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Abstract 

ADA paratransit services are a very large and ever-growing industry providing door-to-door transportation services for people 
with disability and elderly customers. Paratransit system, however, just like all other public transportation systems, suffers from 
travel time variability due to various factors and as a result gives its customers unreliable services. Although service reliability is 
a very important aspect in transportation study, it has not received much attention in the paratransit research community. A 
quantitative study evaluating the paratransit service reliability under different zoning strategies is yet to be found. This research 
filled this gap.  
Statistical models were proposed to represent travel time variability. Simulation experiments based on real demand data from 
Houston, Los Angeles and Boston were performed to quantitatively compare the reliability performance of centralized and 
decentralized operating strategies under different travel time variability levels. Results showed that the decentralized strategy, 
compared to the centralized no-zoning strategy, substantially improves the reliability of paratransit in terms of on-time 
performance.  This research provides a framework for paratransit agencies to evaluate the service reliability of different 
organizational strategies through the simulation method.   
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of WORLD CONFERENCE ON TRANSPORT RESEARCH SOCIETY. 
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1. Introduction 

The passage of the American with Disabilities Act (ADA) in 1990 essentially prohibited discrimination based on 
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disability, revolutionizing the requirements and expectations for transit agencies.  Section 223 of the Act requires 
that public entities which operate non-commuter fixed-route transportation services also provide complementary 
paratransit service for individuals unable to use the fixed route system, as their mental and/or physical disability 
prevents them “to get to or from the system or to board, ride, and disembark from the vehicles.” 

As a consequence, the demand for this type of service has experienced a tremendous growth in the last years 
(8%/yr), more than tripling their ridership in a 15-year period [1]. There are over 5,500 providers of paratransit 
services for the elderly and persons with disabilities as of today nationwide. Meanwhile however, the transit 
agencies are facing two common challenges. First, the operating costs have raised even more (12%/yr) than the 
ridership growth, probably due to the enlarged service areas as a result of urban sprawl.  Second, customers of 

 

Fig. 1. decentralized (zoning) strategy for paratransit services 

 

Fig. 2. centralized strategy for paratransit services 

paratransit services often experience unpunctuality due to the lateness of vehicles caused by congestion and other 
random events.  

Paratransit services are operated according to different policies. Maximum service time-windows and maximum 
ride times (related to direct “taxi” ride time) are usually enforced to ensure service quality to customers. To address 
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the aforementioned challenges, transit agencies strive to improve the efficiency of paratransit services and at the 
same time maintain an adequate level of service. Different operating practices and innovative ways to organize these 
services have been adopted to ease the management of these large daily operations.  Among these operating 
strategies, centralized and decentralized (zoning) strategies are the most commonly seen.  In the former strategy, the 
whole service area is operated as one single zone; in the latter strategy the whole service area is divided into adjacent 
zones and operated by independent providers, and vehicles are allowed to traverse boundaries only to pick up or 
drop off customers, so maintaining at least starting point or final destination of customers in relative zone (see Fig. 1, 
Fig. 2). 

Zoning strategy is reported to have many advantages: lower management cost, lower operation complexity, and 
better job satisfaction among drivers due to a more contained and familiar driving range.  In addition, a zoning 
strategy is more likely to provide on-time services for customers as smaller zones tend to have shorter trips and 
shorter trips tend to have smaller travel time variability. As a result, compared to a centralized strategy, a zoning 
strategy is adopted by more and more transit agencies, especially in large metropolitan areas. Unfortunately, these 
advantages of zoning strategy come at a price: it usually results in larger operating costs compared to its centralized 
strategy counterpart.  Since centralized and decentralized operating strategies each has some advantages and 
disadvantages, a quantification regarding the tradeoffs of performance under zoning/centralized strategies is non-
trivial to determine and would help transit planners and operators make more informed decisions on organizational 
strategies.  However, although comparative studies on the operations cost and productivity of paratransit services 
under different zoning strategies have received some attention from the transportation research community (see for 
example [2] and [3]), a quantitative study on the reliability performance under centralized/zoning strategies is still 
missing in the literature. Note that reliability study is a very important research topic in transportation systems as in 
the real world the link travel times are more likely to be random variables than being deterministic. As a result, the 
reliability of paratransit services is an important issue the transit agencies are facing.  

Motivated by the above fact, this research aims to provide a quantitative study to compare the reliability 
performance of paratransit services under centralized and decentralized operating strategies.  Because an analytic 
model of the reliability problem is very difficult to develop without making strong assumptions or significantly 
simplifying the model, we resort to simulation as the investigation methodology.  We use real-world paratransit 
demand data from Houston, Los Angeles and Boston as input to our simulation model.  Under reasonable travel time 
randomness assumptions, the reliability performance of centralized and zoning strategies are compared and 
analyzed. 

This paper is organized as follows. In the next section related work on paratransit is reviewed. Section three 
introduces our simulation model including the travel time variability models we adopt, the zoning/centralized 
operating strategies we investigate, and the scheduling algorithm we develop. Section four is devoted to the 
simulation experiments with a description of the demand data and the analysis of the experimental results. The paper 
ends with concluding remarks. 

2. Literature review 

2.1. DARP and paratransit 

The paratransit scheduling problem, formally known as the dial-a-ride-problem (DARP), is a special case of 
vehicle routing problem (VRP). In a general sense, VRP studies the problem that dispatches a fleet of vehicles to 
serve a set of customers at different locations.  More specifically, in DARP the customers are riders with pick-up 
and drop-off locations, ride time constraints, and time-window constraints. The objective of DARP is usually to 
minimize the operations cost (related to vehicles’ travel distance) while maintaining a level of service to the 
customers.  The DARP is a difficult optimization problem due to its intrinsic combinatorial nature. In fact, it’s a 
well-known NP-hard problem which means there is no known (and highly unlike will be) efficient algorithms that 
can solve an instance of meaningful size to optimality in a reasonable time.  A lot of studies on optimization 
algorithms for DARP can be found in the literature.  Readers are referred to [4, 5] for comprehensive surveys on the 
existing efforts of mathematical modelling techniques and solution methods for DARP.  

In the paratransit research community, two commonly-adopted methodologies for paratransit performance 
analysis are analytical modeling method and simulation method. An empirical model relating vehicle fleet size, 
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travel demand and level of service was first developed by Wilson et al. [6] for dial-a-ride system. This model was 
statistically calibrated by simulation results. Later, by assuming a demand distribution and routing algorithm, 
Daganzo [7] derived a theoretical model characterizing the required fleet size given the demand rate, vehicle speed 
and service area.  Combining the above two models, Fu developed a more elaborative analytical model that is able 
to predicate the fleet size with more quality of service parameters [8].  More recently, Li and Quadrifoglio [9] 
developed a closed-form formula to determine the optimal zoning strategy for feeder transit services considering 
both customer service quality and operating costs.  Although it is known that analytical modeling is more expressive 
and easier to conduct parametric analysis, it is also considerably difficult to derive due to its intrinsic complexity of 
scheduling problem and its exogenous complexity associated with parameters. Due to this very reason, all the 
aforementioned analytical models have adopted strong assumptions on some parameters (for instance assumptions 
on demand distribution).  On the other hand, simulation models are very powerful tool for analyzing complex 
systems such as paratransit services and can produce plausible analysis as long as sufficient input data is available. 
As a result, compared to analytical models, simulation methods have become the more favorable for paratransit 
performance analysis [10-15]. 

2.2. Zoning strategies 

There aren’t many studies on the performance comparison of operation strategies such as decentralized vs. 
centralized strategy on DARP. In the earlier time, a “Zonal” service pattern was proposed for the purpose of easing 
dispatching and fare determination [16]. It is widely accepted that the size of the service area is one of the keys that 
affect the productivity and quality of service of Demand Responsive Transit (DRT) systems, to which paratransit 
services belong to. Deka [17] analysed how performance measures are associated with local environmental 
characteristics such as density and the characteristics of the trip makers, using a dataset containing a very large 
volumes of tripsThe productivity aspect was studied in [14, 18, 19]. McKnight and Pagano [20] surveyed 42 service 
providers in the US and found out that quality increases with size of ridership. Paquette et al. [21] reviewed the up-
to-date definitions of quality in the paratransit services and concluded that further study is needed to understand the 
trade-offs between costs, quality, and operational policies in DARP services. More recently, Shen and Quadrifoglio 
[2] explicitly compared decentralized strategies and centralized strategy and found that decentralized strategies 
result in higher total vehicle usage and higher empty backhaul miles driven. Lu et al. [3] proposed new decentralized 
strategies and showed that these strategies improve productivity and lower operating costs compared to the 
traditional ones. 

Intuitively, a larger service area tends to have more trips with longer length, and will compromise the consistency 
of the service provided by a paratransit system.  This is because longer trips are more vulnerable to random events 
such as congestion.  Although this was supported empirically in [22]. A quantitative model relating the service area 
size and the service consistency is yet to be found. 

3. Methodology 

3.1. Travel time variability modeling 

The reliability of transportation networks is of increasing interests in both theoretical and application studies. 
Traditionally, travel time reliability is defined as the probability that travel times experienced by travelers are within 
an acceptable range. Thus, travel time reliability is an important aspect of customer level of service (LOS). The 
reliability of paratransit system, as all other transportation systems, is defined as its ability to continuously perform 
at a pre-specified level of service. In transportation system reliability studies, three different types of travel time 
variability are often considered based how the sample of the data is formed: (i) day-to-day, (ii) period-to-period and 
(iii) vehicle-to-vehicle [23]. Note that while the first two are associated with temporal distribution of travel times 
over different days or over the course of a day, vehicle-to-vehicle variability concerns how different travelers 
experience travel time differently. Thus this kind of variability is the one to be concerned in this research.  

Note that previous research on paratransit zoning strategies assumed the travel times to be deterministic. 
However, the real world is full of uncertainty and traffic delay happens all the time. Major factors that are accounted 
for include: traffic incidents, work zones, weather, events, traffic control facilities, etc. As a result a system that 
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assumes the travel time to be deterministic is overly idealistic and simplified. Thus it’s necessary to introduce 
uncertainty to the system to examine its reliability.  

Numerous probability distributions have been proposed in order to describe the distribution of travel times. 
Normal, Log-normal, Gamma and Weibull distributions are among the most widely used models and discussions 
about their accuracy and applicability can be found in [24-30]. Although arguably lognormal distribution is observed 
to be a better fit in field tests, normal distribution is indeed a better choice in modeling travel time variability a priori 
from a practical perspective because of its computational simplicity. Moreover, several studies did support that 
normal distribution is a sufficiently accurate representation of travel time [26, 27, 29, 31, 32]. 

Herman and Lam [31] found the coefficient of variation of travel times to be less than 20 percent in most cases. 
They also observed the coefficient of variation to decrease with the mean trip time for trips up to 30 minutes and to 
be constant for longer trips. Several other studies [26, 27, 32] also found the standard deviation of travel times to 
increase linearly with the average travel times, meaning the coefficient of variation is constant. We also found that 
some other studies observed the variance-to-mean ratio of travel time (defined as the variance of travel time divided 
by the mean) is more likely to be constant than coefficient of variance [33, 34]. As a result, we propose two types of 
stochastic travel time models. Let T denote the random variable of travel times and let t denote the mean travel time. 
In the first type of model, T is defined by (1). 

  · ( · )T t X c t= +  (1) 
 
where (0,1)X Normal∼ and c is the variance-to-mean constant.  
For the second type of variability model, T is given by (2). 

 
  ·T t Y=  (2) 
 
where ~ (1, )vY Normal c  and vc  is the coefficient of variance.  

3.2. Reliability evaluation measures 

In the general context of transportation engineering, a wide range of reliability measures have been identified. 
These measures were broadly categorized into three types: (i) statistical range, (ii) buffer time measures and (iii) 
tardy trip indicators [35]. Lomax et al. recommended the use of percent variation, misery index, and buffer time 
index for practical performance measures [35]. For more simplicity and better understanding for laymen, the U.S. 
Department of Transportation (DOT) recommended for reliability measures the use of 90th and 95th percentile travel 
time, buffer index, planning time index, and frequency of congestion in [36]. Similarly, buffer index, planning time 
index, percent variation, percent on-time arrival and misery index were identified as five reliability measures in a 
recent NCHRP report [37].  

In the context of paratransit services, not many studies have been conducted on the reliability issue. Readers are 
referred to Paquette et al. [21] for a recent comprehensive survey on the quality of service measures in DARP 
operations. One of the first studies on the quality of service in paratransit was due to Pagono and McKnight [38]. 
They used dimensions and attributes of quality in the general public transportation to develop those specific to 
paratransit. From the users’ perspective, they identified 41 attributes that belong to eight service quality dimensions. 
Those related to the reliability dimension are listed in Table 1. 

Table 1  Reliability attributes used by Pagano and McKnight [38] 

Dimension Attributes 
Reliability Notification of delays or cancellation of service 
 Wait time for pickup at home 
 Wait time for pickup away from home 
 Arriving at destination on time 
 Few delays while on the vehicle 
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Based on the above attributes, we determine our paratransit reliability measures to be: 

• Total tardiness: defined as the sum of all the time differences between the actual pickup/drop-off times and 
the scheduled latest pickup/drop-off times.  

• Number of delayed trips: a delayed trip is defined as a trip that is not picked up or dropped off before its 
scheduled latest time. 

3.3. Customer generation 

Each customer trip includes the following information: pick-up and drop-off locations, requested pick-up time, 
passenger No., and the need of a wheelchair accessible vehicle. The pick-up and drop-off locations, and pick-up 
time, are presumably random but chosen from a distribution of locations and trip start time. 

3.4. Algorithm description 

The algorithm for trip distribution, insertion scheduling and after-processing is summarized as follows.  
 
Step 0.  

(a) Generate customers according to the pre-specified distribution.  
(b) Distribute the trips of each customer to different zones.  

Step 1. For each of the zones, set i=0. (i represents the number of vehicles that are used) 
 While unassigned trips not equal to 0 do: 

(a) For each depot, generate one empty route from it. 
(b) Choose first trip in the unassigned trip list. 
(c) Check all the possible insertions for feasibility 
(d) If more than one feasible insertions are found, select the one that minimizes the additional travel 

distance for the existing route 
(e) Update the schedule of the inserted route and delete the trip that is just inserted from the unassigned 

trip list.  
Step 2. If feasible insertion cannot be found, set i=i+1 then go to Step 1(a). 
Step 3. Record the basic schedule after inserted all the static requests. 
Step 4. Update the basic schedule with stochastic travel times. 

4. Simulation experiments 

4.1. Demand data 

The customer demand information is generated according to actual demand data from Houston, Los Angeles and 
Boston. The data was provided by METROLift in Houston, Access Services Inc. (ASI) in the Los Angeles County 
and MBTA in Boston. On an average weekday, there are about 5,000 trips for METROlift, 8000 trips for ASI and 
6000 trips for MBTA. The zoning strategies adopted by Houston and Boston are shown in Fig. 3 and Fig. 4. 
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Fig. 3. Houston paratransit service area 

 

Fig. 4. Boston paratransit service area [39] 

Note that currently METROLift adopts a centralized operating strategy, so Fig. 3 shows the artificial zones 
generated according to the rules developed in [2]. For MBTA, it has three providers covering four zones in the 
whole service area, with the central Boston area shared by all providers (see Fig. 4). For ASI, it has six zones over 
the service area. We consider only the Northern (N), Southern (S), Eastern (E) and West/Central (W) zones because 
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the demand of the other two zones is less than 5% of the total daily average demand. The daily average number of 
trips in each zone for each city is shown in Table 2. 

Table 2  Geographic demand distribution 

Houston 
Zone Daily average trips 
Northwest 1208 
Southwest 1510 
Southeast 1272 
Northeast 1010 

Los Angeles 
Zone Daily average trips 
Northern 1813 
Southern 2780 
Eastern 2253 
West/Central 1402 
Santa Clarita 144 
Antelope Valley 273 

Boston 
Zone Daily average trips 
North 1886 
Northwest 2400 
South 1918 

 

 

Fig. 5. distribution of pickup location from northern zone - Boston 

To illustrate the demand distribution of Boston, we show the pickup distribution for northern zone as an example 
in Fig. 5. This distribution will be used to generate the input data for the simulation model. Each square in the 
figures represents a one-by-one mile area. The counted number in each square area represents the number of trip 
ending in each area.  

We use Manhattan (rectilinear) distance to calculate the travel distance between different locations, meaning the 
travel distance between two stops A(x1, y1) and B(x2, y2) is calculated as |x1 – x2| + |y1 – y2|. Although the 
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Manhattan distance is an approximation of the real distance, several studies showed it to be a reasonably accurate 
representation of the actual travel distance (see for example [40, 41]).  

As mentioned before, we assume the travel times between all O-D pairs independent normally distributed 
random variables. The mean travel time is defined as the travel distance divided by the vehicle speed. To analyse the 
impact of stochastic variations of travel times, two types of variation models are proposed. 

Table 3  Travel time variability models 

Model Type Assumption Parameter 
M1 Variance-to-Mean Ratio is constant 10s 
 20s 
 30s 
M2 CV is constant 0.1 
  0.15 
  0.2 

 
The first type of model (M1) assumes that the variance to mean ratios (defined as the variance of travel time 

divided by the mean) for all O-D pairs are constant, as was observed in [33, 34]. The second type of model (M2) 
assumes that the coefficient of variation (defined as the ratio of standard deviation to mean) of travel times is 
constant, as is supported by [26, 27, 32]. Fig. 6 illustrates how standard deviation of travel time changes with mean 
travel time for each of the two models. Also note that while the CV (the slope in this figure) of M1 decreases as the 
mean increasing, the CV of M2 stays unchanged. For each of the models, different parameter values are used to 
represent three different levels of travel time variability, as listed in Table 3. Fig. 7 gives an illustration of how 
dispersed the travel time is around an average trip length of 30 minutes at various levels of variability. 

 

Fig. 6. Standard deviation – mean for M1 (20s) and M2 (CV=0.1). 
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Fig. 7. M1 versus M2 around travel time=30 min. 

4.2. Parameters 

The following system parameters are used in the simulation: 

• Vehicle travel speed: 25 miles/hour 
• Service time of each customer: 1 minute 
• Maximum ride time factor: 2.5 (the ratio of actual ride time divided by direct ride time, as mandated by 

law) 
• Unlimited number of vehicles are available 
• Vans capacity: 4 wheelchairs or 10 ambulatory persons 
• Cabs capacity: 1 wheelchair or 4 ambulatory persons 
• Service time period: 24 hours.  The paratransit service responds to customers’ demand 24 hours a day. 

4.3. Result analysis 

As mentioned in previous section, the performance measures of reliability we select are total tardiness (min) and 
number of delayed trips. Recall that total tardiness is defined as the summation of the differences between the actual 
pickup or drop-off times and the latest acceptable pickup and drop-off times (LT) specified by the users’ time 
windows. And a delayed trip is defined as a trip that is not picked up or dropped off before its LT.  

The performance of alternative zoning strategies is compared based on the demand data from Boston, Los 
Angeles and Houston. For each case 10 simulation replications are conducted. For each city, two types of stochastic 
travel time models are considered. M1 assumes the variance-to-mean ratio of travel times is constant and M2 
assumes the coefficient of variance (CV) of travel times is constant. For each type of model, three different 
parameters are used to represent different levels of variability. The results are summarized in Table 4, Table 5 and 
Table 6. 

It is observed that zoning strategy has lower total tardiness and lower number of delayed trips than no-zoning 
strategy in all cases. Taking Boston as an example, zoning strategy reduces the total tardiness and number of 
delayed trips by up to 32 percent and 23 percent, respectively under the M1 assumption. Under the M2 assumption, 
the reduction is 14 percent and 10 percent, for total tardiness and number of delayed trips respectively. Also note 
that this reduction in delay is consistent under various levels of travel time variability. The results imply that 
adopting zoning strategy can significantly improve the reliability of paratransit services.  
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Table 4  Reliability performance - Boston 

M1        Variance-to-Mean Ratio=     

Reliability measure 
 

  10s     20s     30s   

No_Za Zb %c No_Z Z % No_Z Z % 

Total tardiness (min) 525.2 359.8 -31.5% 1298 886 -31.7% 2086.8 1414.9 -32.2% 

Number of delayed trips 297.1 230 -22.6% 509.7 408.3 -19.9% 667.3 534.1 -20.0% 

M2 
    

CV= 
    

Reliability measure 
 

  0.1     0.15     0.2   

No_Z Z % No_Z Z % No_Z Z % 

Total tardiness (min) 980.8 857.7 -12.6% 4018.8 3451.6 -14.1% 9505.9 8174 -14.0% 

Number of delayed trips 292.6 277.5 -5.2% 753.6 679.2 -9.9% 1232.6 1114.2 -9.6% 
a. No-zoning (centralized strategy). 
b. Zoning strategy. 
c. Zoning strategy as compared to no-zoning strategy. 

Table 5  Reliability performance – Los Angeles 

M1        Variance-to-Mean Ratio=     

Reliability measure 
 

  10s     20s     30s   

No_Za Zb %c No_Z Z % No_Z Z % 

Total tardiness (min) 874.9 611.6 -30.1% 2172.4 1449.3 -33.3% 10031 8055.3 -19.7% 

Number of delayed trips 430.1 331.8 -22.9% 730.8 561.2 -23.2% 1399.4 1164.2 -16.8% 

M2 
    

CV= 
    

Reliability measure 
 

  0.1     0.15     0.2   

No_Z Z % No_Z Z % No_Z Z % 

Total tardiness (min) 2137 2118 -0.9% 8522.6 7909.9 -7.2% 19537 18016 -7.8% 

Number of delayed trips 565.4 533.1 -5.7% 1323.7 1207.2 -8.8% 2101.6 1922.7 -8.5% 
 

Table 6  Reliability performance - Houston 

M1        Variance-to-Mean Ratio=     

Reliability measure 
 

  10s     20s     30s   

No_Za Zb %c No_Z Z % No_Z Z % 

Total tardiness (min) 336.8 315 -6.5% 891.8 769.3 -13.7% 1487.6 1279.9 -14.0% 

Number of delayed trips 194.1 180.1 -7.2% 350.1 308.4 -11.9% 464.6 413.4 -11.0% 

M2 
    

CV= 
    

Reliability measure 
 

  0.1     0.15     0.2   

No_Z Z % No_Z Z % No_Z Z % 

Total tardiness (min) 1090.1 909.7 -16.5% 4109.5 3749.1 -8.8% 9690.2 9019.3 -6.9% 

Number of delayed trips 302 273.4 -9.5% 680 667.8 -1.8% 1101 1090.7 -0.9% 
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Fig. 8 gives a close look on how the delayed trips of different level of tardiness are distributed under 
decentralized and centralized strategy in the Los Angeles case. 

5. Conclusions 

The intent of this research was to evaluate the effects of zoning control strategies on the reliability of paratransit 
systems under the stochastic travel time assumption. The particular strategies of our interest are centralized strategy 
in which the whole large service region is operated by one central agency, and decentralized strategy in which the 
entire service area is divided into independently managed zones. Two types of travel time variability models were 
proposed. Type 1 model (M1) assumes the variance-to-mean ratio of travel time to be constant and Type 2 model 
(M2) assumes the coefficient of variance to be constant. A simulation model was introduced and a series of 
numerical experiments were conducted using three real-world demand datasets collected from Houston, Los 
Angeles and Boston. By analyzing the experimental results we had the following findings.  
 

1. Adopting a zoning can significantly reduce the total tardiness and the number of delayed trips experienced 
by users. This means that compared to the centralized strategy, decentralized strategy can improve the 
service reliability of paratransit systems from uses’ perspective.  

2. Comparing the two types of stochastic travel time models, it was observed that under the assumption of M1 
the improvement in reliability by adopting zoning strategy was greater and more consistent than under the 
assumption of M2. This was perhaps due to the fact that M2 introduces a more dispersed travel time 
distribution than M1. Further study is needed to before more determinate conclusion can be reached.  

 
Finally, future research directions include developing paratransit scheduling algorithms that take stochastic travel 

times into account and investigating paratransit reliability based on more travel time variation patterns. Analytical 
models that take demand, a scheduling algorithm and an operating strategy as input and reliability measurements as 
output are also of both theoretical and practical interests.  
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