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We develop bounds on the maximum longitudinal velocity to evaluate t nd hel . lesign
of mobility allowance shuttle transit (MAST) services. MAST is affnew pt in tran that
merges the flexibility of demand responsive transit (DRT) systems with thg low-8ost operabi 1xed-route
bus systems. A MAST system allows buses to deviate from the fixedqgath s customer e service
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mations to compute lower and upper bounds. The resulting
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1. Introduction
Traditional fixed-route bus tr ems are
efficient for a wide range o tlons owin &f
loading capacity of the b well as
idatigné™e deshariﬁ § ever,

the general public
venient because e
and drop-off pei
service do
(lack of flexiifit

responsive transit (D
more costly to deplo

s such as demand
tend to be much
general transit service
#Hence, DRT systems are
jzed operations such as dial-

ties Act) uttle van services

a need for a transit system that
proy, plé service at a cost-efficient price. The
md llowance shuttle transit (MAST) system

e h concept that merges the flexibility of
DRT syStems with the low-cost operability of fixed-
route bus systems. A MAST service has a fixed-base
route that covers a specific geographic zone, with a
set of mandatory checkpoints with fixed scheduled
departure times conveniently located at major con-
nection points or at high-density demand zones; the
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ovative twist is that, given an appropriate slack
me, buses are allowed to deviate from the fixed path

to pick up and drop off passengers at their desired
locations. The only restriction on flexibility is that the
deviations must lie within a predetermined distance
from the fixed-base route. Customers can be of three
types: hybrid (having one service point at noncheck-
point location in the service area and the other one
at the checkpoints), regular (both service points at the
checkpoints), or random (both service points located at
noncheckpoint stops). Customers make a reservation
to add their desired pick-up and/or drop-off stops in
the schedule of the service. Regular customers do not
need a booking process to use the service.

Such a system already exists in a reduced and
simplified scale. The Metropolitan Transit Authority
(MTA) of Los Angeles County, California, introduced
MAST as part of its feeder Line 646. During the day,
this line operates as a regular fixed-route bus sys-
tem. At night, the line changes to a MAST service
with three checkpoints and a total service area of 12 x
0.5 miles? (6 miles of length between each pair of
checkpoints). Customers may call in to be picked up,
or may ask the operator to be dropped off at their
desired locations if within the service area. Most of
the customers (80%) are hybrid, and the remaining
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Primary direction

A\

Figure 1 Primary Direction of MAST Services

20% is evenly distributed among regular and random
types.

In the case of public transport, the main purpose
of these systems is to move customers along a pri-
mary direction (see Figure 1), which may be around a
loop or back and forth between two terminal check-
points. A higher demand served per vehicle would
allow the service to be more cost efficient. However,
the more demand that is served, the slower the vehi-
cles would move because of the deviations and ser-
vice time needed for pick-ups and drop-offs, causing
the service to become less attractive to customers.

The purpose of this paper is to model the relation-
ship between the velocity along the primary direction
of a MAST service and the demand to assess the pe
formance of these types of systems and help in
design process. A minimum threshold value of %
velocity can be used to set the maximum sla

allowable between checkpoints and to d e
maximum demand level that can be sSggfd by one
vehicle and the number of vehicles to beWg ployed
per line to serve all demand. QP

The computation of the veloci ehicle a
the primary direction depend$§on solving the %
cle routing problem among and pointsy

is a known NP-har Even ﬂ1

real problems are ugh to ally
by enumeration, w, contin 1mat1on
assumptions to pper and bounds of

the maxi

2 j vehicleNpetween pairs
» gkpoints erent demand levels.
This analytical effort de reltionships for higher
demand as well create @ dology to quickly eval-
uate different desigfM\gcegari@s. We then plot the rela-

tionship betwe elocity and the demand to
evaluate the per ance of the system at different
demand 1 and provide insights on the design of
the syste

r of this paper is divided as fol-
diion 2 provides a literature review. Sec-
es the system. Section 4 provides the lower
bound 6t the optimal longitudinal velocity. Section 5
discusses the optimality of the no-backtracking rout-
ing policy needed to obtain the first upper bound
presented in §6. Section 7 derives the second upper
bound. Sections 8 provide an estimate of the veloc-
ity from an approximate formula. Section 9 discusses

the performance and the design of the MAST service.
Finally, §10 presents the conclusions.

2. Literature Review

MAST systems have been recently studied by re-
searchers. Quadrifoglio, Dessouky, and Palmer (2006)
developed an insertion algorithm to schedule a MAST
system; in this paper the efficient use of control
parameters significantly improved the performance
of the algorithm. Zhao and Dgssouky (2004) st

tic approach. Malucelli, N
also approached the pro
overview of ﬂex1b1e

Malucelli, and @ e MAST
concept and i orpo ted it in a #Qoréwgeneral net-
work settj viding a atlcal formu-

lation. Othi works studyl ination of fixed
rvices in Cortés and

and flexfb
Jaya '2002) a, b), and Aldaihani
an De uky (200

jonal contr

pnmanly focus on the

scheduling of such systems.
S paper we 1hze continuous approximations to
stimate the f the parameters of the system

uring the d 2ar hase As noted by Daganzo (1991),
the maj rpose of this approach is to obtain reason-
ab s with as little information as possible.
also pointed out that continuous approxi-
s are useful in developing models that are easy
prehend; on the other hand, he observed that

ese models should not replace but supplement the
more detailed mathematical programming models.

There is a significant body of work in the literature
on continuous approximation models for transporta-
tion systems. Most of the work has been developed
to provide decision-support tools for strategic plan-
ning in the design process. Langevin, Mbaraga, and
Campbell (1996) provide a detailed overview of the
research performed in the field. They concentrate pri-
marily on freight distribution systems while in this
paper we focus on public transport, but most of the
issues of interest are common to both fields.

Pioneering research on continuous approximation
models dates back to the 1950s Beardwood, Halton,
and Hammersley (1959) provided the first approxi-
mation formula to estimate the length of a travel-
ing salesman problem (TSP) tour in a compact zone
with uniform demand density. Stein (1978) and Jaillet
(1988) integrated their work by estimating the value
of the TSP tour length in case of Euclidean and rec-
tilinear metrics. In general, geometrical probability
has been extensively studied to provide estimates
on the average distances among points for differ-
ent shapes. We mention in this area the work of
Ghosh (1951), Fairthorne (1965), Schweitzer (1968),

<
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Christofides and Eilon (1969), Bouwkamp (1977),
Ruben (1978), Daganzo (1980, 1984b), Vaughan (1984),
Koshizuka and Kurita (1991), and Stone (1991). Simi-
lar works on estimating TSP length have been devel-
oped from a more theoretical and multidimensional
point of view by Verblunsky (1951), Rhee (1993), and
Stadje (1995). The work of Daganzo (1984a) is espe-
cially related to this paper because it introduces the
concept of “strip strategy,” providing an approximate
estimate of the optimal width of a corridor to min-
imize the distance between points and therefore the
length of the TSP tour, while employing a simple
no-backtracking routing policy along the strip. In our
paper, the MAST system’s service area has been mod-
eled as a corridor.

Szplett (1984) provides a review of the research
performed on continuous models specifically for
public transport. In this area we cite the work
of Newell (1979), Mandl (1980), Ceder and Wilson
(1986), LeBlanc (1988), Chang and Schonfeld (1991a,
b), Chien and Schonfeld (1997), and Aldaihani et al.
(2004) that studied the optimality of bus network
systems. Lesley (1976a, b), Wirasinghe and Ghoneim

mality of spacing between bus stops.
Continuous models have also been utilized to EE

‘ otal numb,
(1981), and Kuah and Perl (1988) analyzed the opti 6 ectangle is

ine DRT systems. Daganzo (1978) used

mate analytical model to study many,

systems; Daganzo (1984c) also analytic tudied a
transportation system, where centralized c ckpomts
are used to cluster together e m deman
Jacobson (1980) made use of a al mod

DRT systems as well. Diana, D ouky, and

provide an analyt1ca1 mode mine the

of a DRT system.

3. System D Xﬂon

for ouf” analysigfconsists of a
w and th L > w oriented in
irection, gepgesenting a segment of a

delimit @ o consecutive check-
points with coordifigte w/2) and (L, w/2). The

complete MAST. would have similar segments

R of the rectangle, with density 2p per unit
number of regular and random customers
are th ame (as for the real MAST Line 646 in Los
Angeles), the density of the customers is also 2p. For
purpose of illustration, we assume that vehicles travel
with constant speed v, have infinite loading capac-
ity, and follow rectilinear paths within the rectangle.
Dessouky, Ordéfiez, and Quadrifoglio (2005) show

that these two latter assumptions are quite reasonable.
At the pick-up/drop-off points, there is a constant ser-
vice time of s.

Vehicles follow a forward progression through the
rectangle in either a left-right or right-left direction.
This means that a left-right (right-left) vehicle trav-
els from the left (right) checkpoint to the right (left)
checkpoint of the rectangle and only serves pick-up
stops whose corresponding drop-off is to their right
(left) or drop-off stops whose corresponding pick-up
is to their left (right). This is onl a reasonable oper@at-
ing policy, but not necessari
corresponding pick-up (
be within or outside the s
of the checkpoints (s

The general gfstem
cles traveling along t

U 2

present i
rectangle, b
e of the erved by two

ssume that
2p represets o
vehicles: ENﬁ—j‘ight one ht-left one. The
problen@ etricg n%n yze only the left-
S

eral vehi-

righ 1th a dg ity per unit area of p
sto

of 18
en by

-right (or right-left) stops in

n=pwlL. @)

mal velocity V of the vehicle is defined
t which the vehicle moves in the horizon-
on that has the average given by

y-Lf__L o)
t p/uo+mns

where t is the total time spent by the vehicle while
traveling between two checkpoints, p is the length
of a rectilinear Hamiltonian path among all the ser-
vice points (respecting the customer precedence con-
straints), and ns represents the total service time
(ignoring the checkpoints).

We assume that the problem (P) is simply to min-
imize p (with optimal value p*), which corresponds
to maximize V (with optimal value V*), to evaluate
the maximum possible demand served by the sys-
tem for each V. We do not consider other perfor-
mance measures such as total waiting time and total
passenger time, essential for more accurate analyses

T->

L
O Checkpoints  © Pick-ups L-R: left-right vehicle
e Drop-offs  R-L: right-left vehicle

Figure 2 Right-Left and Left-Right Vehicles
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at the operational level (Quadrifoglio, Dessouky, and
Palmer 2006).

The system parameters and the notation used in the
paper are as follows.

width of rectangle (miles)

length of the rectangle (miles); L > w

average vehicle speed (miles/hour)

service time for pick-up/drop-off (hours)
demand density of the “left-right” stops (stops/
miles?)

V  longitudinal velocity of the vehicle (miles/hour)
V* optimal (maximum) value of V

i=1,...,neN setof all “left-right” stops (pick-ups
and drop-offs)

longitudinal coordinate of i, increasing from left
to right (miles)

y; lateral coordinate of i, increasing from bottom to
top (miles)

D w Q=8

X

1

We use v =30 miles/hour and s =30 seconds in all
the experiments performed throughout the paper.

4. Lower Bound of V
Let us consider a no-backtracking policy, allowing th
vehicle to move only in the forward direction (1e
right) and serve all the demand, as illustrated i 1n

ure 3. Because by assumption the customers

by a left-right vehicle have their drop- n
the right of their pick-up, this policy g tees fea-
sibility because all origins are served be&fpre their
destination points, satisfying allL.cu
constraints. However, this poli

straint and developin e
this simple no-backgraekin
lower bound on th i

provide optimalijty.

inal velggitygis giWen by Equation (2),
where the rectilinear | @ ian path p is the sum
of the distance trafgle@longitudinally by the vehi-
cle (that is si ecause we are assuming a

no-backtracking
laterally (g

rtical direction). Let /, be a ran-
dicating the lateral distance traveled

Figure 3 No-Backtracking Policy

between any pair of stops in the rectangle and [ be
a random variable indicating the lateral distance trav-
eled from/to a checkpoint to/from any stop in the
rectangle. Laterally, the vehicle will travel /! from the
starting checkpoint to the first stop, then [, for n—1
times between each pair of stops and [/, from the last
stop to the ending checkpoint. With uniform demand
the expected values of [, and l/y are given by

E[l,]=~ and @
E[l,]=
Therefore, for a no—ba g ohcy the cted
values of p and t_in K - ) are
Elp=L 2El/ —l—(n—&
w’L
\ ’ Q ©
Pl il L w
v + +S)+v+6v' (©)
expected ue of the lower bound on V* is

y well approximated and lower
] (from the Jensen inequality: For

t], whic
ounded by
a rand variable z, E[1/z] > 1/E[z]). Therefore, we

lower bound V! by

L_L v

EIN=Y TE] 1+ pw(sv+w/3)+w/(6L)

7)

T precede’
t necessari ote that V! is inversely proportional to w, s, and p.
i b We can verify that Jensen’s inequality produces a

tight bound in the following Table 1, which shows
that Equation (7) provides a good estimate of the true
lower bound E[L/t] computed by simulation for dif-
ferent values of p. The simulation values are obtained
by averaging 10,000 replications for each p consid-
ered. In each replication we considered a corridor
with w = 0.5 miles and L =6 miles.

5. Optimality of No-Backtracking
Policy

Before estimating the first upper bound we want to
focus on the strip strategy introduced by Daganzo

Table 1 I/t Values: Analytical vs. Simulation
Vt (miles/hour)
p Equation (7) Simulation
1 24.54 24.56
5 14.59 14.61
10 9.69 9.70
50 2.62 2.63
100 1.37 1.37




Quadrifoglio et al.: Performance and Design of Mobility Allowance Shuttle Transit Services

Transportation Science 40(3), pp. 351-363, © 2006 INFORMS

355

(1984a). He showed that good solutions of the TSP
tour, for any shape of the service area, are obtained by
cutting a swath covering the whole area and having
the vehicle drive along the resulting long strip while
serving the demand uniformly distributed in the area.
He claimed that by selecting a proper width of the
strip a simple no-backtracking policy produces good
results in terms of the total distance traveled.

We want to determine if there exists any suffi-
cient condition on the locations of the demand points
that would guarantee optimality of a no-backtracking
routing policy. This would allow us to select a subset
of points that satisfy this condition so that we can uti-
lize the no-backtracking routing policy to serve them
optimally. The longitudinal velocity to serve this sub-
set will be an upper bound on V*.

To find out whether this sufficient condition exists,
let us consider a left-right vehicle following a Hamil-
tonian path (o) among a set of demand points. Refer-
ring to Figure 4, consider points j, h, and k. We
assume that x, < x; and x, < x; and that the back-
tracking subsequence ...—j-h-k—... is part of path a.
We want to determine if there exists a condition on x,
with respect to x; and x; to guarantee that a reinser-

tion of h earlier in the schedule in a no—backtrackin%_h

fashion will always lead to a shorter total dist
traveled.

We note that it is always possible to ig t@o
consecutive points a4 and b earlier i 4@. ule
such that x, < x;, < x, (at the limit, weN€an have a
be the starting checkpoint on the leff and /r b =

Therefore, we have path « fo& he sequen
—a-b—...—j—h-k-.. \
Consider another path (B) llows the s ce

o.m=h=b—...—j—k—... wi elnserte

a and b in a no-back

Let us compute § en in
the two cases, consi portlons
of the sequence ha d . Path «
ylelds tot

e, be — ¥l
+ X — X+ 8)
For the path B
= Yal + 25 — X5+ |y — vl
=X+ 1y =yl ©)
b (¢
a )
w J
[} S—
k
Patho. - Path B

Figure 4 Two Different Paths to Serve Points a, b, j, h, k

We want to determine the minimum longitudinal
distance between h and j and/or h and k needed
to guarantee that path 8 will always be better than
path @ in terms of minimizing the total distance
traveled. Therefore, we impose the condition Iz <1,
and after a few passages we obtain the following
inequality:

X+ X =[x — x;[ — 2,
|yh J/a| +lye =yl — |yb Yal
+ e —yil = | =Yk = Yul-
Depending on the ran 1 p051 he
points along the ¢ maxi Ossible

value for |y, —
is located on t

respect to
can be at &;‘
1n betw

Yl

yhl — e —
located laterally

if) isess than 0. There-
ation (10) is less than
e have that the inequal-

(11)

is is the ent condition on the longitudinal

positio%h, with respect to the closest (longitudi-

na between j and k, that would guarantee
t insertion of & somewhere earlier in the
ule in a no-backtracking fashion between some

s a and b would always lead to a better solution
terms of shorter distance traveled.
Given the result obtained by Equation (11) we can
state the following:

ProrosITION 1. Given a set of points randomly dis-
tributed along a corridor of width w and length L, the
shortest Hamiltonian rectilinear path from the first point
on the far left to the last point on the far right is the
sequence of points ordered by increasing longitudinal coor-
dinate (no backtracking), as long as the minimum longitu-
dinal distance between any pair of points is at least w.

Proor. Consider a set of points identified by i =
1,2,3,... €l and ordered by increasing longitudinal
coordinate (no backtracking), and let the minimum
longitudinal distance between any pair of points
be at least w. Assume that there exists an optimal
sequence A ordered not following a no-backtracking
policy; the position of each i in A is identified by A(7).
Let us consider the point with the smallest i; €I s.t.
ip # A(iy) € A. We can show by Equation (11) that rein-
serting i, in A such that i; = A(iy) and readjusting all
other A(i) accordingly leads to a better solution. How-
ever, this is a contradiction because we supposed A
to be optimal. Therefore, the no-backtracking policy
is optimal. [
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6. First Upper Bound on V*
To create an upper bound on V* we first identify a
subset G[g(1), g(2), g(3),...] €N of points such that
the longitudinal distance between any pair of them is
as small as possible but at least w. By Proposition 1
we know that the optimal routing policy to serve
the subset G is given by a no-backtracking sequence.
We then assume that all the points i e N, but i ¢ G,
will be served as well but that no additional lateral
deviations are required to reach them. This is a sub-
problem P’ (with optimal value p™*) of the original
problem P. We know by construction that p™ < p*,
because in computing the total distance traveled in P’
we are ignoring some of the vertical deviations and
possible backtracking portions of the path needed to
attain p*. Therefore, this policy guarantees optimality
of the subproblem P’, without assuring feasibility of P,
and represents a lower bound on the total minimum
distance traveled (thus, an upper bound V*).

To construct the subset G from the set N, we can
use the following algorithm.

ALGORITHM 1.

1. g(1) is the first point on the far left of the cor-
ridor.

right of g(i); withi=1,2,3,.

3. Repeat Step 2 until there are no m

As an example, referring to Figur
include Point 1 in the subset G; then fr
zontal coordinate x; we move w u
right and we include in G the
point to the right of the locati
we proceed in this fashio
and 14.

Let n; be a disgr om var b sent-
ing the number of& in the g n=
ne =1. In the app we comp ytlcally its

we flI'St
its hori-

nally clog

expected value fOgn #2 and ctively given
by Equatio nd (37 'th w = 0.5 miles and
L = 6 miles We have n = = 1.84 and E[ng |

n = 3] = 2.56 {verified
distribution of n f
to develop, th

yulation). However, the

approximations.
sitions at which points lie form

(locally) @ on process with rate pw. Thus, the

Figure 5

Subset G: Longitudinal Distance of at Least w Among Points

2. g(i+1) is the longltudmally closest point to % Q I —E[L]
right of g(i) after a “jump” of w units of length to E[ng]

f length to @ expected value of p is similar to Equation (4),

expected value of the longitudinal distance I, between
two consecutive points in N is given by

1
Bl = (12)

Whereas the longitudinal distance I, between two
consecutive points in G forms a renewal process and
its expected value is given by

E[l']_w+E[1A

where w is the m1n1 uired di tween

points in G.

The posmon £ the irst point 1n& e longitudi-

nally closegt pot the rlgh tarting check-

point, wi expected 1 al coordinate of

E [l 1= ith L/ gl gl¥we can apply the

theoredf] dmassume that n; — 1 is nor-

di r1buted withgmean (L — E[,])/E[l.]. Hence,
ected va of ng can be estimated by

L—l/(pZU)
EL] wr1/(pw)

pr 1
pw2 +1°

(14)

ith E[n;] replacing n. Thus, in this case the expected

xl +w (P 01n& values of p and t are given by
ing in G

E[p] =L +2E[l,] + (E[nc] — DE[!,]

1 pwL —1
E[t]= @ +ns
L w[l pwL —1
= [ 3pwP § 1)] + pwLs. (16)

Finally, the upper bound on V* is formally given by
E[L/t], which is well approximated by L/E[t] if ¢ is
sufficiently large (as it is, because its minimum pos-
sible value is L/v + pwLs) and Var[t] is low enough.
Therefore, VY is given by

L . v
E[t] 1 pwL —1 >
+—
2 3(pw?+1)

1%

VU

17)
14+ pwsv+ — (

As for Vt, VU is inversely proportional to w, s, and p.
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Table 2 /Y Values: Analytical vs. Simulation
VY (miles/hour)
p Equation (17) Simulation
1 24.79 24.00
5 16.31 16.04
10 11.90 11.77
50 3.95 3.93
100 2.16 2.16

As done for VE, we can demonstrate the accuracy
of Equation (17) as a true upper bound for E[L/¢]
through a set of examples computed by simulation for
different values of p (10,000 replications for each p,
with w = 0.5 miles, L =6 miles), as shown in Table 2.
Note that the simulation values are upper bounded
by the values obtained with Equation (17).

7. Second Upper Bound on V*

To produce the second upper bound we again remove
constraints from problem P. The Hamiltonian path
among all the points requires exactly one incoming
arc and one outgoing arc at each node of the network
so that all the points are connected to complete t
tour. We remove the first assumption allowing un{
ited incoming arcs at any node, but we still i

exactly one outgoing arc from each node ti
we remove the customer precedence c his
is another subproblem P” (with optimal vValue p"*) of

/1%

which is a lower bound on p* and which therefore
yields to an upper bound on V*.

We know that uniformly and randomly scattered
points follow (locally) a spatial Poisson distribution.
Specifically, the number of points I'(A) within the
area A is a Poisson random variable and its distribu-

tion is given by
P

P{r(A) =q} =

A)1
@e% =0,1,2,3, ...
with expected value equal to p4.

Let D be the random va

tance of the closest neighh

indicating the

want to calculate E[D]. say that b
F(d)=P{D (19)

where A(d) is ared around i withy rectlhnear dis-

tance d f e corrido pefiding on x, y,

and d
compu

ing 1
thave nine differ@géfScenarios for the
tdti A(d), s@ 1® Figure 6. In the
S oints i € N located in a
(0<x<L/2and 0<y <w/2)
We also ignore the effect of

e of its s

ght edg e rectangle (at x =L).
Case 1. A(ﬁ
Case 2. A( d>—(d—y)?*=d*+2dy — y
Case (d) 2d* — (d — x)? = d? + 2dx — x2.

=202 — (d —x)* — (d — y)* =2d(x + ) -

A7
Ad)y=([d+y)x —x?/2+d*/2+dy —y*/2 =

d(x+y)—(1/2)(x —y)*.

the original problem P. p”* is given bywthe summati
over all the stops of the arcs confech y stop t8 ] t Case 6. A(d)=2d*>—(d—y)*— (d+y — w)* =2wd —
closest neighbor. In other wor , we dre statin, 2y2+2wy —w?.
from each stop the vehicle ' ravel at le Case 7. A(d)=2d*>—(d —x)>—(d—y)*— (d+y—w)?
closest neighbor; the % all stops ‘pr = —d?+2d(x + w) — 2y> + 2wy — x> — w?.
\\ Q Case 3 “, Case 4 \\\ Case 5
) \'I d—xi 4 ‘\, "\\
i x i d-x1 g ] i
;'! Y ;’! *y / x s
| "-. sy ’
_—C;l;e_7_ _____________ 1'\ Case 8 \“J.";. ____________ E:;l;e—9
d+y—W l,':l d+y—w L Ill
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Figure 6

A Depending on x, y, and d
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S is an indication of the effect of the top and bottom
’ edges of the strip on the calculation of E[D].
y=—(51/2)(X—W) If w,/p — oo, we can approximate E[D] by com-
puting A(d) only for Case 1. For the majority of the
Y= wex points, the probability of finding the closest point in
y=x an area defined by other cases is negligible, either
'_ because the edges are too far (large w) or because the
w. w2 T 5\ v density p is very high. Therefore,
0.63 63
/3 E[D ~f eigi=- | T~
Wi N D E [ | w\/ﬁ% Oo] / 2 2p
5 If w,/p — 0 and ignoring the &ffect of the left
of the rectangle, we can gpgroXignate E[
1 puting A(d) only for Ca$ or4he maj
wid o wi2 w2 points, the probablht ORgling the mt in
Figure 7 Zones with Different Sequence of Cases to Compute A(g) ~ an area define an 2is le, either
with Increasing o because w is ry s all or the dégsitymi€ very low.
Therefore we 0
Case 8. A(d) = (d+y)x —x*/2+d*/2 +dy — y*/2 — E[D|w
d+y—w)=—-d*24+d(x—y+2w) —x*/2 +xy —
3y%/2 + 2wy — w?. *2 dddy——. (23)
Case 9. A(d) w(d +x) — (w—y)*/2—y*/2 = wd + pw
w(x+vy)— w?/2. 0 corresp ds tovthe expected distance of the

The expected value of D depending on x and y is

given by

EID(x, )] = | F(d)dd =

The sequence of scenarios and formula
to compute A(d) in Equation (20) w1th in
is different depending on the z
located (see Figure 7 and Tabl

considered we finally obtai

Averaging over all values f

4
E[D] = —
D] L, w
Equation 21)@\(& havgra clo
sion, but \‘9 an rexami imiti
the valu the Parameter w,/p.

depending o

Table 3

e~ PAW)

be

and y in

[D(x

asmg d

used

1)

orm expres-
o limiting scenarios

This

st point (ig er direction) in a one-dimensional

ase with all‘ ts uniformly distributed along a
1r1e with hne density pw.

We rmed numerical integrations on Equa-

i @d (21) with w = 0.5 miles for three values

and oo miles) and different values of p.

sults are shown in Figure 8 along with the fig-
computed by simulations (10,000 replications for

gch p considered).
Int and Sim refer respectively to the data com-

puted by numerical integration and simulation for
each L. Limit 1 and Limit 2 refer to Equations (22)
and (23), respectively. The Int data closely match
the corresponding Sim data especially for higher p,
confirming the negligible effect of the ignored right
edge when performing the numerical integration. For
lower p and lower L the discrepancies are slightly
more noticeable also because the spatial Poisson

Compute A(d) with Increasing d, for Each Zone

Zone
Case A B C D E
1 <d<x O<d<x 0O<d<y O<d=<y O<d<y
y<d<x <d< y<d<w-y
x<d<y x<d<y
ysd=<x+y y<d=w-y x<d<x+y x<d<sw-y

© o N o O

X+y<d<w-y

W—y<dsw-y+x
d>w—-y+x

w—y<d<x+y
X+y<sdsw-y+x
d>w—-y+x

X+y<d<w-y

w—y<d<x

wW—y<d<x+y XxX<d<x+y
W—y<d<w-—-y+X X+y<d<w-y+x XxX+y<d<w-y+x
d>w—-y+x d>w—-y+x d>w—-y+x




Quadrifoglio et al.: Performance and Design of Mobility Allowance Shuttle Transit Services

Transportation Science 40(3), pp. 351-363, © 2006 INFORMS

359

- - Limit1 —e— Int (L—os) —8— Int(L=6) —— Int(L=2)
EIDINP | —. Limit2 o Sim (L—e0) O Sim(L=6) < Sim(L=2)

1.2
0.9
0.6
0.3
0 1 2 3 4wip
Figure 8 E[D] vs. Simulation and Asymptotic Limits

distribution becomes less accurate when the total
number of stops in the rectangle is too low. The chart
shows that the curves are asymptotically bounded
by the two limits for w,/p — 0 and w./p — > as
expected. The left edge has the effect of increasing
E[D] with decreasing p and this becomes more rel-
evant with decreasing L, in fact, the three curves
diverge for w./p — 0.

Assuming that the vehicle travels E[D] miles from
each stop (including the starting checkpoint) to its
closest neighbor, the expected values of p and ¢ in thi
case are given by

E[p] = (n+1)E[D] and @4)
E[t]= @ +ns= pr[E[f] (25)
Finally, the second upper bouif is formﬁ

given by E[L/t], that is well agproxifffated b
(w1th t far from 0 and Va 6 1) and, tk

VY is given by

" L
v E — (26)
As for VE oportional to
w, s, and p
As done RV a e cah verify by Table 4

the good estlmates

IO §

py Equation (26) on the

lues: Analytical vs. Simulation

VY" (miles/hour)

Equation (26)

e — Simulation
L=oo L=6 L=6
1 33.38 27.14 29.12
5 19.54 19.07 18.97
10 12.46 12.35 12.30
50 3.49 3.48 3.48
100 1.90 1.90 1.90

different values of p (10,000 replications for each p,
with w = 0.5 miles, L = 6 miles). We also include a
column with the values computed with Equation (26)
utilizing the E[D] values for L = .

Note that the simulation values are upper bounded
by the values obtained with Equation (26) for p > 1. In
addition, the values calculated by Equation (26) with
L =0 are a tight upper bound of the ones with L =6
miles, showing that they could be used conservatlvely
to estimate VU" for any value of L. Moreover, w
p — oo, by applying Equation €2) and ignorin ()
starting checkpoint, the asy ic value for,

given by
Q v+ 0 63 (27)
e Valu *

We kno eardwood and Hammersley

(1959 let (19 length T of the opti-
r for r etric visiting M points
uted randomly Mya region of area A is approx-

by the f owmg formula:

T 0.97VAM (28)

This f@a provides better approximations with
of M.
e use of this result for our case, we assume
e MAST vehicle is driving along a long cor-
idor that is shaped as a loop, having the start-
g and ending checkpoint coincide. With L >» w,
we can approximate the ring-shaped service area as
A =wL and estimate the optimal length of the tour by
Equation (28) for different values of M = pA = pwL.
Because the total time t, spent to complete a loop is
given by

T 0.97
tﬂ=;+Ms=Lw\/ﬁ<7+\/ﬁs>, (29)

the resulting approximation of the optimal longitudi-
nal velocity V4 is given by
L v

VA= =
t,  pwsv+0.97w./p’

(30)

which has the same form as the asymptotic value
of VU for p — oo, given by Equation (27), with
0.97 replacing 0.63. As for VL, VY, and V¥, V4 is
inversely proportional to w, s, and p. However, V4
goes to infinity when p goes to zero, confirming that
Equation (30) does not provide good estimates for
low p. We need to emphasize that V4 is neither an
upper nor a lower bound of V*, and it does not con-
sider the customer precedence constraints.
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9. Performance Evaluation and

Design Issues

We are now able to plot the lower bound V*, the
upper bounds VY and VY, and the approximate
value V4, respectively, using Equations (7), (17), (26),
and (30). In addition, we computed V' represent-
ing the longitudinal velocity while implementing
an insertion heuristic algorithm minimizing the dis-
tance traveled to schedule the uniformly distributed
demand. Insertion algorithms generally provide good
feasible solutions and are widely used for scheduling
DRT systems, but they do not guarantee optimality.
Thus, the resulting values represent a lower bound
for V* as well. However, they cannot be quickly
computed for any scenario like V' because they do
not have closed-form expressions and are obtained
by simulation (1,000 replications averaged for each p
considered).

We analyze two different cases, with L = 6 miles
and w = 0.5 miles (see Figure 9) consistent with
the existing MAST system (Line 646 in Los Angeles
County), and L = 6 miles and w =1 mile (see Fig-
ure 10). As mentioned in §3, we also assume v = _
30 miles/hour and s =30 seconds.

We note that in both charts V* and VY conv
for lower values of p because they both prov
ter estimates for lower p. VU is a tight
VY for higher p and this is more evide the case
with @ =1 mile. The gap between VL ang, VY /vY”
does not diverge significantly w,

]
f=}

—_
=}
4

w=1]

)
.

—_
'S

—_
%)

AN
N\

V (miles/hour)
>

4
E}
™
]

13 15 17 19 21 23 25 27 29

p (points/m s2)
Longitudinal Velocity &y vs-“Bgmand Den 0
Mile

because the nagfower

tions from the

with Prop@gition
Even l:)NMAST seryg designed to pro-
vide a %\' able de¢ ‘@r service, customers
ably p femthe service as being too
velocity alofig the primary direction would
yefow a threghold vdlue. According to a random
of the t es of various fixed-route bus lines
Los Angel@:nty, regular fixed-route buses gen-
erally achieve df overall average velocity along their
roytes out 15 miles per hour, depending on the
stops placed in the route and the num-

stomers to be served (they can go as fast
mlles/ hour for interurban fast lines and they

Figure 10

tter solu-
(in accordance

dor guar
-bagktracking

s

different factors, but typically the faster the service

%smg p mgt n go as slow as 10 miles/hour for downtown ser-
taining a reasonably narrow rapge. approx ices). The demand will generally vary depending on

value V4 falls in the middleNgf this range

for smaller p, because V4 nger a

mate for low-deman 1st1c
curve V! lies a littl them

slightly increases wi howin j mprove—
ment provided@ Inserti BgisplC algorithm
over the ni ing is more evident for

denser dem is gap is smaller for w = 0.5 miles,

18 4
[w=05]
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= 141 1
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Figure 9 Longitudinal Velocity (/) vs. Demand Density (p); w =0.5

Miles

the higher the demand. However, we assume that
customers would be willing to sacrifice some of this
velocity for the convenience of being picked up and
dropped off at their desired locations. We observe that
p represents the density of the stops of customers that
are either picked up or dropped off (or both) in a ran-
dom location. MAST systems also serve the regular
customers that rely on already-scheduled checkpoints
for both their service points, not requiring any devia-
tions from the main route. Thus, the latter type of cus-
tomers clearly would not welcome a slower service.
Therefore, the allowed reduction on the longitudinal
velocity should be tailored to the customers’ type dis-
tribution: the more customers are regular, the faster
the service should be.

The existing MAST Line 646 serves a very low at
night demand of about p = 1-2 customers/miles?; the
width of the service area is about w = 0.5 miles that
allows the system to properly serve all the customers,
maintaining a relatively high longitudinal velocity of
25 miles/hour. Heavier demands would require either
a lower longitudinal velocity while maintaining the

c©
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same service area, a narrower width of the strip keep-
ing the same longitudinal velocity, or more vehicles,
thereby reducing the cycle length.

As an example, we assume the minimum accept-
able V of a MAST system to be 10 miles/hour, 33%
less than that of average fixed-route buses; we sup-
pose that below this level the demand would radically
drop because it is too inconvenient. From the charts
we note that the demand density that can be served
corresponding to the value of V =10 miles/hour is
in the range of p = 9.5-13.5 customers/mile? (when
w = 0.5 miles) and p = 3.5-5.5 customers/mile? (when
w =1 mile), according to the values provided by
the bounds. Recall that p represents the density of
the stops served only by the left-right vehicle and the
total density served by both vehicles is 2p. Therefore,
the system would be able to serve at least 2 x 9.5 x
0.5 =10 stops every mile of the corridor (when w =
0.5 miles) and 2 x 3.5 x 1 =7 stops every mile of the
corridor (when w =1 mile).

In Figures 11 and 12 we also show the relation-
ships between the demand and the total capacity (K =
pwV stops/hour) of the system, considering both
vehicles. KL, KY, KY', K4, and K! plot the values of
the capacity for each p and correspond to the velocj
curves in the V/p charts with the same superscfit.
The ranges of density and capacity correspon
V =10 miles/hour are highlighted. @

The MAST system would be able to etween
90 and 130 stops per hour for the Sgase with

w = 0.5 miles, maintaining a lo dinal” veloci
V =10 miles/hour, and betweer¥§0 20 stops

hour for the case with w = l4fnile. This result
gests that doubling the widj e service a& S
not substantially affect a% ormance

tem in terms of its capfict

velocity V, is inver
and v.

K (points/ hour)

123 45 6 7 8 9101112 13141516 17 1819 20 21 22 23 24 25 26 27 28 29 30

p (points/miles®)

Figure 11 Capacity (K) vs. Demand Density (p); w = 0.5 Miles
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Figure 12 Capacity (K) vs. Demanaﬁ(p); w=1
deviations. For example, he dssumeg

acceptable longitudi of V= hiles/ hour

and L =6 mile t terval be @ he check-

points considefed wduld be At =&

tim out 23 miygfiteg, ®@nough to serve
N ¢

60 noncheckpgi 0 per vehicle)
iles. I d@ Qgowing the actual
rate i 36 rea, it would be pos-

dy and assign the number
atisfy it properly.

-

er and lower bounds on the maxi-
mum @u mal velocity of a MAST vehicle using

icles to the line {8
Con@Ls
conti spapproximations. We also provided val-
ug, ongitudinal velocity from approximation
or and simulation using an insertion heuris-
orithm. The gap between the bounds remains
latively small with varying demand and provides
s with a useful tool to evaluate the performance of
MAST systems. Results show that the system is able
to properly serve a reasonable demand while main-
taining a relatively high velocity. While the longitudi-
nal velocity of the vehicle is considerably affected by
a widening of the service area, the capacity of the sys-
tem (in terms of customers served per hour) is only
slightly influenced. The relationships between veloc-
ity and capacity versus demand density can be ben-
eficially used in the design process to set the slack
time between checkpoints and other parameters of the
MAST system.

Future research on MAST systems could focus on
studying the system under different demand dis-
tributions and designing efficient networks of this
type of service to cover wider service areas. The
combinatorial nature of the problem would also
require the development and analyses of efficient
algorithms to schedule the vehicles interconnected in
these networks.
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Appendix

As an example related to §6, we want to derive the expected
value of ng for when n =2 and n = 3 stops. The longitudinal
coordinate x; of each of the stops is uniformly distributed
in [0, L].

n=2

The probability of having only one point in G is the proba-
bility of having both points included in a longitudinal inter-
val of at most w, thus given by

P{ng=1|n=2}=#n!)P{x; <x, <x; +w}

= %</0wa /Xlxﬁw dx, dx, +/:w /le dx, dx1>

2
woow
= zf - ﬁ ’ (31)
while the probability of having two points in G is the com-
plement and thus given by

P{ne=2|n=2}=1-P{n;=1|n=2}

w W

Thus, the expected value of ng with n=2 is given by

n=3

ability of having all three points included in 1

interval of at most w, thus given by
P{ng=1|n=3}

=(n)P{x; <x, <x3 <x; +w}

2

w w
:3§ _ZF' * 6 4)
The probability of ha three poip N‘ne proba-
bility of having them§n iimdinally diStg

Jm each other
at least w and theRefordls given

P{ne = = (n!)P{# +Rw < x, + w < x5}
6 LW L
= / dx; dx, dx;
x1+w Jxp+w
0 w? w?
—+12— —8—.
T + 2 8 [E (35)

Finally, the pggbabilitfy of having two points in G is the

complemse g erefore given by
P{n = 1—-P{ng=1|n=3}—-P{ng=3|n=3}
2 3
—62 _15Y 1109 (36)

L L2 L3
Thus, the expected value of ne with n =3 is given by

3
E[ng|n=3] =) ixPlng=i|n=3)
i=1
w w W
—3-6249Y ¥ 7
367 +975 675 (37)

The probability of having only one point in G is @
i
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