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We develop bounds on the maximum longitudinal velocity to evaluate the performance and help the design
of mobility allowance shuttle transit (MAST) services. MAST is a new concept in transportation that

merges the flexibility of demand responsive transit (DRT) systems with the low-cost operability of fixed-route
bus systems. A MAST system allows buses to deviate from the fixed path so that customers within the service
area may be picked up or dropped off at their desired locations. However, the main purpose of these services
should still be to transport customers along a primary direction. The velocity along this direction should remain
above a minimum threshold value to maintain the service attractive to customers. We use continuous approxi-
mations to compute lower and upper bounds. The resulting narrow gap between them under realistic operating
conditions allows us to evaluate the service in terms of velocity and capacity versus demand. The results show
that a two-vehicle system, with selected widths of the service area of 0.5 miles and 1 mile, is able to serve,
respectively, a demand of at least 10 and 7 customers per longitudinal mile of the service area while maintaining
a reasonable forward progression velocity of about 10 miles/hour. The relationships obtained can be helpful in
the design of MAST systems to set the main parameters of the service, such as slack time and headway.
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1. Introduction
Traditional fixed-route bus transit systems are cost
efficient for a wide range of operations owing to the
loading capacity of the buses as well as trip and
passenger consolidations (e.g., ridesharing). However,
the general public considers the service to be incon-
venient because either the locations of the pick-up
and drop-off points do not, or the schedule of the
service does not, match the individual rider’s desires
(lack of flexibility). Flexible systems such as demand
responsive transit (DRT) networks tend to be much
more costly to deploy as a general transit service
than fixed-route bus systems. Hence, DRT systems are
largely limited to specialized operations such as dial-
a-ride (mandated under the Americans with Disabili-
ties Act), taxicab, or shuttle van services.
Thus, there is a need for a transit system that

provides flexible service at a cost-efficient price. The
mobility allowance shuttle transit (MAST) system
is one such concept that merges the flexibility of
DRT systems with the low-cost operability of fixed-
route bus systems. A MAST service has a fixed-base
route that covers a specific geographic zone, with a
set of mandatory checkpoints with fixed scheduled
departure times conveniently located at major con-
nection points or at high-density demand zones; the

innovative twist is that, given an appropriate slack
time, buses are allowed to deviate from the fixed path
to pick up and drop off passengers at their desired
locations. The only restriction on flexibility is that the
deviations must lie within a predetermined distance
from the fixed-base route. Customers can be of three
types: hybrid (having one service point at noncheck-
point location in the service area and the other one
at the checkpoints), regular (both service points at the
checkpoints), or random (both service points located at
noncheckpoint stops). Customers make a reservation
to add their desired pick-up and/or drop-off stops in
the schedule of the service. Regular customers do not
need a booking process to use the service.
Such a system already exists in a reduced and

simplified scale. The Metropolitan Transit Authority
(MTA) of Los Angeles County, California, introduced
MAST as part of its feeder Line 646. During the day,
this line operates as a regular fixed-route bus sys-
tem. At night, the line changes to a MAST service
with three checkpoints and a total service area of 12×
0�5 miles2 (6 miles of length between each pair of
checkpoints). Customers may call in to be picked up,
or may ask the operator to be dropped off at their
desired locations if within the service area. Most of
the customers (80%) are hybrid, and the remaining
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Primary direction

Figure 1 Primary Direction of MAST Services

20% is evenly distributed among regular and random
types.
In the case of public transport, the main purpose

of these systems is to move customers along a pri-
mary direction (see Figure 1), which may be around a
loop or back and forth between two terminal check-
points. A higher demand served per vehicle would
allow the service to be more cost efficient. However,
the more demand that is served, the slower the vehi-
cles would move because of the deviations and ser-
vice time needed for pick-ups and drop-offs, causing
the service to become less attractive to customers.
The purpose of this paper is to model the relation-

ship between the velocity along the primary direction
of a MAST service and the demand to assess the per-
formance of these types of systems and help in the
design process. A minimum threshold value of the
velocity can be used to set the maximum slack time
allowable between checkpoints and to determine the
maximum demand level that can be served by one
vehicle and the number of vehicles to be employed
per line to serve all demand.
The computation of the velocity of the vehicle along

the primary direction depends on solving the vehi-
cle routing problem among the demand points, which
is a known NP-hard problem. Even though some
real problems are small enough to solve optimally
by enumeration, we utilize continuous approximation
assumptions to provide upper and lower bounds of
the maximum velocity of the vehicle between pairs
of consecutive checkpoints at different demand levels.
This analytical effort develops relationships for higher
demand as well creates methodology to quickly eval-
uate different design scenarios. We then plot the rela-
tionship between the velocity and the demand to
evaluate the performance of the system at different
demand levels and provide insights on the design of
the system.
The remainder of this paper is divided as fol-

lows. Section 2 provides a literature review. Sec-
tion 3 defines the system. Section 4 provides the lower
bound of the optimal longitudinal velocity. Section 5
discusses the optimality of the no-backtracking rout-
ing policy needed to obtain the first upper bound
presented in §6. Section 7 derives the second upper
bound. Sections 8 provide an estimate of the veloc-
ity from an approximate formula. Section 9 discusses

the performance and the design of the MAST service.
Finally, §10 presents the conclusions.

2. Literature Review
MAST systems have been recently studied by re-
searchers. Quadrifoglio, Dessouky, and Palmer (2006)
developed an insertion algorithm to schedule a MAST
system; in this paper the efficient use of control
parameters significantly improved the performance
of the algorithm. Zhao and Dessouky (2004) stud-
ied the optimal service capacity through a stochas-
tic approach. Malucelli, Nonato, and Pallottino (1999)
also approached the problem, including it in a general
overview of flexible transportation systems. Crainic,
Malucelli, and Nonato (2001) described the MAST
concept and incorporated it in a more general net-
work setting also providing a mathematical formu-
lation. Other works studying a combination of fixed
and flexible services can be found in Cortés and
Jayakrishnan (2002), Horn (2002a, b), and Aldaihani
and Dessouky (2003), which primarily focus on the
operational control and scheduling of such systems.
In this paper we utilize continuous approximations to
estimate the values of the parameters of the system
during the design phase. As noted by Daganzo (1991),
the main purpose of this approach is to obtain reason-
able solutions with as little information as possible.
Hall (1986) also pointed out that continuous approxi-
mations are useful in developing models that are easy
to comprehend; on the other hand, he observed that
these models should not replace but supplement the
more detailed mathematical programming models.
There is a significant body of work in the literature

on continuous approximation models for transporta-
tion systems. Most of the work has been developed
to provide decision-support tools for strategic plan-
ning in the design process. Langevin, Mbaraga, and
Campbell (1996) provide a detailed overview of the
research performed in the field. They concentrate pri-
marily on freight distribution systems while in this
paper we focus on public transport, but most of the
issues of interest are common to both fields.
Pioneering research on continuous approximation

models dates back to the 1950s Beardwood, Halton,
and Hammersley (1959) provided the first approxi-
mation formula to estimate the length of a travel-
ing salesman problem (TSP) tour in a compact zone
with uniform demand density. Stein (1978) and Jaillet
(1988) integrated their work by estimating the value
of the TSP tour length in case of Euclidean and rec-
tilinear metrics. In general, geometrical probability
has been extensively studied to provide estimates
on the average distances among points for differ-
ent shapes. We mention in this area the work of
Ghosh (1951), Fairthorne (1965), Schweitzer (1968),
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Christofides and Eilon (1969), Bouwkamp (1977),
Ruben (1978), Daganzo (1980, 1984b), Vaughan (1984),
Koshizuka and Kurita (1991), and Stone (1991). Simi-
lar works on estimating TSP length have been devel-
oped from a more theoretical and multidimensional
point of view by Verblunsky (1951), Rhee (1993), and
Stadje (1995). The work of Daganzo (1984a) is espe-
cially related to this paper because it introduces the
concept of “strip strategy,” providing an approximate
estimate of the optimal width of a corridor to min-
imize the distance between points and therefore the
length of the TSP tour, while employing a simple
no-backtracking routing policy along the strip. In our
paper, the MAST system’s service area has been mod-
eled as a corridor.
Szplett (1984) provides a review of the research

performed on continuous models specifically for
public transport. In this area we cite the work
of Newell (1979), Mandl (1980), Ceder and Wilson
(1986), LeBlanc (1988), Chang and Schonfeld (1991a,
b), Chien and Schonfeld (1997), and Aldaihani et al.
(2004) that studied the optimality of bus network
systems. Lesley (1976a, b), Wirasinghe and Ghoneim
(1981), and Kuah and Perl (1988) analyzed the opti-
mality of spacing between bus stops.
Continuous models have also been utilized to exam-

ine DRT systems. Daganzo (1978) used an approxi-
mate analytical model to study many-to-many DRT
systems; Daganzo (1984c) also analytically studied a
transportation system, where centralized checkpoints
are used to cluster together the random demand.
Jacobson (1980) made use of an analytical model for
DRT systems as well. Diana, Dessouky, and Xia (2006)
provide an analytical model to determine the fleet size
of a DRT system.

3. System Definition
The model considered for our analysis consists of a
rectangle of width w and length L > w oriented in
a horizontal direction, representing a segment of a
MAST system delimited by two consecutive check-
points with coordinates �0�w/2� and �L�w/2�. The
complete MAST system would have similar segments
adjacent to the one considered, on the right or left.
The demand is assumed to be known in advance and
is represented by a set of stops (either pick-ups or
drop-offs) uniformly distributed across the width and
the length of the rectangle, with density 2	 per unit
area. If the number of regular and random customers
are the same (as for the real MAST Line 646 in Los
Angeles), the density of the customers is also 2	. For
purpose of illustration, we assume that vehicles travel
with constant speed v, have infinite loading capac-
ity, and follow rectilinear paths within the rectangle.
Dessouky, Ordóñez, and Quadrifoglio (2005) show

that these two latter assumptions are quite reasonable.
At the pick-up/drop-off points, there is a constant ser-
vice time of s.
Vehicles follow a forward progression through the

rectangle in either a left-right or right-left direction.
This means that a left-right (right-left) vehicle trav-
els from the left (right) checkpoint to the right (left)
checkpoint of the rectangle and only serves pick-up
stops whose corresponding drop-off is to their right
(left) or drop-off stops whose corresponding pick-up
is to their left (right). This is only a reasonable operat-
ing policy, but not necessarily optimal. Note that the
corresponding pick-up (drop-off) of each stop could
be within or outside the segment considered or at one
of the checkpoints (see Figure 2).
The general system is represented by several vehi-

cles traveling along the rectangle, but we assume that
2	 represents one cycle of the demand served by two
vehicles: a left-right one and a right-left one. The
problem is symmetrical and we analyze only the left-
right case, with a demand density per unit area of 	
stops.
The total number of left-right (or right-left) stops in

the rectangle is given by

n= 	wL� (1)

The longitudinal velocity V of the vehicle is defined
by the rate at which the vehicle moves in the horizon-
tal direction that has the average given by

V = L

t
= L

p/v+ns
(2)

where t is the total time spent by the vehicle while
traveling between two checkpoints, p is the length
of a rectilinear Hamiltonian path among all the ser-
vice points (respecting the customer precedence con-
straints), and ns represents the total service time
(ignoring the checkpoints).
We assume that the problem (P) is simply to min-

imize p (with optimal value p∗), which corresponds
to maximize V (with optimal value V ∗), to evaluate
the maximum possible demand served by the sys-
tem for each V . We do not consider other perfor-
mance measures such as total waiting time and total
passenger time, essential for more accurate analyses

Figure 2 Right-Left and Left-Right Vehicles
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at the operational level (Quadrifoglio, Dessouky, and
Palmer 2006).
The system parameters and the notation used in the

paper are as follows.

w width of rectangle (miles)
L length of the rectangle (miles); L>w
v average vehicle speed (miles/hour)
s service time for pick-up/drop-off (hours)
	 demand density of the “left-right” stops (stops/
miles2)

V longitudinal velocity of the vehicle (miles/hour)
V ∗ optimal (maximum) value of V
i= 1� � � � �n ∈N set of all “left-right” stops (pick-ups
and drop-offs)

xi longitudinal coordinate of i, increasing from left
to right (miles)

yi lateral coordinate of i, increasing from bottom to
top (miles)

We use v= 30 miles/hour and s = 30 seconds in all
the experiments performed throughout the paper.

4. Lower Bound of V
Let us consider a no-backtracking policy, allowing the
vehicle to move only in the forward direction (left to
right) and serve all the demand, as illustrated in Fig-
ure 3. Because by assumption the customers served
by a left-right vehicle have their drop-off always on
the right of their pick-up, this policy guarantees fea-
sibility because all origins are served before their
destination points, satisfying all customer precedence
constraints. However, this policy is not necessarily
optimal. In fact, the solution could be improved by
simply removing the arbitrary no-backtracking con-
straint and developing a better routing strategy. Thus,
this simple no-backtracking policy provides a feasible
lower bound on the expectation of V ∗, but it does not
provide optimality. For our purpose the policy is use-
ful because we can compute a closed-form expression
for a bound velocity.
The longitudinal velocity is given by Equation (2),

where the rectilinear Hamiltonian path p is the sum
of the distance traveled longitudinally by the vehi-
cle (that is simply L, because we are assuming a
no-backtracking policy) plus the distance traveled
laterally (along the vertical direction). Let ly be a ran-
dom variable indicating the lateral distance traveled

w

L

Figure 3 No-Backtracking Policy

between any pair of stops in the rectangle and l′y be
a random variable indicating the lateral distance trav-
eled from/to a checkpoint to/from any stop in the
rectangle. Laterally, the vehicle will travel l′y from the
starting checkpoint to the first stop, then ly for n− 1
times between each pair of stops and l′y from the last
stop to the ending checkpoint. With uniform demand
the expected values of ly and l′y are given by

E�ly�=
w

3
and (3)

E�l′y�=
w

4
� (4)

Therefore, for a no-backtracking policy the expected
values of p and t in Equation (2) are given by

E�p�= L+ 2E�l′y�+ �n− 1�E�ly�

= 	w2L

3
+L+ w

6
and (5)

E�t�= E�p�

v
+ns = 	wL

(
w

3v
+ s

)
+ L

v
+ w

6v
� (6)

The expected value of the lower bound on V ∗ is
E�L/t�, which is very well approximated and lower
bounded by L/E�t� (from the Jensen inequality: For
a random variable z, E�1/z� ≥ 1/E�z�). Therefore, we
compute the lower bound V L by

E

[
L

t

]
≥ V L = L

E�t�
= v

1+	w�sv+w/3�+w/�6L�
� (7)

Note that V L is inversely proportional to w, s, and 	.
We can verify that Jensen’s inequality produces a

tight bound in the following Table 1, which shows
that Equation (7) provides a good estimate of the true
lower bound E�L/t� computed by simulation for dif-
ferent values of 	. The simulation values are obtained
by averaging 10,000 replications for each 	 consid-
ered. In each replication we considered a corridor
with w= 0�5 miles and L= 6 miles.

5. Optimality of No-Backtracking
Policy

Before estimating the first upper bound we want to
focus on the strip strategy introduced by Daganzo

Table 1 V L Values: Analytical vs. Simulation

V L (miles/hour)

� Equation (7) Simulation

1 24�54 24�56
5 14�59 14�61
10 9�69 9�70
50 2�62 2�63
100 1�37 1�37
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(1984a). He showed that good solutions of the TSP
tour, for any shape of the service area, are obtained by
cutting a swath covering the whole area and having
the vehicle drive along the resulting long strip while
serving the demand uniformly distributed in the area.
He claimed that by selecting a proper width of the
strip a simple no-backtracking policy produces good
results in terms of the total distance traveled.
We want to determine if there exists any suffi-

cient condition on the locations of the demand points
that would guarantee optimality of a no-backtracking
routing policy. This would allow us to select a subset
of points that satisfy this condition so that we can uti-
lize the no-backtracking routing policy to serve them
optimally. The longitudinal velocity to serve this sub-
set will be an upper bound on V ∗.
To find out whether this sufficient condition exists,

let us consider a left-right vehicle following a Hamil-
tonian path ��� among a set of demand points. Refer-
ring to Figure 4, consider points j , h, and k. We
assume that xh ≤ xj and xh ≤ xk and that the back-
tracking subsequence � � �–j–h–k– � � � is part of path �.
We want to determine if there exists a condition on xh
with respect to xj and xk to guarantee that a reinser-
tion of h earlier in the schedule in a no-backtracking
fashion will always lead to a shorter total distance
traveled.
We note that it is always possible to identify two

consecutive points a and b earlier in the schedule
such that xa ≤ xh ≤ xb (at the limit, we can have a
be the starting checkpoint on the left and/or b ≡ j�.
Therefore, we have path � following the sequence
� � �–a–b– � � �–j–h–k– � � � �
Consider another path ��� that follows the sequence

���–a–h–b–���–j–k–��� with point h reinserted between
a and b in a no-backtracking fashion.
Let us compute the rectilinear distance driven in

the two cases, considering only the relevant portions
of the sequences that differ between � and �. Path �
yields to the following distance l�:

l� = xb − xa+ �yb − ya� + xj − xh+ �yj − yh�
+ xk − xh+ �yk − yh�� (8)

For the path � the distance l� is given by

l� = xh− xa+ �yh− ya� + xb − xh+ �yb − yh�
+ �xk − xj � + �yk − yj �� (9)

w

a

h

b

j

Path α Path β
k

Figure 4 Two Different Paths to Serve Points a, b, j, h, k

We want to determine the minimum longitudinal
distance between h and j and/or h and k needed
to guarantee that path � will always be better than
path � in terms of minimizing the total distance
traveled. Therefore, we impose the condition l� ≤ l�
and after a few passages we obtain the following
inequality:

xj + xk − �xk − xj � − 2xh
≥ �yh− ya� + �yb − yh� − �yb − ya�

+ �yk − yj � − �yj − yh� − �yk − yh�� (10)

Depending on the random vertical position of the
points along the corridor, the maximum possible
value for �yh− ya� + �yb − yh� − �yb − ya� is 2w when h
is located on the opposite edge of the corridor with
respect to a and b, while �yk − yj � − �yj − yh� − �yk − yh�
can be at most equal to 0 when h is located laterally
in between j and k. Otherwise, it is less than 0. There-
fore, the right-hand side of Equation (10) is less than
or at most equal to 2w and we have that the inequal-
ity becomes

min�xj� xk�− xh ≥w� (11)

This is the sufficient condition on the longitudinal
position of h, with respect to the closest (longitudi-
nally) point between j and k, that would guarantee
that the reinsertion of h somewhere earlier in the
schedule in a no-backtracking fashion between some
points a and b would always lead to a better solution
in terms of shorter distance traveled.
Given the result obtained by Equation (11) we can

state the following:

Proposition 1. Given a set of points randomly dis-
tributed along a corridor of width w and length L, the
shortest Hamiltonian rectilinear path from the first point
on the far left to the last point on the far right is the
sequence of points ordered by increasing longitudinal coor-
dinate (no backtracking), as long as the minimum longitu-
dinal distance between any pair of points is at least w.

Proof. Consider a set of points identified by i =
1�2�3� � � � ∈ I and ordered by increasing longitudinal
coordinate (no backtracking), and let the minimum
longitudinal distance between any pair of points
be at least w. Assume that there exists an optimal
sequence � ordered not following a no-backtracking
policy; the position of each i in � is identified by  �i�.
Let us consider the point with the smallest i0 ∈ I s.t.
i0 �=  �i0� ∈�. We can show by Equation (11) that rein-
serting i0 in � such that i0 =  �i0� and readjusting all
other  �i� accordingly leads to a better solution. How-
ever, this is a contradiction because we supposed �
to be optimal. Therefore, the no-backtracking policy
is optimal. �
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6. First Upper Bound on V ∗
To create an upper bound on V ∗ we first identify a
subset G�g�1��g�2��g�3�� � � ��⊆N of points such that
the longitudinal distance between any pair of them is
as small as possible but at least w. By Proposition 1
we know that the optimal routing policy to serve
the subset G is given by a no-backtracking sequence.
We then assume that all the points i ∈ N, but i � G,
will be served as well but that no additional lateral
deviations are required to reach them. This is a sub-
problem P′ (with optimal value p′∗) of the original
problem P. We know by construction that p′∗ ≤ p∗,
because in computing the total distance traveled in P′

we are ignoring some of the vertical deviations and
possible backtracking portions of the path needed to
attain p∗. Therefore, this policy guarantees optimality
of the subproblem P′, without assuring feasibility of P,
and represents a lower bound on the total minimum
distance traveled (thus, an upper bound V ∗).
To construct the subset G from the set N, we can

use the following algorithm.
Algorithm 1.
1. g(1) is the first point on the far left of the cor-

ridor.
2. g�i+ 1� is the longitudinally closest point to the

right of g�i� after a “jump” of w units of length to the
right of g�i�; with i= 1�2�3� � � � �
3. Repeat Step 2 until there are no more points.
As an example, referring to Figure 5, we first

include Point 1 in the subset G; then, from its hori-
zontal coordinate x1 we move w units of length to its
right and we include in G the longitudinally closest
point to the right of the location x1+w (Point 6); and
we proceed in this fashion including in G Points 9
and 14.
Let nG be a discrete random variable represent-

ing the number of points in the subset G. If n = 1,
nG = 1. In the appendix, we compute analytically its
expected value for n= 2 and n= 3, respectively given
by Equations (33) and (37). With w = 0�5 miles and
L = 6 miles we have E�nG �n = 2� � 1�84 and E�nG �
n = 3� � 2�56 (verified by simulation). However, the
distribution of nG for higher values of n is not trivial
to develop; thus, we estimate its expected value by
the following continuous approximations.
The longitudinal positions at which points lie form

(locally) a Poisson process with rate 	w. Thus, the

w

L

1

6

9

14

2

3

4

5

7

8

10

11

12

13

w
w

w

Figure 5 Subset G: Longitudinal Distance of at Least w Among Points

expected value of the longitudinal distance lx between
two consecutive points in N is given by

E�lx�=
1
	w

� (12)

Whereas the longitudinal distance l′x between two
consecutive points in G forms a renewal process and
its expected value is given by

E�l′x�=w+E�lx�=w+ 1
	w

(13)

where w is the minimum required distance between
points in G.
The position of the first point in G is the longitudi-

nally closest point on the right of the starting check-
point, with an expected longitudinal coordinate of
E�lx�= 1/	w. With L/w large enough we can apply the
central limit theorem and assume that nG − 1 is nor-
mally distributed with mean �L− E�lx��/E�l

′
x�. Hence,

the expected value of nG can be estimated by

E�nG� � 1+
L−E�lx�

E�l′x�
= 1+ L− 1/�	w�

w+ 1/�	w�
= 1+ 	wL− 1

	w2+ 1 � (14)

The expected value of p is similar to Equation (4),
with E�nG� replacing n. Thus, in this case the expected
values of p and t are given by

E�p�= L+ 2E�l′y�+ �E�nG�− 1�E�ly�

= L+w

[
1
2
+ 	wL− 1
3�	w2+ 1�

]
and (15)

E�t�= E�p�

v
+ns

= L

v
+ w

v

[
1
2
+ 	wL− 1
3�	w2+ 1�

]
+	wLs� (16)

Finally, the upper bound on V ∗ is formally given by
E�L/t�, which is well approximated by L/E�t� if t is
sufficiently large (as it is, because its minimum pos-
sible value is L/v+ 	wLs) and Var�t� is low enough.
Therefore, V U is given by

V U � L

E�t�
= v

1+	wsv+ w

L

(
1
2
+ 	wL− 1
3�	w2+ 1�

) � (17)

As for V L, V U is inversely proportional to w, s, and 	.
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Table 2 V U Values: Analytical vs. Simulation

V U (miles/hour)

� Equation (17) Simulation

1 24�79 24�00
5 16�31 16�04
10 11�90 11�77
50 3�95 3�93
100 2�16 2�16

As done for V L, we can demonstrate the accuracy
of Equation (17) as a true upper bound for E�L/t�
through a set of examples computed by simulation for
different values of 	 (10,000 replications for each 	,
with w= 0�5 miles, L= 6 miles), as shown in Table 2.
Note that the simulation values are upper bounded
by the values obtained with Equation (17).

7. Second Upper Bound on V ∗
To produce the second upper bound we again remove
constraints from problem P. The Hamiltonian path
among all the points requires exactly one incoming
arc and one outgoing arc at each node of the network
so that all the points are connected to complete the
tour. We remove the first assumption allowing unlim-
ited incoming arcs at any node, but we still require
exactly one outgoing arc from each node. In addition,
we remove the customer precedence constraints. This
is another subproblem P′′ (with optimal value p′′∗) of
the original problem P. p′′∗ is given by the summation
over all the stops of the arcs connecting any stop to its
closest neighbor. In other words, we are stating that
from each stop the vehicle has to travel at least to its
closest neighbor; the sum over all stops produces p′′∗,

A

di

y

d–y

w
x

y
x

di

d–x

y
x

di

d–y
y

x
did–x

d–yy

w
x

di

y
x

di

w–y

d+y–w

d–yy
x

di
w–y

d+y–w

d–x

yx
di

w–y

d+y–w

y

x di
w–y

Case 1 Case 2 Case 3 Case 4

Case 6

Case 5

Case 7 Case 8 Case 9

Figure 6 A Depending on x, y , and d

which is a lower bound on p∗ and which therefore
yields to an upper bound on V ∗.
We know that uniformly and randomly scattered

points follow (locally) a spatial Poisson distribution.
Specifically, the number of points $�A� within the
area A is a Poisson random variable and its distribu-
tion is given by

P'$�A�= q)= �	A�q

q! e−	A q = 0�1�2�3� � � � (18)

with expected value equal to 	A.
Let D be the random variable indicating the dis-

tance of the closest neighbor from any stop i ∈N. We
want to calculate E�D�. We can say that

F �d�= P'D > d)= P'$�A�d��= 0)= e−	A�d� (19)

where A�d� is the area around i within rectilinear dis-
tance d falling in the corridor. Depending on x, y,
and d we can have nine different scenarios for the
computation of A�d�, as shown in Figure 6. In the
analysis we consider only the points i ∈N located in a
quarter of the rectangle �0≤ x≤ L/2 and 0≤ y ≤w/2�
because of its symmetry. We also ignore the effect of
the right edge of the rectangle (at x= L).
Case 1. A�d�= 2d2.
Case 2. A�d�= 2d2− �d− y�2 = d2+ 2dy− y2.
Case 3. A�d�= 2d2− �d− x�2 = d2+ 2dx− x2.
Case 4. A�d�= 2d2− �d− x�2− �d− y�2 = 2d�x+ y�−

�x2+ y2�.
Case 5. A�d� = �d + y�x − x2/2+ d2/2+ dy − y2/2 =

d2/2+ d�x+ y�− �1/2��x− y�2.
Case 6. A�d�= 2d2− �d− y�2− �d+ y−w�2 = 2wd−

2y2+ 2wy−w2.
Case 7. A�d�= 2d2− �d− x�2− �d− y�2− �d+y−w�2

=−d2+ 2d�x+w�− 2y2+ 2wy− x2−w2.
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y = –(1/2)(x–w)

L /2

Figure 7 Zones with Different Sequence of Cases to Compute A�d�

with Increasing d

Case 8. A�d� = �d + y�x − x2/2+ d2/2+ dy − y2/2−
�d + y − w�2 = −d2/2 + d�x − y + 2w� − x2/2 + xy −
3y2/2+ 2wy−w2.
Case 9. A�d�=w�d+ x�− �w− y�2/2− y2/2=wd+

w�x+ y�− y2−w2/2.
The expected value of D depending on x and y is

given by

E�D�x�y��=
∫ �

0
F �d�dd=

∫ �

0
e−	A�d� dd� (20)

The sequence of scenarios and formulas to be used
to compute A�d� in Equation (20) with increasing d
is different depending on the zone in which i�x�y� is
located (see Figure 7 and Table 3).
Averaging over all values of x and y in the area

considered we finally obtain

E�D�= 4
Lw

∫ w/2

0

∫ L/2

0
E�D�x�y��dxdy� (21)

Equation (21) does not have a closed-form expres-
sion, but we can examine two limiting scenarios
depending on the value of the parameter w

√
	. This

Table 3 Sequence of Cases to Compute A�d� with Increasing d, for Each Zone

Zone

Case A B C D E

1 0≤ d ≤ x 0≤ d ≤ x 0≤ d ≤ y 0≤ d ≤ y 0≤ d ≤ y

2 y ≤ d ≤ x y ≤ d ≤ x y ≤ d ≤ w − y

3 x ≤ d ≤ y x ≤ d ≤ y

4 y ≤ d ≤ x+ y y ≤ d ≤ w − y x ≤ d ≤ x+ y x ≤ d ≤ w − y

5 x+ y ≤ d ≤ w − y x+ y ≤ d ≤ w − y

6 w − y ≤ d ≤ x

7 w − y ≤ d ≤ x+ y w − y ≤ d ≤ x+ y x ≤ d ≤ x+ y

8 w − y ≤ d ≤ w − y + x x+ y ≤ d ≤ w − y + x w − y ≤ d ≤ w − y + x x+ y ≤ d ≤ w − y + x x+ y ≤ d ≤ w − y + x

9 d ≥ w − y + x d ≥ w − y + x d ≥ w − y + x d ≥ w − y + x d ≥ w − y + x

is an indication of the effect of the top and bottom
edges of the strip on the calculation of E�D�.
If w

√
	 → �, we can approximate E�D� by com-

puting A�d� only for Case 1. For the majority of the
points, the probability of finding the closest point in
an area defined by other cases is negligible, either
because the edges are too far (large w) or because the
density 	 is very high. Therefore,

E�D �w√
	→��≈

∫ �

0
e−2	d

2
dd= 1

2

√
.

2	
≈ 0�63√

	
� (22)

If w
√
	→ 0 and ignoring the effect of the left edge

of the rectangle, we can approximate E�D� by com-
puting A�d� only for Case 6. For the majority of the
points, the probability of finding the closest point in
an area defined by Case 1 and 2 is negligible, either
because w is very small or the density is very low.
Therefore, we obtain

E�D �w√
	→ 0�

≈ 2
w

∫ w/2

0

∫ �

0
e−	�2wd−2y

2+2wy−w2� dddy = 1
2	w

� (23)

This also corresponds to the expected distance of the
closest point (in either direction) in a one-dimensional
case with all the points uniformly distributed along a
line with linear density 	w.
We performed numerical integrations on Equa-

tions (20) and (21) with w= 0�5 miles for three values
of L (2, 6, and � miles) and different values of 	.
The results are shown in Figure 8 along with the fig-
ures computed by simulations (10,000 replications for
each 	 considered).
Int and Sim refer respectively to the data com-

puted by numerical integration and simulation for
each L. Limit 1 and Limit 2 refer to Equations (22)
and (23), respectively. The Int data closely match
the corresponding Sim data especially for higher 	,
confirming the negligible effect of the ignored right
edge when performing the numerical integration. For
lower 	 and lower L the discrepancies are slightly
more noticeable also because the spatial PoissonAuth
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Figure 8 E�D� vs. Simulation and Asymptotic Limits

distribution becomes less accurate when the total
number of stops in the rectangle is too low. The chart
shows that the curves are asymptotically bounded
by the two limits for w

√
	 → 0 and w

√
	 → � as

expected. The left edge has the effect of increasing
E�D� with decreasing 	 and this becomes more rel-
evant with decreasing L, in fact, the three curves
diverge for w

√
	→ 0.

Assuming that the vehicle travels E�D� miles from
each stop (including the starting checkpoint) to its
closest neighbor, the expected values of p and t in this
case are given by

E�p�= �n+ 1�E�D� and (24)

E�t�= E�p�

v
+ns = 	wL

[
E�D�

v
+ s

]
+ E�D�

v
� (25)

Finally, the second upper bound on V ∗ is formally
given by E�L/t�, that is well approximated by L/E�t�
(with t far from 0 and Var�t� small) and, therefore,
V U ′′ is given by

V U ′′ � L

E�t�
= v

	w�E�D�+ sv�+E�D�/L
� (26)

As for V L and V U , V U ′′ is inversely proportional to
w, s, and 	.
As done for V L and V U , we can verify by Table 4

the good estimates provided by Equation (26) on the
true upper bound E�L/t� computed by simulation for

Table 4 V U′′ Values: Analytical vs. Simulation

V U′′ (miles/hour)

Equation (26)
Simulation

� L=� L= 6 L= 6

1 33�38 27�14 29�12
5 19�54 19�07 18�97

10 12�46 12�35 12�30
50 3�49 3�48 3�48
100 1�90 1�90 1�90

different values of 	 (10,000 replications for each 	,
with w = 0�5 miles, L = 6 miles). We also include a
column with the values computed with Equation (26)
utilizing the E�D� values for L=�.
Note that the simulation values are upper bounded

by the values obtained with Equation (26) for 	> 1. In
addition, the values calculated by Equation (26) with
L=� are a tight upper bound of the ones with L= 6
miles, showing that they could be used conservatively
to estimate V U ′′ for any value of L. Moreover, when
	→ �, by applying Equation (22) and ignoring the
starting checkpoint, the asymptotic value for V U ′′ is
given by

lim
	→�V

U ′′ = v

	wsv+ 0�63w√
	
� (27)

8. Approximate Value for V ∗
We know by Beardwood, Halton, and Hammersley
(1959) and Jaillet (1988) that the length T of the opti-
mal TSP tour for rectilinear metric visiting M points
distributed randomly in a region of area A is approx-
imated by the following formula:

T = 0�97√AM� (28)

This formula provides better approximations with
large values of M .
To make use of this result for our case, we assume

that the MAST vehicle is driving along a long cor-
ridor that is shaped as a loop, having the start-
ing and ending checkpoint coincide. With L � w,
we can approximate the ring-shaped service area as
A=wL and estimate the optimal length of the tour by
Equation (28) for different values of M = 	A = 	wL.
Because the total time ta spent to complete a loop is
given by

ta =
T

v
+Ms = Lw

√
	

(
0�97
v

+√
	s

)
� (29)

the resulting approximation of the optimal longitudi-
nal velocity VA is given by

VA = L

ta
= v

	wsv+ 0�97w√
	
� (30)

which has the same form as the asymptotic value
of V U ′′ for 	 → �, given by Equation (27), with
0.97 replacing 0.63. As for V L, V U , and V U ′′ , VA is
inversely proportional to w, s, and 	. However, VA

goes to infinity when 	 goes to zero, confirming that
Equation (30) does not provide good estimates for
low 	. We need to emphasize that VA is neither an
upper nor a lower bound of V ∗, and it does not con-
sider the customer precedence constraints.
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9. Performance Evaluation and
Design Issues

We are now able to plot the lower bound V L, the
upper bounds V U and V U ′′ , and the approximate
value VA, respectively, using Equations (7), (17), (26),
and (30). In addition, we computed V I represent-
ing the longitudinal velocity while implementing
an insertion heuristic algorithm minimizing the dis-
tance traveled to schedule the uniformly distributed
demand. Insertion algorithms generally provide good
feasible solutions and are widely used for scheduling
DRT systems, but they do not guarantee optimality.
Thus, the resulting values represent a lower bound
for V ∗ as well. However, they cannot be quickly
computed for any scenario like V L because they do
not have closed-form expressions and are obtained
by simulation (1,000 replications averaged for each 	
considered).
We analyze two different cases, with L = 6 miles

and w = 0�5 miles (see Figure 9) consistent with
the existing MAST system (Line 646 in Los Angeles
County), and L = 6 miles and w = 1 mile (see Fig-
ure 10). As mentioned in §3, we also assume v =
30 miles/hour and s = 30 seconds.
We note that in both charts V L and V U converge

for lower values of 	 because they both provide bet-
ter estimates for lower 	. V U ′′ is a tighter bound than
V U for higher 	 and this is more evident for the case
with w = 1 mile. The gap between V L and V U/V U ′′

does not diverge significantly with increasing 	 main-
taining a reasonably narrow range. The approximate
value VA falls in the middle of this range, except
for smaller 	, because VA is no longer a good esti-
mate for low-demand density. The insertion heuristic
curve V I lies a little above V L; the gap between them
slightly increases with 	, showing that the improve-
ment provided by the insertion heuristic algorithm
over the no-backtracking policy is more evident for
denser demand. This gap is smaller for w= 0�5 miles,
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because the narrower corridor guarantees better solu-
tions from the no-backtracking policy (in accordance
with Proposition 1).
Even though MAST services are designed to pro-

vide a comfortable door-to-door service, customers
would probably perceive the service as being too
slow if the velocity along the primary direction would
fall below a threshold value. According to a random
check of the timetables of various fixed-route bus lines
in Los Angeles County, regular fixed-route buses gen-
erally achieve an overall average velocity along their
routes of about 15 miles per hour, depending on the
number of stops placed in the route and the num-
ber of customers to be served (they can go as fast
as 20 miles/hour for interurban fast lines and they
can go as slow as 10 miles/hour for downtown ser-
vices). The demand will generally vary depending on
different factors, but typically the faster the service
the higher the demand. However, we assume that
customers would be willing to sacrifice some of this
velocity for the convenience of being picked up and
dropped off at their desired locations. We observe that
	 represents the density of the stops of customers that
are either picked up or dropped off (or both) in a ran-
dom location. MAST systems also serve the regular
customers that rely on already-scheduled checkpoints
for both their service points, not requiring any devia-
tions from the main route. Thus, the latter type of cus-
tomers clearly would not welcome a slower service.
Therefore, the allowed reduction on the longitudinal
velocity should be tailored to the customers’ type dis-
tribution: the more customers are regular, the faster
the service should be.
The existing MAST Line 646 serves a very low at

night demand of about 	= 1–2 customers/miles2; the
width of the service area is about w = 0�5 miles that
allows the system to properly serve all the customers,
maintaining a relatively high longitudinal velocity of
25 miles/hour. Heavier demands would require either
a lower longitudinal velocity while maintaining the
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same service area, a narrower width of the strip keep-
ing the same longitudinal velocity, or more vehicles,
thereby reducing the cycle length.
As an example, we assume the minimum accept-

able V of a MAST system to be 10 miles/hour, 33%
less than that of average fixed-route buses; we sup-
pose that below this level the demand would radically
drop because it is too inconvenient. From the charts
we note that the demand density that can be served
corresponding to the value of V = 10 miles/hour is
in the range of 	 = 9�5–13�5 customers/mile2 (when
w= 0�5 miles) and 	= 3�5–5�5 customers/mile2 (when
w = 1 mile), according to the values provided by
the bounds. Recall that 	 represents the density of
the stops served only by the left-right vehicle and the
total density served by both vehicles is 2	. Therefore,
the system would be able to serve at least 2× 9�5×
0�5 � 10 stops every mile of the corridor (when w =
0�5 miles) and 2× 3�5× 1= 7 stops every mile of the
corridor (when w= 1 mile).
In Figures 11 and 12 we also show the relation-

ships between the demand and the total capacity (K =
	wV stops/hour) of the system, considering both
vehicles. KL, KU , KU ′′ , KA, and KI plot the values of
the capacity for each 	 and correspond to the velocity
curves in the V /	 charts with the same superscript.
The ranges of density and capacity corresponding to
V = 10 miles/hour are highlighted.
The MAST system would be able to serve between

90 and 130 stops per hour for the case with
w = 0�5 miles, maintaining a longitudinal velocity
V =10 miles/hour, and between 70 and 120 stops per
hour for the case with w = 1 mile. This result sug-
gests that doubling the width of the service area does
not substantially affect the performance of the sys-
tem in terms of its capacity. The capacity K, like the
velocity V , is inversely proportional to the values of s
and v.
When designing a MAST system, planners can

make use of the information provided in the above
charts to schedule the time difference between check-
points, thereby setting the velocity of the service and
establishing the maximum slack time allowed for
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Figure 12 Capacity �K� vs. Demand Density ���; w = 1 Mile

deviations. For example, with the assumed minimum
acceptable longitudinal velocity of V = 10 miles/hour
and L= 6 miles, the time interval between the check-
points considered would be 3t = L/V = 36 minutes,
with a slack time of about 23 minutes, enough to serve
about 10×L= 60 noncheckpoint stops (30 per vehicle)
when w = 0�5 miles. In addition, knowing the actual
total demand rate in the service area, it would be pos-
sible to choose the headway and assign the number
of vehicles to the line to satisfy it properly.

10. Conclusions
We evaluated upper and lower bounds on the maxi-
mum longitudinal velocity of a MAST vehicle using
continuous approximations. We also provided val-
ues for the longitudinal velocity from approximation
formulas and simulation using an insertion heuris-
tic algorithm. The gap between the bounds remains
relatively small with varying demand and provides
us with a useful tool to evaluate the performance of
MAST systems. Results show that the system is able
to properly serve a reasonable demand while main-
taining a relatively high velocity. While the longitudi-
nal velocity of the vehicle is considerably affected by
a widening of the service area, the capacity of the sys-
tem (in terms of customers served per hour) is only
slightly influenced. The relationships between veloc-
ity and capacity versus demand density can be ben-
eficially used in the design process to set the slack
time between checkpoints and other parameters of the
MAST system.
Future research on MAST systems could focus on

studying the system under different demand dis-
tributions and designing efficient networks of this
type of service to cover wider service areas. The
combinatorial nature of the problem would also
require the development and analyses of efficient
algorithms to schedule the vehicles interconnected in
these networks.
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Appendix
As an example related to §6, we want to derive the expected
value of nG for when n= 2 and n= 3 stops. The longitudinal
coordinate xi of each of the stops is uniformly distributed
in �0�L�.

n= 2
The probability of having only one point in G is the proba-
bility of having both points included in a longitudinal inter-
val of at most w, thus given by

P'nG = 1 � n= 2)= �n!�P'x1 ≤ x2 ≤ x1+w)

= 2
L2

(∫ L−w

0

∫ x1+w

x1

dx2 dx1+
∫ L

L−w

∫ L

x1

dx2 dx1

)

= 2w
L
− w2

L2
� (31)

while the probability of having two points in G is the com-
plement and thus given by

P'nG = 2 � n= 2) = 1− P'nG = 1 � n= 2)

= 1− 2w
L
+ w2

L2
� (32)

Thus, the expected value of nG with n= 2 is given by

E�nG � n= 2�=
2∑
i=1

i× P'nG = i � n= 2)= 2− 2w
L
+ w2

L2
� (33)

n= 3
The probability of having only one point in G is the prob-
ability of having all three points included in a longitudinal
interval of at most w, thus given by

P'nG=1 �n=3)
= �n!�P'x1≤x2≤x3≤x1+w)

= 6
L3

(∫ L−w

0

∫ x1+w

x1

∫ x1+w

x2

dx3dx2dx1+
∫ L

L−w

∫ L

x1

∫ L

x2

dx3dx2dx1

)

=3w
2

L2
−2w

3

L3
� (34)

The probability of having all three points in G is the proba-
bility of having them longitudinally distant from each other
at least w and therefore is given by

P'nG = 3 � n= 3) = �n!�P'x1+ 2w≤ x2+w≤ x3)

= 6
L3

∫ L−2w

0

∫ L−w

x1+w

∫ L

x2+w
dx3 dx2 dx1

= 1− 6w
L
+ 12w

2

L2
− 8w

3

L3
� (35)

Finally, the probability of having two points in G is the
complement and therefore given by

P'nG = 2 � n= 3) = 1− P'nG = 1 � n= 3)− P'nG = 3 � n= 3)

= 6w
L
− 15w

2

L2
+ 10w

3

L3
� (36)

Thus, the expected value of nG with n= 3 is given by

E�nG � n= 3� =
3∑
i=1

i× P'nG = i � n= 3)

= 3− 6w
L
+ 9w

2

L2
− 6w

3

L3
� (37)

References
Aldaihani, M. M., M. M. Dessouky. 2003. Hybrid scheduling meth-

ods for paratransit operations. Comput. Indust. Engrg. 45 75–96.
Aldaihani, M. M., L. Quadrifoglio, M. M. Dessouky, R. W. Hall.

2004. Network design for a grid hybrid transit service. Trans-
portation Res. Part A 38 511–530.

Beardwood, J., J. H. Halton, J. M. Hammersley. 1959. The short-
est path through many points. Proc. Cambridge Philos. Soc. 55
299–327.

Bouwkamp, C. J. 1977. On the average distance between points in
two coplanar non-overlapping circular disks. J. Appl. Sci. Engrg.
A2 183–186.

Ceder, A., N. H. M. Wilson. 1986. Bus network design. Transporta-
tion Res. Part B 20 331–344.

Chang, S. K., P. M. Schonfeld. 1991a. Multiple period optimization
of bus transit systems. Transportation Res. Part B. 25 453–478.

Chang, S. K., P. M. Schonfeld. 1991b. Optimization models for
comparing conventional and subscription bus feeder services.
Transportation Sci. 25 281–298.

Chien, S., P. M. Schonfeld. 1997. Optimizing of grid transit system
in heterogeneous urban environment. J. Transportation Engrg.
123 28–35.

Christofides, N., S. Eilon. 1969. Expected distances in distribution
problems. Oper. Res. Quart. 20 437–443.

Cortés, C. E., R. Jayakrishnan. 2002. Design and operational con-
cepts of a high coverage point-to-point transit system. Trans-
portation Res. Record 1783 178–187.

Crainic, T. G., F. Malucelli, M. Nonato. 2001. Flexible many-to-few+
few-to-many = an almost personalized transit system. TRIS-
TAN IV, São Miguel, Azores Islands, Portugal, 435–440.

Daganzo, C. F. 1978. An approximate analytic model of many-to-
many demand responsive transportation systems. Transporta-
tion Res. 12 325–333.

Daganzo, C. F. 1980. Network representation, continuum approxi-
mations and a solution to the spatial aggregation problem of
traffic assignment. Transportation Res. Part B 14 229–239.

Daganzo, C. F. 1984a. The length of tours in zones of different
shapes. Transportation Res. Part B 18 135–145.

Daganzo, C. F. 1984b. The distance traveled to visit N points with
a maximum of C stops per vehicle: An analytic model and an
application. Transportation Sci. 18 331–350.

Daganzo, C. F. 1984c. Checkpoint dial-a-ride systems. Transportation
Res. Part B 18 315–327.

Daganzo, C. F. 1991. Logistic Systems Analysis. Lecture Notes in Eco-
nomics and Mathematical Systems, No. 361. Springer-Verlag, Hei-
delberg, Germany.

Dessouky, M. M., F. Ordóñez, L. Quadrifoglio. 2005. Productivity
and cost-effectiveness of demand responsive transit systems.
PATH/Caltrans Technical Report, Berkeley, CA.

Diana, M., M. M. Dessouky, N. Xia. 2006. A model for the fleet siz-
ing of demand responsive transit services with time windows.
Transportation Res. Part B Forthcoming.

Faithorne, D. 1965. Distances between pairs of points in towns of
simple geometrical shapes. Proc. 2nd Internat. Sympos. Theory
Traffic Flow, OECD, Paris, France, 391–406.

Ghosh, B. 1951. Random distances within a rectangle and between
two rectangles. Bull. Calcutta Math. Soc. 43 17–24.

Hall, R. W. 1986. Discrete models/continuous models. Omega Inter-
nat. J. Management Sci. 14 213–220.

Horn, M. E. T. 2002a. Multi modal and demand responsive passen-
ger transport systems: A modeling framework with embedded
control systems. Transportation Res. Part A 36 167–188.

Horn, M. E. T. 2002b. Fleet scheduling and dispatching for demand
responsive passenger services. Transportation Res. Part C 10
35–63.

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e



Quadrifoglio et al.: Performance and Design of Mobility Allowance Shuttle Transit Services
Transportation Science 40(3), pp. 351–363, © 2006 INFORMS 363

Jacobson, J. 1980. Analytical models for comparison of alternative
service options for the transportation handicapped. Transporta-
tion Res. Part A 14 113–118.

Jaillet, P. 1988. A priori solution of a traveling salesman problem in
which a random subset of the customers are visited. Oper. Res.
36 929–936.

Koshizuka, T., O. Kurita. 1991. Approximate formulas of aver-
age distances associated with regions and their applications to
location problems. Math. Programming 52 99–123.

Kuah, G. K., J. Perl. 1988. Optimization of feeder bus routes and
bus-stop spacing. J. Transportation Engrg. 114 331–354.

Langevin, A., P. Mbaraga, J. F. Campbell. 1996. Continuous approxi-
mation models in freight distribution: An overview. Transporta-
tion Res. Part B 30 163–188.

LeBlanc, L. J. 1988. Transit system network design. Transportation
Res. Part B 22 383–390.

Lesley, L. J. S. 1976a. Optimum bus-stop spacing: Part 1. Traffic
Engrg. Control 17 399–401.

Lesley, L. J. S. 1976b. Optimum bus-stop spacing: Part 2. Traffic
Engrg. Control 17 472–473.

Malucelli, F., M. Nonato, S. Pallottino. 1999. Demand adap-
tive systems: Some proposals on flexible transit. T. Ciriania,
E. Johnson, R. Tadei, eds. Operations Research in Industry.
157–182.

Mandl, C. E. 1980. Evaluation and optimization of urban public
transport networks. Eur. J. Oper. Res. 6 31–56.

Newell, G. F. 1979. Some issues relating to the optimal design of
bus routes. Transportation Sci. 13 20–35.

Quadrifoglio, L., M. M. Dessouky, K. Palmer. 2006. An inser-
tion heuristic for scheduling mobility allowance shuttle transit
(MAST) services. J. Scheduling. Forthcoming.

Rhee, W. T. 1993. On the stochastic traveling salesperson problem
for distributions with unbounded support. Math. Oper. Res. 18
252–259.

Ruben, H. 1978. On the distance between points in polygons.
R. Miles, J. Serra, eds. Lecture Notes in Biomathematics, No. 23.
Springer-Verlag, Berlin, Germany.

Schweitzer, P. A. 1968. Moments of distances of uniformly dis-
tributed points. Amer. Math. Monthly 75 802–804.

Stadje, W. 1995. Two asymptotic inequalities for the stochastic
traveling salesman problem. Sankhya: Indian J. Statist. 57A1
33–40.

Stein, D. M. 1978. Scheduling dial-a-ride transportation problems.
Transportation Sci. 12 232–249.

Stone, R. E. 1991. Some average distance results. Transportation Sci.
25 83–91.

Szplett, D. B. 1984. Approximate procedures for planning pub-
lic transit systems: A review and some examples. J. Advanced
Transportation 18 245–257.

Vaughan, R. J. 1984. Approximate formula for average distances
associated with zones. Transportation Sci. 18 231–244.

Verblunsky, S. 1951. On the shortest path through a number of
points. Proc. Amer. Math. Soc. 6 904–913.

Wirasinghe, S. C., N. S. A. Ghoneim. 1981. Spacing of bus-stops for
many-to-many travel demand. Transportation Sci. 15 210–221.

Zhao, J., M. M. Dessouky. 2004. Optimal service capacity for a
single-bus mobility allowance shuttle transit (MAST) system.
Working paper.

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e




