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cation of such an analysis is identification of the concentration levels 
of trip origins and destinations so that planners can allocate more 
available resources to timely collect and distribute patrons (such 
as drivers and vehicles) around the high-demand areas during peak 
hours. In addition, service providers can generate vehicle schedules 
and routes more easily by considering the spatial and time cluster-
ing effects. The ability to predict the demand locations of potential 
patrons is important to service providers.

A more accurate process for identifying and forecasting the times and 
locations of the clustering effect may mean passenger wait times and 
ride times can be reduced, improving service quality. In the long term, 
service providers could improve service quality by adding facilities  
or offering assistance in waiting areas in high-demand locations.

Two major methods are used for calculating the demand estima-
tions for a given region: aggregate models and disaggregate models. 
Aggregate models such as regression models are estimated with sin-
gle average values for variables distributed across an entire service 
area; there is no guarantee that the predicted effects will be the same 
over the entire area. This means, for example, that the population 
variable might be an important predictor of demand volumes in some 
locations of the study but perhaps a weak predictor in other locations.

Some researchers have used other methods to predict ADA para-
transit demands. An example of applying a time series analysis was 
proposed by Menninger-Mayeda et al. (2). Time series analysis is 
useful for explaining changes in demand that depend on days of the 
week or seasons of the year. The model used by Menninger-Mayeda 
et al. included 15 predictor variables used to predict the ridership 
in Orange County, California. Denson used a survey questionnaire 
to investigate and examine the existing transportation patterns of 
people receiving dialysis treatments (3). This approach usually is 
expensive and cannot predict demand over time.

Koffman and Lewis used four tools consecutively to forecast the 
demand for ADA paratransit services: surveys, intuitive comparisons 
with other systems, cross-sectional econometric analyses, and time 
series econometric analyses (4). Their study showed denial rates to 
be an important predictor, along with fares and other factors. It was 
shown that existing research can predict the amount of demand over 
a certain period, but such research lacks the ability to capture or fore-
cast geographic demand patterns within a given service area and over 
time. In similar research about building ordinary least squares (OLS) 
regression models to predict trips for paratransit services, LaMondia 
and Bhat mentioned that the impacts of some variables vary greatly 
depending on the spatial scale (5). Their research implied that the 
effects of the same factors may have both positive and negative influ-
ences on different census tracks. This conclusion justifies the notion 
that it is reasonable to use geographical weight regression (GWR) 
models in this type of research.
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A reliable method for predicting paratransit ridership is important, espe-
cially for the efficiency of the services offered. The commonly used aggre-
gate regression model is most accurate for forecasting the total demand 
for regional areas such as whole counties or cities; however, it is likely to 
be geographically inaccurate. This paper proposes a geographical weight 
regression (GWR) model for predicting the demand for the types of para-
transit services required by the Americans with Disabilities Act. The GWR 
model reflects better the characteristic of each area having its own coef-
ficient for predictors rather than the same value throughout. The results 
show that trip demand increased proportionately to (a) the population 
size, (b) the ratio of senior citizens, (c) the ratio of people below the poverty 
line, and (d) the ratio of African-American riders. These results suggest 
that the predictive performance of the GWR model is better than that 
of the ordinary least squares (OLS) regression model. The GWR model 
is of greater value than the OLS model to researchers and practitioners, 
because the predictor variables are readily available from census data; this 
availability of data allows researchers to use the model after calibration.

The Americans with Disabilities Act (ADA) requires providers to pro-
vide paratransit services, complementary to their fixed routes, for those 
who are eligible. Since the ADA was passed, demand for such services 
has increased steadily. Although paratransit services are designed to 
maximize loads by accommodating customers according to a share-
ride model and various advanced operational and management meth-
ods have been adopted, overall service performance has decreased. 
The number of demand–response trips grew rapidly between 1996 
and 2006, from 93 million trips to 126 million trips, an annual growth 
rate of 3.3%. However, productivity, measured as passenger trips per 
revenue hour, has gradually decreased by 1.6% annually (1).

Analyzing the geographic demand patterns of paratransit services 
is one of several ways providers can improve the service efficiency 
of their ADA paratransit services. When the demand number is the 
same, differing demand patterns during peak hours affect the num-
ber of vehicles to be used. According to trip patterns and service 
restrictions, operational patterns may be categorized as many-to-one, 
many-to-few, and many-to-many. Many-to-many operations are less 
productive than the other patterns because many-to-many operations 
involve more route deviations and intermediate stops. Another appli-
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To the authors’ knowledge, no studies have thoroughly investi-
gated the effects of spatial distributions on ADA demand forecasting. 
Moreover, the presented GWR model provides an excellent estima-
tion of the trip demands in each zone base with simple but represen-
tative independent variables (population and percentage of senior 
citizens, African-Americans, and people below the poverty line). 
Service providers or agencies could use this model as a strategic tool 
for evaluating the growth trends of demand in each zone.

This paper models the geospatial patterns of ADA paratransit 
services. A GWR model is developed that has a superior ability to 
accommodate geospatial effects, as compared with OLS regres-
sion models. The paper is structured as follows. First, the data and 
methodology are introduced. Then, the results of application of the 
proposed methods are discussed. Finally, conclusions and possible 
topics for future research are provided.

Data and Method

This section summarizes the data used to model and predict travel 
demand. The steps in identifying trip patterns and in fitting models 
are outlined.

The trip data for the analysis were obtained from METROLift, 
the ADA paratransit service for Houston, Texas. The data contained 
information regarding 110,587 ADA paratransit trips occurring in 
1 month, from June 1 to June 30, 2012. The data set included six 
variables or record columns: pickup addresses, dates, pickup times, 
user IDs, drop-off addresses, and triangulated distances between the 
pickup and drop-off addresses. The average numbers of trips made 
during weekdays and weekends were 4,522 and 1,737, respectively. 
The road shape file and the 2010 census data material were both 
downloaded from the Bureau of the Census website.

Before the generation model was fit, the demand was checked for 
a clustering effect over the service area. This cluster index gave the 
concentration degree of the demand pattern. Then exactly where the 
high demand areas were needed to be identified. As the results show, 
it was found that the clustering effects affected the predictive accu-
racy of the simple OLS model. These spatial interactions and varia-
tion effects on the OLS model were recognized by LaMondia and 
Bhat (5). Therefore, the GWR method was used; the performances 
of the OLS and GWR models are compared in the next section.

The method used can be separated into three steps: (a) check the 
data cluster index, (b) define hot spots for ADA trips, and (c) fit 
trip generation models—OLS and GWR. The formulations and 
characteristics of each step are presented in the following sections.

Average Nearest Neighbor

Average nearest neighbor (ANN) is a nearest neighbor index based 
on the average distance from each point to the nearest neighboring 
point. Equation 1 gives the calculation for the ANN:

d d

A

n

=
δ

=
×
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where

	d	=	average nearest neighbor distance,
	δ	=	average random distance,
	A	=	area of the study region, and
	n	=	number of points.

If the ANN is less than 1, the data contain clustered points. If the 
index is greater than 1, the data contain dispersive points. However, 
the ANN value can be interpreted only when the Z-value is signifi-
cant. In other words, if the Z-value is not significant, the ANN value 
is meaningless.

Kernel Density and Spider Graph

Kernel density mapping is one of the most common methods used to 
define spatial hot spots for count data (such as the number of crimes 
or crashes), because kernel density mapping details both smooth 
and continuous probability targets within a given study area (6). The 
premise is to calculate the probability density of each trip end point 
instead of showing the actual value of each point. The density value is 
highest when the distance from the trip end point is zero; the density 
value decreases when the distance increases. Equation 2 gives the cal-
culation of the quartic kernel density function used in ArcGIS; more 
details are available elsewhere (7).
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where

	K(u)	=	kernel density value at location u,
	 d	=	distance from the trip end point, and
	 τ	=	bandwidth.

In addition to identifying spatial hot spots, a spider graph can iden-
tify temporal hot spots. Unlike a normal frequency figure that has time 
in the x-axis and frequency in the y-axis, a spider graph connects the 
beginning and the end times, and the time axis then acts as a circle. 
This circle makes examination of the complete time distribution much 
easier because there is no interruption. Readers of such a graph can 
easily answer the problem, “How long is a hot spot ‘hot’?” (8, p. 114).

It is important that identification of hot spots considers the various 
time distributions of ADA trips, because the temporal distribution of 
ADA trips may relate to specific characteristics of passengers’ daily 
activities. Concluding that the time distributions of ADA trips are the 
same for different hours of the day or different days of week would be 
simplistic and would result in no recordable temporal effects.

GWR and OLS Models

Most current models for generating and forecasting ADA paratransit 
trip demand are OLS models. Two assumptions are commonly made 
in the application of OLS models: (a) observations should be inde-
pendent of one another and (b) error terms should be random noise. 
Such assumptions may be impractical for an ADA regression model; 
LaMondia and Bhat showed that spatial interactions exist in OLS 
models (5). The results of the present study support this finding, as 
discussed in the following section. If such interactions are neglected, 
the estimate of the parameters will be inefficient and biased, because 
the standard errors will be overestimated (9). This paper proposes 
use of the GWR model to fit the demand data if any spatial relation-
ships among the adjusted areas are found. Equations 3 and 4 are 
the simplest forms of the OLS and GWR models. Details of GWR 
are available elsewhere (10–12). The main difference between these 
two models is that the parameters of the GWR model change from 
area to area, but the parameters of the OLS model are fixed for the 
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entire study area. That is, in some areas the influence of independent 
variables may be much stronger than in other areas.

y x x xi i i m mi i= β + β + β + + β + ε. . . (3)0 1 1 2 2

y u u u x u x u xi i i i i i mi mi( ) ( ) ( ) ( ) ( )= β + β + β + + β. . . (4)0 1 1 2 2

where

	 yi	=	ADA paratransit trips in census tract i;
	 x1i, . . . , xmi	=	 independent variables;
	 β0, . . . , βm	=	� parameters in OLS models, which are esti-

mated with β̂ = (XTX)−1 XTy;
	 XT	=	� transpose of X, which is vector of x;
	β0i(u), . . . , βmi(u)	=	� parameters in location u in GWR models 

β̂(u) = (XTW(u)X)−1 XTW(u)y;
	 W(u)	=	� weight matrix relative to location u, W(u) = 

(1 − (di(u)/h)2)2;
	 di(u)	=	� distance between census tract i and location u;
	 h	=	bandwidth; and
	 εi	=	error term.

For model diagnostics in this study, two common indexes were 
used: the R2 value and the Akaike information criterion (AIC). The 
R2 value measures the ratio of the variation in the dependent vari-
able, which was accounted for by the variation in the model and the 
possible values ranging from 0 to 1. When the R2 value is closer 
to 1, the corresponding model has a better predictive performance. 
AIC is another common measure used to compare models having 
the same independent variable. Models with a lower AIC value are 
preferable to models with a higher AIC value. AIC combines a value 
for the model likelihood and a penalty for the number of model 
parameters. This penalty prevents overfitting.

Results

The results described here are divided into three parts: (a) a cluster 
pattern index that uses the ANN index to examine the cluster patterns 
of ADA trips made during different periods, (b) kernel maps that show 
how the hot spots change over different periods, and (c) ADA trip 
generation models that use GWR and OLS models to fit the original 
ADA trips for each census tract area.

Cluster Pattern Index

The first step was to use the ANN index to define the cluster pattern 
for the ADA data. Table 1 shows the ANN value and the Z-value. The 
data were clustered when the ANN value was less than 1, and the 
Z-value was used to evaluate the ANN value’s statistical significance. 
A comparison of peak hours in the morning and afternoon for week-

days and weekends revealed two significant conclusions: (a) during 
weekdays, the pickup and drop-off locations of the ADA trips were 
clustered, and the drop-off locations in the morning and the pickup 
locations in the afternoon (the attractions) were more concentrated 
than the pickup locations in the morning and the drop-off locations 
in the afternoon (the productions); (b) during weekends, the pickup 
and drop-off locations of the ADA trips were still clustered, but the 
pickups were more concentrated than the drop-offs.

Kernel Maps

For a better understanding of the spatial-temporal characteristics of 
the ADA paratransit trips in the Houston area, kernel density maps 
were created for the data covering five periods: midnight to 6:00 a.m., 
6:00 to 9:00 a.m., 9:00 a.m. to 2:00 p.m., 2:00 to 5:00 p.m., and 
5:00 p.m. to midnight. Figures 1 and 2 show the kernel density maps 
for the ADA paratransit trip data obtained from weekdays and week-
ends, respectively. The hot spots are easily identified by their colors. 
Warm colors (yellows, oranges, and browns) in the maps represent 
hot spots. The locations of these hot spots are quite different between 
weekdays and weekends.

The results showed that during weekdays, in the morning peak 
hours the origins of the ADA trips were spread out across the whole 
study area, but most destinations were concentrated around the central 
hospital area. The pickup and drop-off locations in the morning peak 
hours were inverse to those in the afternoon peak hours. Further analy-
sis of the time and spatial patterns showed that many of the area’s trips 
were round-trips. Although direct information about the characteristics 
of origins and destinations is lacking in the data, it has been found that 
nearly all patrons of paratransit services begin their trips from their 
homes (3). Thus, the ADA outgoing home trips generated were related 
to the characteristics of the local residents. Obtained from the census 
data, the characteristics of the local residents in each tract (income, 
age, population, race, education level) can be considered predictors.

On weekends, the distribution of pickup and drop-off locations 
looked different. In the early morning (midnight to 6:00 a.m.), the 
trend was similar to weekday trends. However, the patterns of hot 
spots changed in later hours: the pickup and drop-off locations in the 
morning peak hours were not exactly the inverse of the afternoon peak 
hours. Also, the drop-off hot spots were more spread out and were not 
only around the central medical area. This result was determined to be 
reasonable because most public medical centers, social worker insti-
tutes, and government offices are closed on weekends. In addition, the 
hot spots of drop-off trips were closer to pharmacies or community-
based clinics (on Saturdays) and churches (on Sundays). Peak hours 
also changed on weekends. Peak hours for return trips shifted 1 or 2 h 
earlier. Figure 3 shows spider graphs of the number of trips per hour. 
For the distribution of ADA trips, Figure 3a is a spider graph of trip 
distributions sampled by time (hour) for weekdays, and Figure 3b is 
a spider graph of trip distributions sampled by time for weekends. On 

TABLE 1    ANN Values of Pickup and Drop-Off Location Data

Morning Peak (6:00–9:00 a.m.) (ANN, Z) Afternoon Peak (2:00–5:00 p.m.) (ANN, Z)

Pattern Pickup Drop-Off Pickup Drop-Off

Weekday Cluster (0.07, −284) Cluster (0.05, −282) Cluster (0.06, −271) Cluster (0.07, −272)

Weekend Cluster (0.13, −109) Cluster (0.15, −105) Cluster (0.23, −70) Cluster (0.24, −72)

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



Kuo, Shen, and Quadrifoglio� 149

FIGURE 1    Kernel density maps for ADA paratransit trip data on weekdays: (a) pickup and (b) drop-off.

midnight-6:00 am 6:00 am-9:00 am 9:00 am-2:00 pm 2:00 pm-5:00 pm 5:00 pm-midnight

  

  

(a)
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FIGURE 2    Kernel density maps for ADA paratransit trip data on weekends: (a) pickup and (b) drop-off.
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FIGURE 3    Spider graphs of trip numbers: (a) weekdays per hour, (b) weekends per hour, 
(c) Saturday per hour, (d) Sunday per hour, and (e) week per day.
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weekdays, there was a morning peak period from 7:00 to 9:00 a.m. and 
an afternoon peak period between 2:00 and 4:00 p.m.; weekends had 
no afternoon peaks. When weekends were separated into Saturdays 
(Figure 3c) and Sundays (Figure 3d), Saturday showed no obvious 
peak period for return trips, and two peak periods were observed for 
Sunday (7:00 to 9:00 a.m. and noon to 1:00 p.m.). Figure 3e shows 
trip distribution by day. On weekdays, there were 4,000 to 5,000 ADA 
trips per day; the average numbers of trips on weekends were 1,500 
to 2,000 per day.

The demand estimated from the models represented only the out-
going home-based ADA trips, and it is assumed that there would be 
an equal or similar demand for incoming home-based ADA trips (in 
the opposite direction). Future research could build on the ADA trip 
attraction demand model if researchers have information about the 
purposes of various trips.

ADA Trip Generation Models

The previous section showed that the production of ADA trips is 
related to the characteristics of local residents, and attractions are 
more closely related to locations of hospitals and specific medical 
institutions. Because of the availability of data and their easy appli-
cation in future studies, the characteristics of local residents were 
chosen as the independent variable and the demand for ADA trip gen-
erations in each census tract was chosen as the dependent variable. 
For specific applications, the models can be modified and applied to 
other regions, because the census data sets are nationwide and are 
routinely updated and maintained. The census data used in this study 
were 2010 data, which can be downloaded for free from the Bureau of 
the Census website. OLS and GWR models were built and compared.

Researchers chose their potential variables according to suggestions 
made in previous studies (5, 13). The operational variables were not 
included in this paper because these variables (fare, denial rate, and 
fleet size) are commonly used to predict demands served rather than 
latent demands. Certain specific variables (such as a lower education 
level ratio and average household size) were avoided because of the 
higher ratios of missing data, unclear definitions, or redundancies 
among explanatory variables. Two types of trips were tested as depen-
dent variables—all ADA trips and first outgoing trips from home—to 
fit the OLS models. There were 53,157 first outgoing trips from homes 
(about 48% of the total 110,587 trips); these trips were distributed 
through 597 census tracts. The results showed that use of all ADA trip 
data yields a very low R2 value (.06), and use of outgoing trips from 
home yields a higher R2 value (.38). This result is consistent with the 
assumption that trip generation is related to the characteristics of  
residents and that a removal of these ADA nonoutgoing home trips 
(trips made later in the same day) could increase the R2 value of the 
appropriate model. The independent variables included population, 
ratio of seniors (older than 65), ratio of people below the poverty line, 
and ratio of African-American individuals. Their coefficients and 
t-values are listed in Table 2. Other variables were tested but deter-
mined not to be statistically significant: low education ratio, average 
household size, male ratio, and Hispanic ratio.

Although the R2 value increased from .06 to .38, the residuals in the 
OLS models were clustered, not randomly distributed (Figure 4a). 
Figure 5a shows the residual values of each census tract area when 
an OLS model was used. The red areas are underestimated, and 
the blue areas are overestimated. The OLS models tend to under
estimate around the central areas and overestimate in the outlying 
areas. Therefore, use of the GWR model to fit these trip data is 

suggested because of its spatial relationship between the adjusted 
areas. The parameters of the GWR model changed from area to area, 
but the parameters of the OLS model were fixed for the entire study 
area. The R2 value of the GWR model increased to .56, and the AIC 
value was reduced from 8,925 to 8,660. The GWR model better fit 
this study’s trip model because of the higher R2 value, lower AIC 
value, and more random noise (Figures 4b and 5b).

The characteristics of the coefficient estimates for the four variables 
used in the GWR model are summarized in Table 3. For the population 
variable, the mean of the estimated coefficient for the GWR model is 
0.01 with a standard deviation of 0.01. The coefficients range from 
−0.004 to 0.056, and the model clearly has heterogeneity within the 
Houston area. Figure 6 shows the variations in the coefficient esti-
mates of each census tract. Figure 6a shows that the impact of popu-
lation on the model increases from rural areas to central areas. For 
example, if the population grows by the same amount in each census 
tract, the extra demand generated in central areas will be larger than in 
rural areas. In addition, the global coefficient from the OLS model and 
most of the coefficients (more than 97%) from the GWR model are 
positive, which means that a higher population generates more ADA 
paratransit trips, but few census tracts have negative coefficients. The 
situation is similar for the other variables (Figure 6, b and c), except for 
the ratio of African-American riders. Figure 6d shows that the impact 
of the ratio of AfricanAmerican riders in the model increases from 
downtown to the city’s outskirts. (The direction is reversed for other 
variables.) The results show that a larger population, a higher percent-
age of senior citizens, a higher percentage of African-Americans, and 
a higher ratio of people below the poverty line all increase ADA trip 
demand. However, these variables may have different levels of influ-
ence (and may even be negative) in different census areas. Although 
LaMondia and Bhat used a different data set, the R2 value for the linear 
regression of patron demand generation in their study was .494 (5). 
The results for the GWR method proposed in this paper show that a 
greater portion of the observed demand variance (an R2 value of .56) 
can be identified with use of fewer variables.

Unlike the conclusions reached by the study presented in this paper, 
the research by Koffman et al. highlighted that high levels of poverty 
in a service area can significantly depress demand (13). The differ-
ence between these two conclusions can be explained in several ways. 
First, the demand data of the two studies are drawn from different 
scales. In this research, the model was based on the demand data from 
a single city; the model built by Koffman et al. was constructed from 
data obtained from several cities across the United States. This implies 
that in the regression model the poverty rate suggests opposite effects 
on demand within a single city and demand between several cities. 
In addition, the independent variables used to construct the regression 

TABLE 2    OLS Model Specifications

Variable Coefficient t-Value VIFa

Population 0.01 7.2 1.1

Ratio of seniors 3.86 5.4 1.2

Ratio of people below  
  poverty line

100 6.3 1.3 

Ratio of African-Americans 185.3 12.7 1.2

Intercept −85.6 −5.9 na

Note: na = not applicable. R2 = .38; AIC = 8,925.
aVariance inflation factor, which measures level of collinearity; a small 
number is better. If greater than 7.5, redundancy.
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(a)

(b)

FIGURE 4    Spatial autocorrelation reports for (a) OLS model and (b) GWR model.
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TABLE 3    GWR Model Coefficient Estimates

Variable Coefficient Min. Max.
Standard 
Deviation

Parameter Increase 
Direction

Population 0.01 −0.004 0.056 0.01 Rural to central

Ratio of seniors 3.86 −4.87 45.9 7.9 Rural to central

Ratio of people below poverty line 100 −104.7 589.1 105.8 Rural to central

Ratio of African Americans 185.3 −353.4 381.3 113.2 Central to rural

Note: min. = minimum; max. = maximum. R2 = .56; AIC = 8,860.

(a) (b)

FIGURE 5    Residual distributions for (a) OLS model and (b) GWR model.

(a) (b)

FIGURE 6    Coefficient estimates of each census tract for independent variables in GWR model: (a) population and (b) ratio of seniors. 
� (continued on next page)
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models were not the same in the two studies. Other possible hidden 
factors, such as passenger characteristics, may be the true causal 
factors for demand prediction. General conclusions that would be 
applicable to all cases cannot be made, and further efforts are needed 
to investigate this issue.

Conclusion

The ADA paratransit service trip distributions used in this study 
showed both spatial and time concentration profiles. The GWR 
model successfully explained this spatial heterogeneity. The results 
of a comparison of the GWR and OLS models showed that the GWR 
model fit the study trip model better because of the higher R2 value, 
the lower AIC value, and more random noise.

The presented regression model showed that a larger population, a 
higher percentage of senior citizens, a higher percentage of African-
Americans, and a higher ratio of people below the poverty line all 
increased ADA trip demand. In comparisons with other studies, the 
model needed fewer variables but had better-fitting results. Also, the 
research presented here should be easy to apply to other study areas 
because census data are easily accessed. This study could be extended 
through combining the demand data with passenger characteristics 
(including age and sex) and trip characteristics (including trip purpose 
and distance). These extra key factors could be used to improve the 
model’s accuracy and the overall explanation. In addition, the inclu-
sion of the characteristics of temporal concentration in the regression 
models should be significant because the geographical concentration 
for ADA demand was identified as interactive with pickup times. 
These advanced models could help in the management of continuing 
increases in demand could be used to improve the overall performance 
of ADA paratransit services.
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FIGURE 6 (continued)    Coefficient estimates of each census tract for independent variables in GWR model: (c) ratio of people below poverty 
line and (d) ratio of African-Americans.
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