Evaluation of Zoning Design with
Transfers for Paratransit Services

Chung-Wei Shen and Luca Quadrifoglio

This paper evaluates the effects of including transfers between service
zones on overall service performance in a paratransit system. Trans-
fers were included to improve the operational efficiency of a system
when maintenance of a desirable zoning structure was obligatory. This
proposed innovative service design was compared with more tradi-
tional cases of no transfer zoning and no zoning. A set of instances was
generated from demand data obtained from the Metropolitan Transit
Authority of Harris County, Texas, and evaluated through simulation
analyses. The results demonstrated that under a zoning structure, this
transfer design (in comparison with a nontransfer design) provided
noticeable improvements in efficiency measures and better passenger
trips per vehicle revenue hour while maintaining a minimum customer
service standard; however, the overall performance of the no-zoning
strategy used by the Houston, Texas, Metropolitan Transit Authority of
Harris County performed the best, on average.
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area in Minnesota. In zoning without transfer, inter-
zonahcuStomers may not need to switch vehicles during their trips.

atively, a system of zoning with transfer may require inter-
onal customers to switch vehicles. Quadrifoglio et al. performed a
imulation study to test the productivity of zoning without transfer,
comparing the performance of that strategy with a centralized, no-
zoning case based on data obtained from Los Angeles, California
(7). Shen and Quadrifoglio investigated the zoning-without-transfer
designs used by the ADA paratransit system in Houston, Texas (8).
They concluded that centralized cases perform better than zoning
without transfer according to the number of passenger trips per vehicle
revenue hour. The decrease in the number of passenger trips per
vehicle revenue hour is probably the result of the higher number
of empty trip miles that tend to occur in the system with a zoning-
without-transfer design. Introduction of transfers to interzonal
customers would be a promising method of decreasing these empty
trip miles.

The zoning-with-transfer system coordinates vehicle schedules at
various transfer locations. The schedule coordination of interzonal
mechanisms of transportation likely reduces trip costs because of
an increase in the rideshare rate and a lowering of the number of
empty return miles (9). The proper coordination of paratransit ser-
vices would increase not only efficiency and productivity but also
mobility.

Although the operational consolidation of providers appears
to achieve economies of scale, the following may impede their
coordination: (a) a user may have some concern that the current
service level will decrease, (b) the sponsoring agency may have doubts
over whether the cost savings is significant, and (c¢) the different
jurisdictions within which component transportation systems operate
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may have different operational standards particularly designed to
meet local riders’ needs (5). To the best of the authors’ knowledge,
no quantitative evidence exists to demonstrate the benefits and con-
current costs that occur from adapting a zoning-with-transfer design
to a large-scale paratransit system.

The scheduling and routing of classic paratransit systems is known
as the “dial-a-ride problem,” in the terminology used for research
on vehicle routing problems. A dial-a-ride problem without ride time
constraints is denoted by the term “pickup-and-delivery problem.”
The most recent surveys published on the dial-a-ride problem and
pickup-and-delivery problem were presented by Cordeau and Laporte
(10) and Berbeglia et al. (1), respectively.

A paratransit service that uses a transfer system is a generalization
of the dial-a-ride problem. The transfer of passengers will always
require more than one vehicle to fulfill a trip; therefore, the spa-
tial and temporal synchronization constraints will, by necessity, be
imposed on more than one vehicle. A schedule delay in one vehicle
route may necessitate a change to all other routes. Therefore, solu-
tions to such problems are computationally difficult, even when one
is simply trying to develop a heuristic algorithm.

Shang and Cuff have provided a concurrent heuristic approach
to solve the issue of the pickup-and-delivery problem with transfer,
using as an example a health maintenance organization (/2). They
showed that their proposed heuristic performed better than the health
maintenance organization’s scheduling heuristic, according to the
overall lower number of delays, total travel time (in hours), and

problem with transfers through a process of mixed-integer progra
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(Figure 1).

Under the zoning-without-transfer policy, vehicles in each zone are
served and independently operated by different carriers. Figure 2
illustrates the characteristics of this policy. The pickup location of each
customer determines which carrier is eligible to serve that customer.
Vehicles are, however, allowed to traverse zone boundaries to drop
off interzonal customers.

In zoning-with-transfer control, interzonal passengers must
transfer from one vehicle to another at given transfer locations to
reach their final destinations. Conversely, intrazonal passengers do

\
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FIGURE 2 Zoning-without-transfer policy (each symbol represents a different customer).
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FIGURE 3 Example of generating an intrazonal trip.

not have to switch vehicles to complete their trips. To highlight the
process of loading and unloading at various transfer locations, two
corresponding nodes (a load node and an unload node) were gener-
ated at each transfer location for each interzonal trip (i.e., when a
vehicle visits the transfer node, it either loads or unloads passen-
gers according to the node’s characteristics). Thus, an interzonal
trip (Figure 3a) could be treated as two intrazonal trips when the

vehicles at specific transfer locations (Figure 3b).
It is assumed that for each interzonal trip, vehicles can be sw1t g
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points is a matter of only the travel distance and the vehicle speed.
This assumption might not allow calculation of the precise travel time
between two points, but it does not alter the results of the following
performance comparison. The link distances and speeds were input

into the model and can easily be updated with more accurate values
if and when those values become available.
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SCHEDULING ALGORITHM

The new insertion-based heuristic makes use of the generic insertion
framework of Solomon’s sequential approach (/4). This algorithm
processes ride requests sequentially, inserting one customer into the
vehicle schedule at a time until all requests have been serviced.
After sorting of all customers by requested pickup times, one
empty route is generated in each service zone. Each empty route
starts from and ends at the same depot. Every interzonal trip generates
a drop-off and pickup node at a transfer location. According to the
designated zone of each trip, the possible insertions of unassigned
trips are searched for sequentially by their earliest pickup times. In this
study, the insertion procedure from the first to the last unassigned trip
is called one “round.” A more detailed description of the procedure
used for insertion review is described below. Those trips that can-
not be inserted into the schedule during a round are copied to the
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unassigned list of trips. This insertion procedure requires that one a Des
route be maintained in each zone during each round.

During the search procedure, four constraints are taken into Lift is a paraggansit scRyice in Harris County, Texas, currently
consideration. First, the arrival time (AT)) of a vehicle at the pickup pliance with thg ADA. On average, more than 5,000 trips are
(or drop-off) location can be no later than LT,; (LT_,). Second, for ea ade daily fromf3:45a . to 1:30 a.m. on the following day. The fare
passenger, the drop-off time needs to be later than the pickup time; #ilis for a single tickel 15 per ride. All trips need to be scheduled 1 day
is also known as a “precedence” constraint. Third, after ins in advz@e customers make a reservation, the schedule operator

A

the new trip, a check is performed to determine whethg stimated scheduled pickup time. The time can change

er i i gives t
will violate the assigned customers’ successive time @ s. pl& s 20 min, which results in a 40-min time window.
the capacity of each vehicle is also necessary to constd€r the proper ( @S, cities have adopted 20- or 30-min time windows.)

process for insertion of the unassigned trips. Figure 4 ill@strates the isons with other systems are provided in Table 1.
algorithm procedure in a diagram. \ ’Q st samples were generated according to the locations (pickup and
rop-off) and time distributions. The number of pickup and drop-off
K locations for every square mile was counted with geographic infor-
COMPUTATIONAL EXPERIM \ mation system software (Figure 5). The actual pickup time distribution
. is shown in Figure 6. Because the pickup and drop-off locations
To demonstrate the productigity vel of servi ided by were independently generated, the pickup and drop-off points were
the proposed zoning-with@gfan i results of occasionally unrealistically generated within the same square mile.
zoning without transfer i p of the same In these rare cases, new drop-off locations were generated.
sequential insertion @1\
2)

I

were compare andd
Transit Authorit arris Count Zoning Configurations
erate the random ples, are j R

organizational structures are The configuration of a zoning structure is defined by its boundaries;
the simulation results is préyi transfer locations are often located at a zone boundary. The following

TABLE 1 OCharacteristics and Populations Served by Different Systems

Boarding Time (min) Disembarking Time (min)
Service Area Number
Service Area Population of ADA No Lift No Lift
City (mi?) (millions) Customers Service Hours Lift Required Required Lift Required Required
Houston 751 3.2 17,695 3:45 a.m.—1:30 a.m. 6 1 4 1
Chicago 3,750 8 42,516 24 h 7 3 6 2
Boston 729 2.5 67,329 6 am.—1 am. 5 2 3 2
Washington, D.C. 1,500 3.4 25,575 5am.—12 am. 7 2 6 2




86 Transportation Research Record 2277

Al \\ | HY JEL_ﬁ . \

W AN N

| \,
| |’l )L
Counnt - - = 1 Count ,J
ool 1 SRR R ; \ T o1 . \
[ zd TSN ™ @“ v . V[ 24 ™~
] \ LY ] 1
|:|5-? KN '_: a_!l I:Ij_’,'-‘ iai‘ = s
s 1 mEs = [ s Y
i, s - Hl | |
B SR e Tl mmnv : EE
s B85l 'ﬁf_-i. = -6 - iEiin coREAE
s aspil aw o i o
— i i ; > = / | ES it q MR
s B A | RS ! gam
B o 25 \ A L ’ R |
y Srak o ‘ - i L8] H
:’ 1 _\ 1
( ) {

(a)

FIGURE 5 Distribution of (a) pickup locations and (b) drop-off locations.

four rules were used to build the subzones in Houston, as shown in zone @t was ing i@peciﬁc zone, trips for other

/\
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1. It is better not to situate a popular destination or an area with @ ion of this sp he service area was administratively divided
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2. Each zone should accommodate a certain number of tci ortheast the 5t, and the southwest quadrants. Trips within
originating from it. each zone were 0 ed to be large enough to maintain a minimum

3. The percentage and number of interzonal trip tt@) level o ional scale, although individual trips from each zone
each zone should be close. in length. In practice, passengers do not usually require
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each zone boundary.
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FIGURE 6 Distribution of requested pickup times.
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The default parameters used in the simulation are dgfollows:

® Vehicle speed: 20 mph;

FIGURE 7 Zones built in Houston region. é 2
&misﬁcs reported are the averages of 10 replications. The

SE

ic was implemented via the computer program C and was

\ 'S n on a computer with a 2.33-GHz Core2 Duo processor and 2 GB
® Boarding time: ambulatory passenger = in; wheelc f memory.

passenger = 6 min;

e Disembarkation time: ambulat eleer = | min; w&
passenger = 4 min; * %{

® Maximum ride time eterSydifferent para TS
to the direct travel distan& S \

e Allowable devi% i R

20 min plus or

on randomly generated
instances, and 10 a to deal with the randomness

of the simulation.

1. Zoning withou
into four service zones,

transfer (Scenario 2). The zoning-with-transfer
scena ted the same geographical zones and carrier design
described¥@r Scenario 1. Vehicles in this system, however, always
remained within a single zone. Customers needed to transfer at zone
boundaries.

3. No zoning (Scenario 3). The region was served by a single
carrier. The current Houston paratransit service adheres to this
scenario.

Performance Measurements
and Analysis of Results

The performance characteristics of the various scenarios were
investigated according to system efficiency and service quality.
For system efficiency, the number of vehicles used was the most
straightforward indicator for a comparison of alternative scenarios.
“Deadhead miles” were the number of miles that a vehicle traveled
from its home depot to its first pickup node and from its last drop-off
node to its home depot. “Vehicle revenue miles” were defined for all
vehicles as the total number of miles traveled from the first pickup
location to the last drop-off location. Vehicle revenue miles with no
passengers on board were defined as “empty miles.” “Total miles”
included revenue miles and deadhead miles.

The number of passenger trips per vehicle revenue hour served as
an important performance measure for capturing the productivity of a
particular demand-responsive system. A higher number of passenger
trips per vehicle hour usually means that more trips can be scheduled
within a given time period.

The number of passenger miles traveled was calculated as the
sum of the number of miles traveled multiplied by the number of
customers on board for each travel segment. The number of pas-
senger miles per vehicle revenue mile was another performance
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measurement used to calculate the productivity of the demand-
responsive system. This measurement captured the difference in
travel demand patterns between the systems that averaged longer or
shorter trips. “Vehicle idle time” is the time gap between the vehicle
arrival time and the earliest pickup time at the pickup location.

The service quality of the various different strategies was thor-
oughly analyzed according to several characteristics except efficiency.
From the service quality point of view, deviation from the desired
pickup time and passenger ride time were the major passenger con-
cerns (besides the fare). Passenger wait time was calculated as the
difference in time between the requested pickup time and the sched-
uled pickup time. Passenger ride time was the actual drop-off time
minus the actual pickup time. Again, the passenger ride time could
not exceed the maximum ride time factor for both intrazonal and
interzonal requests.

The results generated by the three test scenarios are shown in
Table 2. It was observed that the no-zone system had the smallest
number of vehicles, whereas the zoning-with-transfer and zoning-
without-transfer policies had larger numbers. This may be attributed
to the following two reasons. The no-zoning system had no restrictions
on the choice of the next unassigned trip; thus, the probability that
a better insertion would be found was higher. In addition, in favor of
the sequential insertion method, the number of trips in each of the
routes created earlier was higher than that in the route created later.
Therefore, if the route created later included only one or two interzonal
trips, it could be served by one vehicle in a no-zoning system or in a

zoning-without-transfer system. The route created later would have to
be served by two vehicles in a zoning-with-transfer case. &%

When transfers were allowed in the zoning policy, the number

of passenger miles per vehicle revenue mile increases 4§ the number
of empty miles decreases. The zoning-with-tragagfer poli€y show

a significant improvement in the number miles ovengh:
numbers for both the no-zoning and zonin 1th

The higher number of passenger miles coO
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Zoning with transfer significantly improved the number of pas-
senger trips per revenue hour, especially when it was compared
with the number obtained in situations involving a zoning-without-
transfer design. For interzonal customers, a zonal service that acts
as a feeder and a distributor and that has a coordinated schedule and
routes around a particular transfer point has increased productivity.
This improvement is mainly due to the decrease in the number of
empty miles from the last unloading point to the point where the
new customers are scheduled for pickup. For interzonal trips with
long travel distances, it was found that simultaneous two-way passen-
ger exchanges at particular transfer points largely decrease empty@
backhaul miles.

Such a transfer policy would increas§ vehicle idle time, parttally
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CONCLUSION

The effects of inclusion of transfers between service zones were
examined in depth by use of the ADA paratransit system design. The
results indicate that such systems can provide significant benefits to
paratransit operations that are managed within a zoning structure.
The results were obtained with the demand data for the paratransit
system in Houston, Texas (a relatively low-density region), and
it was concluded that the transfer method provides a productive

Number of
Number of Miles Number of  Passenger Average Average
Number of  Passenger Trips/ Vehicle Passenger Passenger
Number Total Passenger Miles/ Revenue Idle Time  Waiting Ride Time
Scenario of Vehicles  Revenue  Deadhead  Empty  Miles Total Miles  Hour (min) Time (min)  (min)
Zoning with 379 49,828 4,668 10,043 64,026 1.17 1.60 77,041 225 443
transfer
Zoning without 363 51,569 7,013 14,655 57,4717 0.98 1.30 60,607 21.9 36.2
transfer
No zoning 295 43,289 8,337 7,824 57,376 1.11 1.53 51,438 234 36.2
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organizational structure if the system operates under an obligation
to maintain a zoning design. It was found that the transfer design
described in this paper especially excelled at significantly enabling
the zoning system to increase the number of passenger trips per
revenue hour without an excessive increase in in-vehicle ride times
for passengers but with maintenance of service within promised
pickup and drop-oft time windows. The no-zoning cases adopted by
the Metropolitan Transit Authority of Harris County still perform
better than zoning cases, on average, according to efficiency.

Furthermore, the comparisons of the simulations of the two zoning
scenarios are generally considered to be indicative of their relative
performances. Although the exact level of benefit will vary accord-
ing to the different demand types and operational standards, this
simulation methodology is easily and quickly adaptable to any large-
scale paratransit system. Future work should combine searches for
optimal transfer locations and optimal numbers of transfer locations
to improve the performance of the transfer system proposed here.
Finally, other means of improvement of this zonal transfer design
for multiple paratransit operators would be a promising body for
further study.
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