

rifoglio and Li, 2009). This model also closely estimates the o mal ngth and B¢ forms better for high L/W ratios.
Design (IV). Random approach: This service strategy is shown mai ly for compgarison Purposes with above models, as it
would intuitively become more inefficient and not appropriate ificreasing del&l. The shuttles would serve passengers
in a FIFO fashion without using any optimization algorit&see illustration i > Using an average rectilinear distance
traveled between uniformly random distributed dem, in a rectangle + W)/3 (Gaboune et al., 1993), the cycle

length for this case is,
LW ontew) Q @

3.4. Model comparison

It is important to comparegsihe appllcatl a of the design methodologies discussed above to select the best
C and n for a single cycle . @ sh ccordmg al service area and demand. The four relationships are compared
to outputs obtained from amVifisertion heuri$tic (Jaw et al., 1986; Quadrifoglio et al., 2007) and optimality (for lower
demand). This compari i i \ espect to the total travel time, which is C, of the DRT shuttle for a single
service cycle. Inse o good solutions as compared to optimality obtained using optimization soft-
ware. In fact ast is quite impractical to compute optimal solutions, simply because of unrea-
sonable com al times i 1€ process (Li and Quadrifoglio, 2010). Besides, insertion heuristic is widely used
in practice f t $cheduling pr
Cyde es are, r three different shapes of a one square mile service area (shown in Table 1): Case 1 is
asq % W=1m 2 is arectangle with L = 2 miles and W = 0.5 miles; Case 3 is a slimmer rectangle with L = 3
mil =0.33 m1

Terminal, D

0o 9 W

L

Fig. 1. Shuttle pick-up/drop-off strategy.
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: L |
[ ]
® 1/3)(L+W)
Terminal, D e
0] w
(0,0) °
L2 + WA °
@
o
<—>> Denotes Mean Rectilinear Distance Metric
Fig. 2. Shuttle service operated using random pick-up/drop-off strategy. 0
Table 1
Cycle lengths (in minutes) for different demand and service area dimensions.
n L=1 mile, W=1 mile L =2 miles, W = 0.5 miles L, L=3 miles, W =0.33 glile

1 Il Il 1\% \ G I Il

2.9 4.0 6.5 5.5 5.1 5.0 29 4.0
4.2 5.7 8.5 8.0 7.2 6.5 4.2 5.7
53 7.2 10.0 10.5 8.6 8.1 53 7.2
6.3 85 113 13.0 10.0 9.6 6.3 8.5
7.2 9.7 125 155 11.0 104 7.2 9.7
8.1 108 136 180 121 118 8.1 108
9.0 119 147 205 13.0 128 9.0 119
98 13.0 158 23.0 140 133 9.8 13.0
9 107 140 169 255 149 146 107 140
10 115 150 179 280 158 153 115 15.

\% Cs

105 106 105
143 142 141
182 161 158
220 176 172
258 191 185
297 199 193
335 210 204
373 219 207
411 228 221
450 235 228

0N UL WN =

11 122 159 19.0 305 168 - 12.2 48.8 242 -
12 13.0 169 20.0 33.0 177 - 13.0 \ 526 25.1 -
13 138 178 21.0 355 185 - 13.8 7.8 56.5 258 -
14 145 187 221 380 194 - 7 . 60.3  26.5 -
15 153 196 231 405 20.2 - 19.6 24.0 49. 2.4 - 153 196 28.0 64.1 272 -
16 160 205 241 430 21.0 23.0 - 160 205 287 68.0 28.0 -
17 168 213 251 455 218 55.7 245 - 168 213 295 71.8 287 -
18 175 222 261 48.0 227 58.7 257 - 175 222 302 756 293 -
19 182 230 272 505 2 61.7 26.0 - 182 23.0 309 79.5 300 -
20 189 239 282 53 64.7 26.8 - 189 239 316 833 306 -
21 196 247 29.2 67.7 27.1 - 196 247 323 871 313 -
22 203 255 302 5 70.7 278 - 203 255 330 909 320 -
23 210 263 312 60.5 73.7 285 - 21.0 263 337 948 327 -
24 217 271 322 63.0 76.7 293 - 217 271 344 98.6 333 -
25 224 279 w%4 79.7 30.0 - 224 279 351 1024 340 -
26 231 287 4.2 9 82.7 307 - 231 287 358 1063 347 -
27 238 295 5.2 70.4 857 314 - 238 295 365 1101 353 -
88.7 321 - 244 303 371 1139 36.0 -

91.7 328 - 251 311 378 1178 36.6 -

. 947 335 - 258 319 385 1216 372 -

3.0 97.7 342 - 265 326 392 1254 379 -

3.8 . . . 100.7 349 - 271 334 399 1293 385 -

4 345 - 278 342 378 103.7 356 - 278 342 406 133.1 392 -

4 35.2 - 285 349 386 106.7 36.3 - 284 349 412 1369 399 -

904 36.0 - 291 357 393 109.7 36.9 - 291 357 419 1407 405 -

929 368 - 298 364 401 1127 376 - 298 364 426 1446 411 -

954 375 - 304 372 409 1157 383 - 304 372 433 1484 417 -

979 382 - 31.1 379 416 1187 389 - 311 379 440 1522 424 -

473 1004 389 - 31.7 387 424 1217 396 - 317 386 446 1561 43.0 -

483 1029 397 - 324 394 431 1247 403 - 324 394 453 1599 437 -

. (2)], Il - Approx. TSP [Eq. (3)], Il — No-backtrack [Eq. (5)], IV - Random [Eq. (6)], V - Insertion heuristic, C; - Optimal for a single cycle.

values of n vary between 1 and 40 to cover any variability in demand within each cycle. The average feeder speed is assumed
to be 20 mile per hour, posted speed limit found in most residential areas where shuttles operate, and the value for average
time t; spent at a passenger stop is assumed to be 30 s. Optimal cycle lengths are obtained using a TSP code in MATLAB and
computing optimal using CPLEX 12.1. The optimal cycle lengths are denoted as C; in Table 1. Following the values in table, a
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close match between the insertion heuristic and C; is found. We did not compute C, for n > 11 as optimal TSP were too long to
obtain and insertion heuristic (closely matching Cs for n < 11) is used as benchmark for all the four design methodologies.
The results in Table 1 clearly show that the relationship from design method (III), No-Backtrack, matches well with inser-
tion heuristic (V) cycle lengths for higher L/W and lower n, which is the more commonly found shape for real residential
areas. The cycle length values from design method (II) are closer to insertion heuristic outputs for the square shaped area
for almost all values of n. The values for C using design methods (I) and (II) match more closely with insertion heuristic val-
ues as n increases as compared to other design methods. This match is further improved as the demand density becomes
higher (as expected). Also observe that (I) and (II) show identical cycle length values for all three cases for the same n, as
they depend on the total area (LW, which is the same for all) and not on the shape (identified by the L/W ratio). Cycle lengths
from the Random design method (IV) match the insertion heuristic (V) only for low demands (n < 5), as expected, and do not
show a significant edge over the other methods. Thus, we discard Random design (IV) from here on and use design methods
(I), (I1) and (IIT) only to be included in the second step model building. @
These results set the stage for building our analytical model and choosing the most appropriate C(n) expression de -
ing on the conditions, as they are useful in estimating cycle lengths for any given service area geometry and dem, é@

3.5. Feeder operations Oé

The feeder shuttle is assumed to operate daily for a fixed duration of time. We focus on a portig the day (T hours),
during which [Z] = [t] cycles ([-] stands for the nearest integer value of -) of e performed to serve
apd considered in a FIFO

toPeach of the dispatch

fashion. The above situation is explained through sets of slots (each co, 1
times of the feeder bus in the sketch of Fig. 3.

The variables t; and T; are the start time of the passenger
Similarly, t+; and Ty, are the end times of the passenger re es and the fgeder Bus service times, respectively, for
a total of k slots in a day formed equal to [t]. Notg, that t1)=C (and Wk+1 — tg+1) =C) with (tgs1 —t1)=T (and
(Tx+1 — T1) = T). However, in case of passenger spillovers N from the prey, es, the shuttle operates an extra cycle

to serve all at end time = Ty.». @
Request Start Q \Q
e Q) 0‘
Slot 1, duration C |~ 7 e - .Y Average passengers
< Ser®ic .
. . \ served in a slot = n,

Average number of
passenger requests in
aslot=1/

s and the er bus service times, respectively.

0 S duration C
E Request End ~ -T

Time, t;,;
Slot k, duration C

End Time T},.; =+

Slot (k+1), duration C Last slot for serving final set of
spillover passengers (if any)

For spillovers: =
End Time T},

Fig. 3. Illustration of passenger requests and service times using slots of duration C.



S. Chandra, L. Quadrifoglio / Transportation Research Part B 51 (2013) 1-16 7
3.6. Service disutility

In this section we develop a continuous approximation model assuming a deterministic process with constant (average)
time intervals between service requests and compare them to simulated realistic Poisson process. There are 4 = [ requests/
cycle on average. We know that n is the numbers of passengers which can be served at most on average in a cycle C (as esti-
mated by the models illustrated in the previous Section 3.3). If [ < n, the system is under saturation and can comfortably
serve all demand in every cycle. We assume that this collected demand (1) is scheduled for service in a given cycle following
a near optimal sequence, generated by an insertion heuristic algorithm (this scheduling procedure is the same adopted by
SuperShuttle (2012). If instead [ > n, the system is oversaturated and the (average) residual (I — n) passengers would need to
be served in the next cycle, causing a stable queue to build up in the system and additional waiting time to exist.

The disutility (cost) experienced by passengers U = y,w; + 7,1, can be modeled as @

U { Q, ifl>n
lQ, ifl<n Q)
We aim to model the above cases as a function of any demand level and L/W geometric dimension of the servic e@he
r

decision variable C, to derive its optimal. Derivation of w; and r; in Q; and Q, involves careful accounting for

quests served in a cycle. We define o as the fraction of pick-up passengers (going to service area to terminal)$
For Qq, the average riding time will be easily computed for all passengers as r; = C/2. The waiting timé

cated. 1 — o drop-off passengers (going from terminal to service area) need to wait an average of

show-up time to the beginning of the shuttle ride from the terminal); o pick-up passengers need tq average of time

C (C/2 from their show-up time to the beginning of the shuttle ride from the and an addit /2 till their pick-up

ore compli-
(from their

time). Thus, average waiting time for all customers served would be (1 + eefalso Qua 104and Li (2009)). How-
ever, only n passengers per cycle can be served at their requested cyc g aining gers (both pick-up and
drop-off ones) in each cycle will have to be served in the followi an additive spillover effect.
Thus, | — n passengers in the first demand cycle will be serve

additional average time of C. In the second demand cycle, 2(I —\g) cusgomers will b@served®in the third service cycle (since
additional I — n customers will be pushed back by the ﬁr ervic cle’s spillg % general, at demand cycle k, k(I — n)
customers will be served in service cycle k+1. he addltlonaln time to be considered will be
lI=n)+2(I—n)+...+ (I = n)]/N}=C[7(1 + 7)/2](I - / sidering only © . Eventually, the overall average waiting
time will be w,= (1 + a)C/Z +C[t(1 +1)/2](1 - n)/N he queum t we are trying to capture and model is signif-
icant, but small enough that we can safely assume re will no ons in which customers are pushed back more

than one extra cycle within T, since this would
need more shuttles, not just an operationa
ensures that for the number of spilled-oy,

cycle. By substituting 7 =T/C and [ = NG, eed to h!\\
g ¢ x\
n>-—— 8
1+ \ ®

For Q2, when demand [ < n, theS§huttle wo erage time t < C to complete every cycle (and wait a slack time C — t
at the terminal before ext service e) 1mate of t that can be computed using the design methodologies (1), (II),
and (III) discussed %ggmg inl 1 f n and taking the resulting C value as t. Average riding time for all passen-
gersisr =t/2. The aiting time fog@rop-offpdSsengers is the same as for Qq; for pick-up passengers it is C/2 + t/2, where the

1st1c ast rn would be excessively oversaturated and would
rtlcular, thi ption would be acceptable when t(I — n) < n, which

t T are less than n and thus all served in the very next

second part ta count th al travel time t < C at each cycle. There will not be any stable queue formation in this Q,
case, SO no ex iting ti
Ins

)09
(3) =n(3) + e +(3) (10)

N
_ _ C N t
- 2) = "1\2 2
As menti lier (Section 3.2), the existence of an optimal C to minimize U is intuitive; we are attempting to find it

d*Verify our results.

d that n is a function of C and can be obtained by using the reverse expressions from methods (I)-(III) by using
2 expressions wherever necessary. Skipping the easy but cumbersome mathematical passages, we can write
n = (hC + fv/C + g) with the values of h, f and g listed in Table 2.

It is difficult to work with non-linear expressions (due to square root of C involved) if design methods used are (I) and (II)
as f# 0. This also makes it hard to derive closed form expressions as roots of cubic polynomials are not trivial to estimate.
Thus, we proceed to give some closed form results only for design method (III) when f=0 and only report optimal cycle
lengths obtained graphically for the other two methods along with simulation results later. From now on, unless specified,
assume we are only working with design method (III). Thus, writing Q; in (9) for f=0, [ = NC/T and 7 = T/C we get
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Table 2
Expressions for h and g.

Design method h f g

O t _ (o.tszvazw> -1+ Of’zlezW

1 05LW
M & _ (tét‘//vz) —1+%0
1

(1) ) 0 _ (12LJV4+‘/16/‘;?V[2)
Table 3 @
Expression for right hand side coefficients of Eq. (13).

Design method m b

(1) 2y (wmzﬂz) (w4 N_Trg) (ah 72) (6L£2W 1 )

(hC+g)T
N

Ql—%(<2+a>C—

which is a convex function for C > 0 with minimum attained at
_gT2

i)

which would be the optimal C, should Q; still be valid at
as at this value either the spillover condition does not ’
would require demand higher than the system could

72
"1

ove

model assumptions.

Q, is monotonically decreasing with increa51 o epresentl
is a monotonically increasing linear functlo is 1ntersect
stops and is also the estimate for the op 1ch we aim
of the following form: ‘Q

(C +uC+ r = (mC+b K\
whereuf" —%2. v="1 ES ”'TZ

Dependlng on
Table 3.

Solving (13) gl allest valu

\/ (b-r u(y —m)

Copt = 2 _
with' jables defined @
occdg b d realistic ¢

oy 4) to hol essential that (b — r)*> — 4u(v—m) >

int 1 is violat
herefore,
when the d
assu
this

4. Simulation experiments

more (and th

is value: IhlS wou@smle theoretically,

(12)

but not in practice,
not Q;, would describe the system) or it
T satur, tlon) 1t would violate Eq. (8) and therefore our
em till the first intersection with Q, (10), which
esents the point at which the spillover condition

. The equality Q; = Q, would be a quadratic equation

(13)

, with h and g as defined in Table 2 for method (III).

e relatlo p betwee C \ m de51gn methods (1IT), the expressions for m and b are as shown in

e length which is C optimal (C,p),

(14)

he other root is to be discarded as it would have a higher disutility, could also very well
Fof the shuttle, but primarily Q; would simply not hold anymore (no more spillover).

> 0 (say, Constraint 1) and (z — m) > 0 (say, Constraint 2). If

it would mean that there is no real intersection point for the spillover and the no-spillover curves.
ot be obtained by the intersection of spillover and no-spillover case. Moreover, this situation would arise
are much higher than sustainable causing a large number of spillovers at every cycle, violating our model
Onstraint 2 is violated then it would result in a negative value of C,p; which is again impractical. However,
would never arise for any DRT system since this would occur at very high variable demand (for a very high N in

The purpose of this section is to validate the derived analytical expressions for optimal cycle length estimation. Disutility
values are obtained for different cycle lengths with three different assumptions of dimensions for rectangular service area,

denoted by Case 1 (L =1 mile, W= 1 mile), Case 2 (L =2 mile, W=

0.5 mile) and Case 3 (L = 3 mile, W =0.33 mile).
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Number of Vehicle Trips by Start Time and Purpose

Vehicle Trips/Day (millions)

Cumulative Distribution Function

Many residentl areas an be rox1m by square and rectangular shapes with dimensions shown in the three cases.
The simulatio rmed b g the Feeder operations in MATLAB R2010b. The shortest street based path between
any two dem’mts is compute ing the Dijkstra’s algorithm using the rectilinear distance between the points. The

ili e is alsg | approximation for street based distances between two demand points (Quadrifoglio
. This is pargiciila e for residential areas, most of which have a grid-like rectilinear street pattern, especially

d are N = 50, 80, 100 and 240 for T = 4 h of operations (assumed to be within peak-hours). The
ithin those that are found in practice from several call-n-ride systems (Potts et al., 2010).

ets of simulations: one (Simu1) with realistic demand distribution taken from the report by Santos et al.
Fig. 4 show different types of trips by start and purpose. We focus on the morning peak hour distribu-
to 9 am for the Total distribution.

For simplification, the Simul trip data for the commuters are converted to cumulative distribution functions (CDFs) as
shown in Fig. 5. The actual CDF (a polynomial of higher degree and hence, difficult to invert) is slightly modified into an eas-
ily invertible piecewise linear function for random generation of travel times for passengers. In simulation, this is achieved
by generating random real numbers between 0.1 and 1, and simply computing the corresponding travel request times using
the linear function. A linear CDF is obtained that expresses the uniform random generation of passengers between 5 am to
9 am (Simu2).
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Table 4
Input settings for the simulation model.
Parameter Input numerical values
(L,W) Case 1: (1,1) Case 2: (2,0.5) Case 3:(3,0.33)
%4 20 miles per hour (i.e. the average speed in a residential area)
(y1/y2) 1.8 (Wardman, 2004)
Fleet size 1 (A single feeder shuttle)

Shuttle capacity Infinite (or large enough) to accommodate all passengers within a given cycle

Dwell time (t;)  30s (at the depot as well as at the passenger pick-up/drop-off location)

Cycle length C Minimum: C,, = (2L + W)/V + 2t, (time needed to reach the farthest point of the service area from the terminal and back in a
rectilinear fashion)
Maximum: Long enough to capture lowest disutility for each simulation case

4 5
L=1,W=1,N =100 —6— Simul 0

—H— Simu2

LAY
3 | % —— No-backtracking O
) N Approximate TSP K
Y (

Disutility (U)

ength (minutes)

Fig. 6. Case 1 d@ersus C for p@nand N =100.

Note that the simulated morning peal od will reg onsist of mostly pick-up passengers (o = 1). A similar
analysis can be performed for the afte pgak hour 0. However, our model allows for any kind of combination,
just by choosing appropriately the & o included 4 alytical modeling earlier.

The collected demand at e hedule tion heuristic using up all the cycle time C. Customers are con-

sidered in a FIFO fashion as pick- -off depending on a random number generated depending on ¢.
Any customer not been ab e served inga ' be considered first in the next cycle.
The shuttle is assumed to thgvel at con X V, leave the terminal at the beginning of each cycle, stop a time ¢, at

each requested locati owing the chedule, and travel back to the terminal.
Other simulat@ s used are O

in Table 4.

4.1. Sirpulgéi

pleéased®to observe a%lose oVerlap between Simul and Simu2. This is particularly important to show that assuming constant

opp0O%ed to more realistic distribution is not a very strong assumption.
Three o es are used in the charts of Figs. 6-8 for disutility from three different design methodologies adopted for
relatio en C and n: Nearest Neighbor uses method (I), Approximate TSP uses method (II) and No-backtracking uses
meth® previously mentioned, we did not include the Random method (IV) as its results are far off compared to the

bected, for all realistic cases. Figs. 6-8 only show results for passenger demand = 100 with other optimal cycles
and minggtum disutility values for other demand levels being tabulated in Tables 5a-5c. The term C,, stands for the mini-
mum cycle length needed (see Table 4).

All three models provide a good visual match for the no-spillover part (right) of the simulation curves. The No-backtrack-
ing method visually gives a very close match to the spillover part (left) too, overall providing a good approximation of the
behavior of the system in all situations. As expected, curves obtained by the model underestimates the simulation one
around the minimum, as delays and temporary queues are formed due to randomness to worsen the level of service, but
not captured by our model based on expected values and continuous approximations. More sophisticated queuing models
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4
L=2,W=0.5,N =100
350 ' -
—6&— Simul
3 H— Simu2 —
\&D — No-backtracking
2.5

. &Q .......... Approximate TSP
5 % —————— Nearest Neighbor —
| !

Disutility (U)

15 20 25 30 35 40 45 50
Cycle Length (minutes)

Fig. 7. Case 2 disutility versus C for passenger demand N = 100. @
4.5
L=3, W=0.33, N=100
N RPLZ

35 2 _

No-backtracki

3 —
— — Approx@mate TSP
SN i

Disutility (U)

20 X 35 40 45
@ xﬁcle ngth (minutes)
Fig. 8. Case‘3 d% us C for passenger demand N = 100.

Table 5a \
Optimal cycle lengths (Cgp, in mj s) for Case 1 ' gfent demands.

N

Design method used

I Il i
"Copt |AUIE Err Cope (%) Copt |AU|(%) Err Copt (%) Copt |AUIE Err Copt (%)

G >100 31 Cim >100 31 10.7 4 17
Cin >100 40 Cin >100 40 12.7 21 15
Cin >100 47 Cn >100 47 14.5 67 15
244  >100 30 37.6 8 16 283  >100 19
All C,, values
might b re appropriate for close matches of the results, but they would certainly lose in practicality and simplicity,

needed to more easily make planning decisions.

The column |AU|% in Tables 5a-5c stands for the absolute percentage error calculated on the Simu2 curve caused by using
Cope recommended by the analytical model versus the actual optimal of the curve. The expression for |AU|% is calculated
using (JAU| x 100/Us;m,z; see Fig. 6 as an example demonstration for No-backtracking design). The best C (C,p,) obtained from
the theoretical curves are selected (bold) based on their |AU|% values. The lower the |AU|%, the more preferred a particular
design method is. Too high values of |AU|% are reported as ‘>100’ indicating values higher than 100 in Table 5a - it is an
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Table 5b
Optimal cycle lengths (C,p; in minutes) for Case 2 with different demands.
N Case 2: L =2 mile, W= 0.5 mile
Simul Simu2 Design method used
I Il 111
U Copt U Copt “Copt |AUI% Err Cope (%) Copt |AUI% Err Cope (%) Copt |AUIE Err Cope (%)
50 0.83 17-18 0.82 16-19 Cn >100 13 Cn >100 13 16.0 0 0
80 0.90 20-22 0.88 19-22 Cn >100 26 Cn >100 26 18.0 16 5
100 1.00 23-27 0.90 22-26 Cn >100 36 Cn >100 36 19.4 22 12
240 1.65 39-42 1.55 38-39 24.4 >100 36 37.6 11 1 442 55 16

“ All G, values are 14 min.

Table 5¢
Optimal cycle lengths (C,p; in minutes) for Case 3 with different demands.
N Case 3:L =3 mile, W=0.33 mile
Simul Simu2 Design method used
I 11
U Cn U G G AR G ® G AU\ BTG ®
50 1.10 24-25 1.00 23-25 Cm >100 13 Cn 0 13
80 1.20 27-30 1.20 25-29 Cn >100 23 Cn 23
100 1.40 30-33 1.40 27-32 Cn >100 26

240 1.80 44-47 1.75 42-46 244 >100 42

“ All G, values are 20 min.

indication that the corresponding design model is not e and others aerred. The error terms (expressed as Err
Copi%) in the tables are similarly calculated with resp e Cope 0N Simu2 Bwf along the C axis. Since we are aiming to

identify the best estimate of C,p; in order to minimy sutility (U@appropriate to select model performance based

on |AU|%.
Results clearly show that the No-backtrac eSign method iyes the best results for lower demands (50, 80 and
100), but deviates for higher demand (24%l Approximat&ISP@urves provide the closest match. Since Feeder services
0 . 0
or (

generally operate at lower demand lev n recom -backtracking model (III) for most practical situations.
Better performance for (III) is also se mer Servi
Table 5a) to further validate the c entioned eaglie
suitable for high length-to- igjof the sew&
Though we do not repo Its from the Ra ign method (IV), we did observe occasional simulation match with
the analytical equations of th&Random designg e prediction of C,,.. However, as compared to other methods, there was a
regular lack of consistgmey andits curyg vidently not follow the behavior of simulation curves. We observe that a
Random schedulir&s%/ is widely, lly and intuitively understood to be inefficient and its few matches occur at
and ¥e¥els (sugh as o1t wo demands per cycle) for which no algorithm/strategy would be needed for

38 (Fig. 8 and Table 7) as opposed to square ones (Fig. 6 and
ettion 3.3) that the No-backtracking design method (III) is more

o) G

d to be true for all our experiments in the ranges of interest around the Cop;. In par-
e compact area cases (like Case 1), which are less critical, are fully satisfied for all values
=4h, C=9 min (C, for Case 1), we have that n should be >2.9, which is satisfied by the
alue between 3 and 4 for a C=9 min. For higher C (less critical scenarios), the inequality
argin. For higher demand cases and/or more dispersed area cases (like Case 3), we found that
0 'cenarios do nofgatisfied (8) for lower C (close to C;,), but all begin to be satisfied at some value of C smaller than the
opPland cogtintigto be valid from that value up), ensuring that our model assumptions are verified around the critical point
of interest %

g (8), which is a deterministic approximation, we also similarly verified that all our simulation experi-

me @ show customers left un-served after one extra cycle.

5. Extra driving and optimal cycle length

To further explain and validate the intuitive existence of an optimal C discussed in Section 3.2 and shown in Figs. 6-8. The
expressions C(n) discussed in Section 3.3 can be split into two terms. The first term consists of the estimated time taken by
the shuttle to go from the terminal to the first passenger in the serving sequence and from the last passenger back to the
terminal (this term identifies the estimated extra driving to/from terminal). And the second terms consists of the estimated
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L=2,W=0.5,N =100

No-backtracking Policy [Part (i) + Part (ii)]

10 4 ) Part (i)
3 | [ Extra Driving [Part (i)]

3 G

)4 16 18\2/0 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 0

C, Cycle Length (minutes)

Fig. 9. The concept of extra driving with fixed N. O

travel time taken to go from the first passenger to the last one, passing by the rematning (n — 2) passg the same cycle.
For the No-backtracking design method III, Eq. (4) can be rearranged to show two terms, d&g by (i)/(ii).
- w 4L 2L(n-2) Wn W
Cwtmenv T T ey Tev Tev T U (13)

(@) (if)

We show an example to illustrate the influence of the extra dritimg’leading anging Cop. We assume a fixed demand of
N =100 for the service duration of the feeder with service Nmensmns of L@ and W= 0.5 mile. The chart in Fig. 9
shows the increase in Feeder service duration needed INoWer cycle length increase is attributed due to the extra
driving portion represented by Part (i) of Eq. (15) whi mes domi g as C continues to decrease below the C,p; Ob-
tained for T = 4 h. This is shown using the shaded &
minimum cycle length value, C,, = 14 min, the
impractical. An opposite behavior of the extra
portion of the cycle length allows shuttle 0
longer waiting and riding times incurr by

nsiderably lower cycle length values close to
re than a day to serve all the demand, which is
ring which, Part (ii) of the Eq. (15) dominates. This

would ensure an equilibrium betw oversaturat of extra driving and too much of waiting and riding by the
customers.

A companion chart sho lustrat on of N versus cycle length C for a portion of Feeder service dura-
tion, T=4 h. A decrease in de nd N results e of Cop: which allows shuttle to perform more cycles due to greater
availability of slack tlm This y with the example for N = 50, 80and 100 shown in Fig. 10. For really
low values of N, th cycle len@ min) becomes the optimal cycle length, C,p, needed to serve a customer,

which is 14 min f{ me&
QO g’ L=2,W=05T=4

?‘0

No-backtracking Policy

0 f Y T T T T T T T T T T T T T T T !
14 M 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
C ~ Cycle Length (minutes)

Fig. 10. The concept of extra driving with fixed T.
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: L |
L ]
[ ]
Shaded area
_ g2
Terminal, D =pd °
OT> W
(0,0) °
L ]
[ ]
L ]
® Random passenger location @
Fig. A.1. Illustration of expected closest distance between terminal and a passenger. O
Table 6
Performance and service information data for RTD Call-n-Ride.?

Performance data Service information
Route Boardings  Area Approx.  Approx. Peak Disutility (U) eak Potential for

per coverage Length®  Width® headway in for peak adway disutility

service (sq. mile) (miles) (miles) practice headway ahalytical improvements?

hour (minutes) practice S
N 9.5 2.12 1.5 1.5 10 8.0 NC©

Inverness
Meridian 8.7 1.07 1.6 0.9 15 0.6 Almost same
Interlocken 7.7 5.39 3.0 1.7 30 1. 7 1.0 Almost same
S Inverness 7.4 1.11 15 0.7 10 g 0.5 YES
Broomfield 45 7.13 3.2 2.2 30 1.1 1.0 Almost same
Louisville 4.1 8.20 33 2.5 3 1.1 .6 1.1 Almost same
Dry Creek 3.8 4.74 2.5 2.0 1.0 21.6 0.8 Almost same
2 Selected Call-n-ride services for which peak headway dat@wer&gvailable (Po t@).
A Approximate values obtained using Google Earth.

B Using Eq. (14) and design method (III).

€ NC = No-conclusion with design method (III) si Se rea is a square.

& ‘\:

The No-backtracking de ethod III appe xe best for most scenarios in Tables 5a-5c, especially for lower de-

mands. Thus, we compared model with s offthe existing real case transit system examples that experience similar
conditions. Comparis are made wit % alyn-Ride (CnR) that function similar to demand responsive transit with the

6. Application example

data from the morfth ber 2008 (  6) and the peak headway used by the operating transit agencies (Potts et al.,
2010). The spatiadfdistriBtition of ghe pass@ager requests is assumed to be uniform over the rectangular service area for the
real CnR servijg ich is th e assumption as for deriving our analytical framework in (14). This is an approximate
assumption ibutionas for most of the CnR Routes; the Google Earth image shows almost a uniform spread

of bui @ service area. The peak hours are assumed to be from 5 am to 9 am as assumed in the

ycle lengths computed for these Routes show close similarities with the peak hour headways
d if\practice withyiio®saektracking design method. It is quite interesting to note that the operators have almost optimized
ithout any analytical aid. However, DRT systems having dimensions and demand settings that are

g the analytically calculated peak headway to the peak headway used in practice (see Table 6). For exam-
ple, the" @ §Inverness can improve its efficiency by adjusting the peak headway according to the proposed analytical
for! @ nis paper. Thus, this model presented in this paper could serve as quite a good reference for the operators.

7. Conclusions

Feeder services are a potential solution to the first/last mile transit connectivity problem faced by modern society. An
improvement of these services would ensure a more pleasant experience for passengers and eventually increase transit rid-
ership, reduce congestion and pollution and increase the livability of residential areas. As noted by Potts et al. (2010), sched-
uling problems are a major concern for transit operators for these types of services. This paper proposes the development of



S. Chandra, L. Quadrifoglio / Transportation Research Part B 51 (2013) 1-16 15

an analytical queuing model to estimate the best duration of the cycle length from terminal to terminal using continuous
approximation and inputs from demand data and geometrical parameters of the service area. An optimal cycle length Co
must exist to balance two opposite effects: too long cycles would result in excessive riding and waiting time for passengers;
too short cycles would cause an oversaturation of the system unable to serve all demand for excessive driving to/from the
terminal.

Results give us a handy closed form expression which can be readily used to decide the best dispatch policy to operate a
demand responsive feeder transit system. For square service area side length L = W =1 mile, and total demands N = 50-100
over a T =4 h period, the approximate C,, are found to be 11-15 min for the peak hours of commuting. For service areas of
length L = 2 miles, width W = 0.5 mile the estimated optimal cycle lengths C,p; vary between 16-20 min for the peak hours of
commuting. Further, increasing the service area dimensions to a very high length (L = 3 miles) to width (W = 0.33 mile) ratio,
the estimated optimal cycle lengths are found to be 22-27 min. Simulation experiments and some comparison with real ser-
vices validate our approach well. @

In conclusion, the developed model suggests and encourages transit planners and operators to make use of this meth@d”
ological approach in selecting the correct operating policy for feeders, whose proper design and operations are be

increasingly important to enhance the performance of the public transportation system network, within modern gpratale

urban and suburban areas. We are aware of the limitations of the model, due to the needed approximation and ns
used, but we believe our results give a contribution to the research in this area and are useful for practitioners td future
work consists of developing models for changes in fleet size and shuttle capacity as an extension of this cur; We are
also investigating optimal cycle lengths for non-uniform demand distributions and for appropriate des ods that de-
scribe relationships between C and n, other than those mentioned in the paper
Appendix A @;
A.1. Derivation of expected distance E[D] to the closest passenger d n termi

Within a rectangular service area with length, L and width, patidl-temporal @hifornt” demand distribution of passen-
ger requests follow a Poisson distribution having expecte@value Ag, With bability of finding a given number of
points (A,) within an area Ag as

A q
PA, =q) = %e*f”“ where, p = deman and q = e (A1)
The average closest distance between the and a pass n be obtained for g =0 and Ag = d? (see Fig. A.1),

where d is the variable rectilinear distanc % the termin@jan he closest passenger.

E[D] = /O e f’dzdd_ (A2)

Using the average closes Q& passenge&&ce as 983 (by Quadrifoglio et al. (2006)), the cycle length C can be

expressed as,

+(n+ 1)ty (A3)

0.89 O 6311
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