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2o Q0
1. Introduction K\
Most transit systems fall in@ broad cat &xed—route transit (FRT) and demand responsive transit (DRT) sys-
tems. Traditional FRT @ yPically‘ t efficient because of the predetermined schedule, the large loading

capacity of the vehicl@stang thé conso any passenger trips onto a single vehicle (ridesharing). However, the
general public considers to be i ent because of their lack of flexibility, since the locations of pick-up and/or
drop-off points an% service® sched ptten do not match the individual rider’s desires. DRT systems instead provide
desired flexi i door- or type of service, but they are generally much more costly to deploy. Therefore, they are
largely limite specialized operdtions such as taxicabs, shuttle vans, dial-a-ride services and paratransit services.

The broad category of | " trdnsit services includes all types of hybrid services that combine pure demand respon-
es. These services have established stop locations and/or established schedules, combined

a service area and moves passengers to a transfer point that connects to a fixed-route transit network
ey conducted by Koffman (2004) found that DRC transit service has been operating in quite a few cities
ost commonly adopted types of flexible transit service, especially within low density residential areas,

service d#ring evenings, nights or early morning, when demand is lower.
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Fig. 1. Demand Responsive Connector (DRC).

In designing such systems, planners often are not sure whether to implement a traditiona
line for the major FRT network and in particular about what conditions would justify a “swi

hand and it will depend on the established system itself. In addition, even ass
would be the best type of service. This is because the balance between operating
to evaluate, especially within residential areas with low and sparse dema

In this paper the authors present a methodology to assist decision ma‘l:&choosing a nd DRC. Analytical
derivations, simulation and sensitivity analyses are developed to assess% ice qualigy o ompeting FRT and DRC

services for various customer demands and service zone sizes. Then, e art@®ve are able to determine
the critical demand densities for which the FRT and DRC services hagie aMequivalent s lity. These critical demand

densities represent the point where it would be desirable to swi one type of s to another and are very useful
for planners and decision makers in the selection of the type o @' I service.
2. Literature review @ O

e@ responsi @ystems with the low cost operability of fixed-
route systems. Koffman (2004) shows that fl€ g'transit services & used in several cities. We present a review of
the work performed on them.

Cayford and Yim (2004) is a specific waik on tite DRC itse s the focus of our paper. These authors surveyed cus-
tomer’ demand for DRC for the city , California. o designed and implemented an automated system used
for the DRC services. The service usfs an omated -g*System for reservations, computerized dispatching over a

nzo (1984) describes a checkpoint demand responsive system

wireless communication channe bus driver adtomated callback system for customer notifications.
Flexible transit services ma@l checkpoings.
where pick-up and dropgo are at am% ocations called checkpoints. Comparing checkpoint system with
*; Sj& o
5 :

2]

Flexible transit services merge the flexibilit

fixed-route and door-t nd that fixed-route systems perform best under high demand levels
while the door-to-doo
has been studied b
customers witf ked up or dropped off at their desired locations. According to Koffman (2004),

sumption of the slack tifge: , Quadrifoglio et al. (2008b) formulated the scheduling of the MAST services as a mixed
integer programmi i

vice. Their model determines the optimal number of zones in an area, where each zone is served by a number of on-demand
vehicles.

The DRC has a close relation to DRT systems. Although research on the DRC is quite limited, the DRT systems have been
extensively investigated. Savelsbergh and Sol (1995), Desaulniers et al. (2000) and Cordeau and Laporte (2003) provide com-
prehensive reviews. We summarize a few more papers describing different issues and problem solving approaches to the
purely demand responsive services.
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Khattak and Yim (2004) explored the demand for a consumer oriented personalized DRT (PDRT) service in the San Fran-
cisco Bay Area. About 60% of those surveyed were willing to consider PDRT as an option, about 12% reported that they were
“very likely” to use PDRT. Many were willing to pay for the service and highly valued the flexibility in scheduling the service.
Sandlin and Anderson (2004) presented a procedure for calculating a serviceability index (SI) for DRT operators based on
regional socioeconomic conditions and internal operation data. The SI can be used to evaluate and compare DRT operation.
Palmer et al. (2004) studied the DRT system consisting of dial-a-ride programs that transit agencies use for point to point
pick-up and drop-off of the elderly and handicapped. Their results of a nationwide survey involving 62 transit agencies show
that the use of paratransit computer aided dispatching (CAD) system and agency service delivery provide a productivity ben-
efit. Diana et al. (2006) studied the problem of determining the number of vehicles needed to provide a DRT service with a
predetermined quality for the user in terms of waiting time at the stops and maximum allowed detour. Quadrifoglio et al.
(2008a) used simulation methods to investigate the effect of using a zoning vs. a no zoning strategy and time window set-
tings on performance measures such as total trip miles, deadhead miles and fleet size. They identified quasi linear relatio@
ships between the performance measures and the independent variable, either the time-window size or the zoning p

Dessouky et al. (2003) demonstrated through simulation that it is possible to reduce environmefital impact subst
while increasing operating costs and service delays only slightly for the joint optimization of ¢ ice, and lj @

ronmental consequences in vehicle routing and scheduling of a DRT system.
In this paper we aim to investigate and establish the conditions which would justi lementatlo

responsive operating policy for the feeder transit services as opposed to a traditio @ t&one. To OW
paper is the first to develop a methodology for solving this problem. K

3. System description Q
3.1. Service area and demand @ @

The service area considered for our study is a representatio:@l idential C(C){un and is modeled as a rectangle of

width W and length L (see Fig. 1). The terminal connecting wi outside fixedfroute transit network is located at width
W/2 on the far left of the area. The temporal distribution and is a o have a Poisson distribution. We as-
sume that a fraction « of the customers need to be tra om the serv v 2a to the connection terminal (“pick-up”

customers) and a fraction 1 — o of them will travel i 051te direc Op-off” customers). The customers’ location,
either for a pick-up or for a drop-off, has a unifgm tion w1t§1r1 v1ce area. While a Poisson distribution for pick-

up customers is very realistic, the drop-off cuStonders Id instea ly show up in groups according to the arrival of
the vehicles serving the outer major FRT netw@gk. However, if we & that the number of lines passing by the connection
terminal is high enough and/or the headways be

een vehic enough then temporal Poisson arrival rate is also a
reasonable assumption. \
3.2. Competing transit policies K\
We consider only ongyv, ing at ave eed Vius miles/h and stopping at each station for a period of T, (dwell-

ing time). \

3.2.1. FRT policy
The fixed- (FRT
tween Point A nnection ter

are a number StatIOI'lS ﬁ
(l

licy offerS continuous service with the vehicle moving back and forth along the route be-
inal) and Point B (the last stop at the opposite side of the service area; see Fig. 2). There
ding A and B) and the distance between adjacent stations is a constant (d). The pick-up

customers show up at ra thin the service area and walk to the nearest bus stop. The drop-off customers show up

avg walking distance:
Major LI[2(N-1)] Wi4 + LI[4(N-1)] L/(N-1)
Transit [—— : C—
Network
14
1
Connection & o 5 o o o 4
Terminal= A [Ema B
R
L

Fig. 2. FRT service.
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at terminal A, ride the bus to a stop near their destination and then walk to their final destination, which is located at random
within the service area.

3.2.2. DRC policy

The DRC policy provides a demand responsive terminal-to-door (and door-to-terminal) service to customers, by picking
them up and dropping them off at their desired locations (see Fig. 1). The vehicle begins and ends each of its trips from the
terminal. We assume that pick-up customers are able to notify their presence by means of a phone or internet booking ser-
vice. Immediately before the beginning of each trip, waiting customers (both pick-up and drop-off ones) are scheduled and
the route for the trip in the service area is constructed. There is no planned idle time in between trips. The DRC vehicle keeps
running except for the following condition (which rarely happens anyway, generally due to very low demand): if the vehicle
returns to the terminal and no customer is requesting a pick-up or a drop-off at any location, then it waits until a customer
shows up. To schedule the requests we use an insertion heuristic algorithm described in Section 4.3.

4. Model description 00
4.1. Measure of performance ¢

If we disregard other possible sources of noise, that could influence customers’ amd opiniog ﬂ € assume
the cost of the service is the same for both service policies, the service quality €an be gofSidered as ~ bigflation of the

following measures of performance (MOPs):
e E(T,x): expected value of walking time of the passengers needed betw: \r closest bu cheir destination.

e E(T,.): expected value of waiting time of the passengers before pick-up,
e E(T.4): expected value of ride time of the passengers from pick-u off.

Generally, needed transfers between vehicles to complete a Q major sergice quatity factor as well, but there are
none in this case. Thus, the service quality provided to custo% gpresented utility function U defined as the com-

bination of these MOPs with weights wy, w,, and ws:
(1)

U=w; x E(Tyk) + Wa x E(Tyt) + w3 x E(Tyq)
Weight assessments are generally difficult @ecause t endent upon several factors and they are not
unique for all cases. For example: the walki could be consi re or less acceptable (thus, with a different rel-

ative weight), depending on the safety or the w&ather conditiongof ain area and/or the profile of the customers. How-

ever, the weight assignment is not the scgpe of this pape provide decision makers with tools which will help

them decide the proper service polif, %e prope %@r the chosen area have been selected depending on the
circumstances.

It is possible to compare the ing transit s@wic&s by’analytical modeling and simulation analysis for different val-

e set of customers can be assumed to be served by the FRT or the

ues of the variables and parame ned abov
DRC policy and we can cav tility fuﬁ& r each case. A lower U value would indicate the better transit service

policy. \
4.2. FRT analytical r@

We derive%al relations of the expected value of E(Tyy), E(Tw,) and E(T,4) for the FRT policy as follows. The

values obtained By the foll ornt®las have been fully matched by simulation results.
4.2.1. Customer walking
As illustrated by a uniform spatial distribution, the expected value of the customer walking time is
E(Ty)

w
W 4(N—1)+Z)’ 2)

wher fistomer walking speed; N is number of FRT bus stations assuming equal space between bus stations. The
deriva g. (2) is a simple geometrical calculation.
Sinceghefbus dwelling time at each station is Ts, the cycle time of the journey beginning at terminal A and back is
2L
T.= +2(N-1)Ts,. (3)
Vbus

The derivation of the expected values for the waiting time and riding time depends upon the relationship between the
values assumed for the weights w, and ws. As previously mentioned, our scope is not to assess the weights, but to provide
analytical tools given their assumed values.
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4.2.2. wy <wjs case

This case would mean that customers prefer to spend their time waiting rather than being on the vehicle. This is a rea-
sonable assumption if the waiting location is a comfortable one, like at home or at nicely built connection terminal. The ex-
pected value of the ride time for pick-up customers, drop-off customers and all customers are:

BT, ) =, @)
BT ) = )
E(T-1) = 9E(TE )+ (1= BT ) =[5+ (V- 1T, 6)

The expected value of the waiting time for pick-up customers, drop-off customers and all customers are instead: @
R QY V-
E(Twe 1) = 0E(T2, ;) + (1 — a)E(TY, ) = {1 - ﬁ} {% +(N-1)T, O KO 9)

4.2.3. w, >ws case

This case would instead mean that customers would spend their time@ rather t an@n N his could be the case

when most of the waiting occurs at possibly unsafe locations, maybe at nd/or d weather conditions. Egs.
0

(4)-(9) are then recalculated by employing conditional probabilit K-up cust skip for brevity the mathe-
matical passages (see more details in the Appendix A) and onIG he resulting r

5 1 K
Py |-~
ET) = {12 6(N — 1)2} Te. 6 O (42)
Similarly, for drop-off customers, the expected val@l time is @
1

’

tionship which is

E(T%) = ale \ (5a)
Therefore, the expected value of custo eis 0
\ L
E(Ty) = ozE(T’r’d) +(1- oc)E(%: - v, + (N l)TS}. (6a)
us

In an analogous fashion,i @ﬂble to‘de i pected value of the waiting time for pick-up customers, drop-off
customers and all cus@ \
E(TP ) = 17 + (7a)
wt-2 4 _ & 1 )
E(Ty: 5) BE(The 1) ®ﬁ} T, (8a)
- 1)=

F +(N- 1)75} (%a)

tical derivation of the terms of the utility function for the DRC performance is very difficult because of the
embedded”vehicle routing problem. Therefore, we use simulation to replicate the operations of the DRC vehicle to
pick up or drop off customers and derive the MOPs.

The simulation is developed with MATLAB (The MathWorks, Inc., 2007) software. We performed 30 replications of 100
DRC cycles, scheduling 2000 customers each. While the actual operations will not last so long, the long simulation time is
needed to generate stable values of the means of the output parameters.

The DRC simulation model embeds the following insertion heuristic algorithm to schedule the requests of customers.
Rectilinear distances are used because they are more similar to the road network than the Euclidean distances are. In fact,
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Fig. 3. Performance comparison of insertion algorithm vs. optimality. A
as shown in Quadrifoglio et al. (2008a), a rectilinear movement of the vehicle is a good ation of thg
sume no “real time” scheduling; customers showing up while the DRC vehicle is ly trip are schd

in the following trip. However, this option can be considered at a later stage forfla furtifer improvem

Insertion algorithm: \ Q

Let Cq, Cy, C3, ..., C,, denote n customers and T; < Ty < T3 <...<T,. thetr -up t rtlon algorithm creates
the customer sequence choosing the minimum additional distance sertlon 2) fashion, as follows:

among the two possible routes. Suppose R; is Ro
(3) Insert Cs: Possible routes include AC3C1C2A AC1C2C3A Fi e route R3 with the minimum DRC run-

ning distance among the three possible r
4) ...
(n) Insert C,: Suppose the route R,,_; is gen d by inserting Cn ; rt Cn to the route R,_;. Find the route R,, with the
gt

minimum DRC running distance amon n possible rofiges.

(1) Insert C;: AC4A is the only possible route. Q
(2) Insert Cy: Possible routes include AC,C;A, and AC; % e route Q the minimum DRC running distance
in

The algorithm complexity is poly @v which®ean lved almost instantaneously by any modern PC. An inser-
tion heuristic approach is used becatse they are widel in*practice to solve scheduling problems, as they often provide
very good solutions compared ality, they& putationally fast and they can easily handle complicating con-
straints (Campbell and Savelsb 004) To v in our case, we provide an assessment of our heuristic, which is

done by comparing its ie against op tyy obtained by solving the related vehicle routing problem (VRP), noto-

riously a NP-hard problggh, e of the art optimization software, on the same PC.
Fig. 3 shows the co i
insertion algorithm Qgd tie CPLEX
LEX computation time is about 107 s (for a computer with Pentium® 4 2.80 GHz CPU
es longer than the computation time of the insertion algorithm. If there are more than

pufation time is too long for practical use. Therefore, the insertion algorithm is used, because
ime and its close-to-optimality performance in our demand range of interest.

orithm decreases from 100% to 97.2% of that obtained by the CPLEX. When the number
e computation time of the insertion algorithm is close to 20% of that of the CPLEX.

(Vwik = 2 miles/h), bus running speed (V},s = 20 miles/h), bus dwell time at each station or customer location (Ts = 30 s) and
the result analysis is based on the following assumed values of the other parameters, which can be of course modified to
suit any other particular scenario:

(1) The service area is 1 mile?. However, we considered three different W/L ratios: with the length L equal to 1, 2, 4 miles
and the width W to 1, 0.5, 0.25 miles, respectively.
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(2) Approximating the results on the basis of two recent studies, Wardman (2004) and Guo and Wilson (2004 ), we assume
w, = 1 and w3 = 2 and therefore use the formulas in Section 4.2.2. As mentioned, the value of w; is the most susceptible
to variation, due to weather and changing safety conditions; therefore, we consider w; = 3 as a “base case”, but we also
perform sensitivity analyses.

(3) We consider o= 0.5 as a “base case”, meaning that 50% of the demand are pick-up customers and 50% are drop-off
customers. The number of pick-up customers may be not equal to the number of drop-off customers, such as in morn-
ing or afternoon peak hours. We investigate the effects of various o values.

5.2. Analytical results

With Egs. (2), (6), and (9), the FRT performances are calculated. The results with o = 0.5 are listed in Table 1. @

5.3. Simulation results O
For the designed scenarios, the simulations generated performances for both FRT and D h o% 0.5, E(@md

E(T,q) are listed in Tables 2-4. E(T,) for DRC is zero, since it serves customers at their ) cations.
From Tables 1-4, we can make the following observations:

assumed to be large

(1) By comparing Table 1 with Tables 24, it is possible to verify the validity Ofthe aflalytical val: tained by Eqgs. (2)-
y8egment, considering

(9) with the simulation results for FRT.
(2) The MOPs of FRT are independent of the demand. This is expecte use the bus c j

enough not to be a binding constraint. We verified that the ma asseng a

all the performed simulations, does not exceed the value 25. 7 In MOS§ S smaller capacity vehicles
are needed to serve all the demand. For brevity, we are not fikoviding the maxim@m required capacity for each case,
since this is not the primary scope of this paper. @

(3) For FRT, E(T,,) decreases with the decrease of service h W. This is &expected, since narrower service areas
would result in shorter walking distances to the @op.

Table 1 @
Analytical results of FRT performance.

MOP (min) L=1 mile L =2 miles L =4 miles

W = ile W= 0.5 miles W=0.25 miles
E(To) 3 L 2 5.625 3.75
E(Twe) 375 9.375 19.375

E(Ta) 5 %\ 5.0 10.0
=9

Table 2 \

Simulation results for L = 14mil =1 mile @

NS

MOP (min)

Demand (customer/mile?/h)
24 32 40 48
FRT E(T, 9.38 9.39 9.37 9.39
E( 4.39 4.38 4.37 4.37
2.50 2.50 2.50 2.50
DRC E 9.02 12.12 16.28 22.44

6.07 8.11 10.82 14.93

Table 3
Simuy, ts for L = 2 miles and W= 0.5 miles (o = 0.5).
MOP ( Demand (customer/mile?/h)
24 28 32 36 40 42
FRT E(Towk) 5.63 5.63 5.63 5.62 5.62 5.61
E(Toe) 9.39 9.37 9.38 9.40 9.35 9.38
E(T,q) 4.99 5.00 5.01 5.01 5.00 5.00
DRC E(Tye) 12.52 13.95 15.43 17.00 18.98 19.92
E(Tq) 8.40 9.34 10.29 11.30 12.63 13.30
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Table 4
Simulation results for L = 4 miles and W = 0.25 miles (« = 0.5).
MOP (min) Demand (customer/mile?/h)
16 18 20 22 24 26 30
FRT E(Twi) 3.75 3.75 3.74 3.74 3.75 3.75 3.75
E(Tuwe) 19.32 19.37 19.37 19.36 19.41 19.37 19.39
E(Tyq) 9.99 10.01 10.03 9.99 10.01 10.02 10.02
DRC E(Twe) 19.41 20.39 21.14 21.97 22.85 23.81 25.48
E(T,q) 13.01 13.62 14.17 14.67 15.28 15.84 17.02

(4) For FRT, E(T,.) and E(T,4) increase with the increase of service area length L, because the FRT cycle time increases.
(5) For DRC, E(T,,) and E(T,4) increase with the increase of customer demand, since the DRC trip time is proportional to

number of customers served each time.
(6) For DRC, E(T,,) and E(T,4) increase with the increase of L, since a narrower area is less co eading to lon@ -

5.4. Critical customer demand density O ; Qé
s

Combining the MOPs with the assumed weights, it is possible to calculate the utility flinction U for b es and iden-
tify the best type of service for each scenario. While U for FRT is independent of and, the is a monotonic
increasing function of the demand. It has already been established that lo%mand densiti re suitable for DRC
than FRT types of services, but the identification of a “switching point” be e two servic ways so clear. Thus,
we label the customer demand as “critical” when the FRT and DRC ha e utili t1 lue. For demands lower
than the critical demand, the DRC service is better than the FRT segfice® FRT ser r than the DRC service for

demands greater than the critical demand.

Figs. 4-6 show the utility function values of FRT and DRC for emands ard w; with o = 0.5. In each figure, the dash
line represents the DRC utility function, and four solid lines, Qti
dash line intersects the FRT solid lines four times, repre ur critical de
line intersects the FRT (w; = 5) line at the demand va@ customer/mile?/h h is the critical demand. In this way crit-

ical demands are drawn from these figures, andgist able 5, wher Iso list them for other values for ¢.
so provi\k e bold rows are for o = 0.5) and Fig. 7 summa-

The following Table 5 (in which sensitivi
gWith the increase ight w, the critical values increase. That is, the DRC

rize the critical demand results. Fig. 7 shows tf
service is more preferred when planners give larggr values of w&ightjfer customer walking time. Fig. 7 also shows that the

critical values decrease with the incrgas gth/widtl; critical demands are quantitative references for plan-
ners to make the decision of opera;% der servic RT or DRC policy, depending on the expected or historic

demand in a certain area. Because and rates m erally fluctuate significantly in a given day, these values also rep-
resent “switching points” from @ y to the ot
*

5.5. Effect of o \ Q

The numbers of pic d drop—o ers may significantly vary throughout the day, such as in the morning or
afternoon pea‘hou Tie sensitigfty ovelgpresented in the above Table 5 and Fig. 7. For the FRT service provide an

701 —— FRTW1=2)
7 —+— FRT(w1=3)
& —— FRTw1=4)

—+— FRT(w1=5)

/./ “ — — DRGsimul.

Utilitz’antio
\
»
\
\
\
*
\

0 T T T T T T T T T T T T T T T
22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 32 54

Demand (customer/hr/mile?)

Fig. 4. Comparison of utility function of FRT and DRC (L=1, W=1, o= 0.5).
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Utility Function
w
o
1

—+— FRT(w1=2)
—4+— FRT(W1=3)
—— FRT(w1=4)
—#—FRT(w1=5)
— — DRCsimul.

22 24 26 28 30 32 34 368 38 40 42 44 46

Demand (customer/hr/mile?)

Utility Function

04+

T T

T T T T

12 1314 15 16 18192021 2

A N emand (ct
Fi &nparison
oY

of uti@of FRT and DRC (L =4, W=0.25, o= 0.5).

xratios.

Table 5
Critical demands (customer/@fle for various
L/W 1= wi=3 wi=4 w;=5
1/1 .1 353 429 48.7 52.7
0.3 33.6 413 46.8 51
0.5 31.8 39.7 45.1 49.6
0. 30.2 38.2 43.6 48.2
0 28.5 36.6 42.2 46.9
2/0.5 30.9 37.5 42.4 46.9
28.2 34.9 40.1 44.7
0.5 25.5 321 381 423
L7 233 30.2 35.6 40.6
0.9 215 27.9 33.8 384
4/0.25 0.1 239 28 31.8 353
0.3 203 24.6 283 32
0.5 17.5 211 249 28.7
0.7 15.2 18.4 22 25.6
0.9 12.9 16 19.1 223

interesting insight. We observe from Eqgs. (2), (6), and (9) that when « increases the expected values of the customer walking
time, ride time and waiting time remain constant. On the other hand, from the simulation results for the DRC service, it is
found that the expected value of the customer ride time slightly changes and the expected value of the customer waiting
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Fig. 7. Critical demands for various L/W ratios%
@

time increases significantly when o (the portion of pick-up customerf@O s, thu
d

Critical Demand (customer/hr/mile?)

Lo

combination of these effects causes the derived critical customer de be larger
for a given demand rate, the DRC service performs better when @ more dr(Kofft :

afternoon peak hours of a regular weekday). %
6. Conclusions @K :
Feeder transit services are one of the typef of flex transit se@ often adopted. Planners often face a difficult

decision when having to decide between a dem@nd responsive (D a fixed-route (FRT) operating policy to adopt in

a given area. In this paper, analytical and simnulatidh modeling vgloped to create tools to assist planners in this decision
making process. é ‘Q

pick-up customers (such as in

Based on the simulations of one-vghicle gp€rations, w, Xd itical customer demand densities, representing switching
points between the two alternative Services, which uSed as a tool for planning and operating decisions. To cover and
analyze a wide range of scenari erformed s ivisy analysis over various L/W ratios of a rectangular service area,
different values for the walki t, the mpst le to variation due to external conditions, and over the parameter
o, representing the rati weay “pick-upma -off” customers.

Results show that t rvice pe etter (not surprisingly) with lower demand rates and becomes progressively
more preferred whep 1a lues are as difo the weight for customer walking time, which may correspond to scenarios
with unsafe argas or With¥bad weatlfler condWions. The analysis over o shows that the DRC service performs increasingly bet-
ter when the drop-off’clistomers increases, such as in afternoon peak hours.

In conclusioifwe would Jikeyto eMphasize that the main purpose of this paper is to provide a general methodology to
better conduct t isi o process for feeder transit operations. It is expected that this paper may foster research
and applications of m : al oriented scenarios and case studies. Future research may also include an approximate

paper.

h reported in this paper was supported by the Southwest University Transportation Center (Texas Transpor-
e) under Grant 473700-00090.

Appendix A. Derivation of Eq. (4a)

For pick-up passengers, let X denote the nearest bus station to passengers, x € {1, 2, ..., N}. Let Y denote the ride direction
of pick-up passengers at a bus station, y € {1, —1}. Y = 1 for direction leaving the terminal, and Y = —1 for direction approach-
ing the terminal. The Probability Mass Function (pmf) of X is
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1 forx=1

2N-1)
=<7 forx=2,...N-1
oy forx=N-1

The conditional pmf f{y|x) = P(Y = y|X =X) is
fapx) =21 f(-1]x) == forx=1,2,...,N-1

1 N-1

fAIN)=0, f(-1N) =1
The ride time of pick-up passengers, T¢, = g(X,Y). Then

0 forx=1
gx,y) = Te—S5c fory=1; x=2,...,N @

(x-DTc

20N-1) fory=-1; x=2,....N < ’
Therefore, 0

E(T%) = 80 )fx.y) = 3 g VFORf0) = |- —
Xy Xy

- T

12 6(N-1) C) K
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