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The ridesharing problem without predetermined drivers and riders: formulation and 
heuristic
Wei Lua, Luca Quadrifoglio b, Dahye Leeb and Xiaosi Zengc

aMeta Platforms, Inc, Menlo Park, CA, USA; bZachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA; 
cZoox, inc

ABSTRACT
We consider a ridesharing service in which no driver and rider’s roles are pre-determined, but left to decide 
by the system to further reduce costs compared to the typical version with preassigned roles. Travelers are 
motivated to participate in the service by saving individual transportation costs and accept its rules. We first 
formally define it as a generalized ridesharing optimization problem (RSP), propose its transformation into 
a single-depot multiple traveling salesman problem with pickup and delivery constraints (SDMTSP-PD) and 
provide its mixed-integer program (MIP) formulation. We then develop a polynomial-time solution method 
based on optimal pair matching among participants, improved by a construction insertion-based heuristic to 
obtain approximate solutions to the SDMTSP-PD. Experiments show that this approach could solve the 
problem very fast and provide near-optimal solutions and that the proposed RSP model provides substantial 
system-wide travel cost saving (25%+) and vehicle-trip saving (50%) compared to the non-ridesharing 
system and perform better than companion services with preassigned roles (P-RSP).

KEYWORDS 
Ridesharing; driver; 
matching; insertion

Introduction and literature review

Ridesharing, by definition, occurs when travelers are willing to 
share both a private vehicle and the associated travel cost with 
others that have similar itineraries and compatible time schedules. 
The aim of ridesharing is to improve the efficiency of transportation 
by combining the fast travel time and convenience of private cars 
and the cost-efficiency of fixed-route transit to provide an attractive 
and viable alternative. Ridesharing arises as a desirable urban 
transportation option in the context of finite oil supplies, rising 
gas prices, never-ending traffic congestion, and environmental con-
cerns. The private car occupancy rates are low: according to the 
recent reports (Federal Highway Administration 2017; Department 
for Transport Statistics 2020), the average passenger car occupan-
cies in 2017 in the UK and the US were 1.6 and 1.67, respectively, 
meaning the vast majority of the trips are transporting ‘empty 
seats.’ The low occupancy, together with the large demand for 
automobile transportation at the peak-hours, leads to traffic con-
gestion in many urban areas. According to the report published by 
the Texas A&M Transportation Institute (Schrank, Eisele, and 
Lomax 2019), the economic loss associated with congestion was 
179 billion dollars in 2017 and is expected to grow to 237 billion 
dollars in 2025. Besides, private automobiles are also a major source 
of fuel consumption and carbon dioxide emissions, which contri-
bute to air pollution and climate change. The overall motivation for 
developing and promoting ridesharing services is, therefore, to 
utilize the unused capacity of vehicles by allowing multiple riders 
on board to minimize the total vehicle miles traveled and improve 
system-wide indicators, such as congestion and related emissions.

Effective usage of ridesharing can potentially increase the occu-
pancy rates (Morency 2007; Tafreshian, Masoud, and Yin 2020), 
reduce the number of single-occupancy vehicles; and thus reduce 
congestion and need for parking space, especially in large metro-
politan areas and during peak hours (Morency 2007; Agatz et al. 

2010; Stiglic et al. 2015, 2016; Tafreshian, Masoud, and Yin 2020). 
Moreover, the ridesharing system has ‘scale effects.’ As shown by 
Dailey, Loseff, and Meyers (1999), the relationship between the 
number of ridesharing participants and the number of carpools 
formed is quadratic. It means that ridesharing significantly affects 
traffic demand management (TDM) if large segments of the popu-
lation are attracted to the service. Personal benefits, such as asso-
ciated expenses shared among the participants and time saving 
using express or High Occupancy Vehicle (HOV) lanes (Chan 
and Shaheen 2012; Lee and Savelsbergh 2015), are expected. 
Moreover, the economic benefits associated with ridesharing, in 
turn, attract more travelers to participate in ridesharing services, 
thereby improving the utilization of transportation infrastructure 
capacity. Market leader Uber is currently shifting its focus to ride-
sharing services in major markets. Recent data shows that half of all 
Uber rides in San Francisco are for UberPool, which is Uber’s 
ridesharing service (Schwieterman and Smith 2018). Other players 
in the market, such as Lyft and Ziro, share the same trend, as the 
popularity of smartphones makes efficient sharing and real-time 
communication possible and easy among all passengers.

Although ridesharing as a transportation solution is promising 
in a lot of ways, the operations of ridesharing systems introduce 
new challenges to both industry and academia, especially when 
considering spatio-temporal constraints from both drivers and 
riders (Martins et al. 2021). Ridesharing services have attracted 
growing attention from academia. See Agatz et al. (2012), 
Furuhata et al. (2013) and Tafreshian, Masoud, and Yin (2020) 
for a review on this topic. Baldacci, Maniezzo, and Mingozzi 
(2004) studied the carpooling problem in which travelers (mainly 
employees of a large employer) share rides to and from work, 
presenting an optimization problem and an exact method based 
on Lagrangian column generation. In contrast, Calvo et al. (2004) 
studied the same problem proposing a method with path construc-
tion and local search, which is formulated as a heuristic algorithm. 
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In ridesharing’s simplest form, a vehicle transports a single rider, 
and riders are not allowed to transfer between vehicles, which is 
called one-to-one matching (Tafreshian, Masoud, and Yin 2020). 
One-to-many forms of ridesharing problems indicate that drivers 
can serve multiple riders while the riders are not allowed to transfer 
between vehicles. Herbawi and Weber (2012) modeled a one-to- 
many dynamic ride-matching problem in which participants show 
up on short notice and proposed genetic and insertion heuristic 
algorithms. Di Febbraro, Gattorna, and Sacco (2013) modeled the 
one-to-many dynamic ridesharing systems as a mixed-integer opti-
mization problem whose goal is to minimize the difference between 
the desired departure and arrival times. Stiglic et al. (2015) designed 
an algorithm to estimate the benefits of meeting points based on an 
extension of the traditional bipartite matching formulation. They 
discovered that introducing meeting points could significantly 
increase the capacity of ridesharing services and system-wide driv-
ing distance savings. Masoud and Jayakrishnan (2017a) relaxed the 
assumption of ridesharing services and proposed a binary program 
in a time-expanded network. Bei and Zhang (2018) study the 
ridesharing assignment problem from an algorithmic perspective. 
There are two distinct sets of riders and drivers in their modeling 
framework, and no time window constraints are considered. They 
specifically model the problem of assigning two riders to one driver 
as a combinatorial optimization problem, show its NP-hardness 
and devise an approximation algorithm with guaranteed perfor-
mance bound. Bian and Liu (2019) designed a mechanism for 
passengers that use a first-mile ridesharing service given their 
personalized requirements. Li and Chung (2020) proposed a static 
mathematical model to increase the matching rate under travel time 
uncertainty and developed an extended insertion and tabu search 
heuristic algorithm.

The ridesharing problems are all closely related to the pickup 
and delivery problem (PDP, see Savelsbergh and Sol (1995) for 
a review). Many of the studies involved integer programming- 
based exact algorithms. Sexton and Bodin (1985) reported an 
exact algorithm based on Bender’s decomposition. Lu and 
Dessouky (2004) developed a MIP formulation for the multiple- 
vehicle PDP. New valid inequalities were utilized to develop 
a branch-and-cut algorithm to solve the problem optimally. 
Quadrifoglio, Dessouky, and Ord´on˜ez (2008) developed a MIP 
formulation for the static single-vehicle Mobility Allowance Shuttle 
Transit (MAST) system, which is a variant of the PDP system. Logic 
cuts were proposed by the authors to strengthen the formulation 
and solve the problem. Cortes, Matamala, and Contardo (2010) 
presented a strict MIP formulation for the PDP and allowed pas-
sengers to transfer. Baldacci, Bartolini, and Mingozzi (2011) pro-
posed an exact method for the PDP with time windows with 
a branch-and-cut-and-price algorithm. (Psaraftis 1980) developed 
dynamic programming techniques to solve the Dial-a-Ride 
Problem (DARP) and DARP with time windows later (Psaraftis 
1983). Due to the fact that PDP is NP-hard (Lenstra and Kan 1981), 
besides exact solution methods, the research community has been 
focusing on heuristic approaches that can solve large instances of 
PDP in polynomial time while maintaining the quality of the solu-
tion. Jaw et al. (1986) first adapted the traditional insertion 
approach to solve the multi-vehicle dial-a-ride problem with time 
windows. The insertion-based constructive heuristic has then been 
developed to solve the PDP with time windows (Lu and Dessouky 
2006), the single-vehicle MAST scheduling problem (Quadrifoglio, 
Dessouky, and Palmer 2007), which is a variant of the PDP, and the 
multiple-vehicle MAST problem (Lu, Lu, and Quadrifoglio 2011). 
Berbeglia, Cordeau, and Laporte (2010) gave a comprehensive 
review on dynamic PDP and discussed solution strategies. In 
a recent study, Hou, Li, and Zhang (2018) considered a ride- 

matching problem and a vehicle routing problem (VRP) simulta-
neously to maximize the average loading ratio of the entire system. 
In a broader range, (Vidal et al. 2013) provides a review of heuristics 
and meta-heuristics applied to VRPs with various characteristics 
and constraints. (Vidal et al. 2014) introduced a unified metaheur-
istic solver for VRPs with variants. Given the proposed solver 
matched or outperformed the existing algorithms for 29 VRP 
variants, the authors suggested that generality does not necessarily 
degrade performance for the problem classes of VRP with multiple 
attributes. Later, (Vidal, Laporte, and Matl 2020) contains 
a comprehensive review of recent trends in study objectives of 
VRPs and their integration with other research areas.

Some studies addressed ridesharing problems where the partici-
pants’ role is not fully predetermined. Agatz et al. (2011) considered 
role assignment problem using a general graph matching model, 
which can be solved in polynomial time for a one-way trip match-
ing problem. Lloret-Batlle, Masoud, and Nam (2017) proposed 
a matching and pricing mechanism for a peer-to-peer ridesharing 
system based on the Vickrey-Clarke-Groves (VCG) model. Masoud 
and Jayakrishnan (2017b) relaxed the assumption of riders and 
drivers forming mutually exclusive sets, instead, considered over-
lapping sets of drivers and riders, which maximizes the number of 
served riders in the system. Tafreshian and Masoud (2020) pro-
posed a near-optimal solution found by applying a heuristic graph 
partitioning method. However, we are not aware of any work 
addressing and modeling the ridesharing optimization problem 
with undetermined drivers’s role from the most general perspective, 
where willing participants are all equal and allowed to be either 
a driver or a rider. Roles are assigned by the system and optimized 
along with the associated routing problem. This novel feature 
allows for larger feasible regions and almost certainly better system- 
wide solutions, but also increases the complexity of the solution 
procedure, as new binary decision variables are needed and intro-
duced to assign the participants’ roles. Our work’s aim and scope 
are to be among the first researchers to propose and model this 
novel and more general ridesharing service configuration, provide 
its formulation and suggest a solution approach. This paper is 
partially inspired by the modeling features of Bei and Zhang 
(2018); however, it fundamentally differs from it, causing it to 
become a special case of our model. Our solution approach is 
built on the optimal matching problem, proposed by Wang 
(2013) and solved in polynomial time for up to parties of two, but 
we improved it to provide solutions for larger ridesharing parties. 
This paper is also complemented by Lu and Quadrifoglio (2019), 
which identified a fair cost allocation scheme by finding the nucleo-
lus of the game-theoretical framework built-in the ridesharing 
problem.

The highlights of our work are depicted in the remainder of this 
paper, which is organized as follows. Section 2 formally defines the 
general Ridesharing Optimization Problem (RSP). Section 3 devel-
ops a modeling transformation to generate an equivalent mixed- 
integer program based on the RSP. Section 4 introduces a solution 
procedure based on optimal matching and a construction heuristic 
to solve the RSP quickly with acceptable approximation. In 
Section 5, experiments are conducted to evaluate the quality of 
the developed model and algorithm, in addition to some statistical 
tests and sensitivity analyses. Finally, conclusions and future 
research direction are presented in Section 6.

The ridesharing optimization problem

We study the most generalized setting of the ridesharing problem. 
We consider a set of time-compatible travelers, with their origins/ 
destinations, willing to participate in the ridesharing ‘game’ as 
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riders or able to serve as designated drivers in a large scale ride-
sharing system. We aim to simultaneously make decisions on 
driver/rider role assignment, customer partition and route plan-
ning, with the goal of minimizing the system-wide total cost. 
Basically, for any given set of participants, the typical ridesharing 
service (with predetermined drivers) is one of the many instances of 
the generalized problem. Each instance is represented by a unique 
set of decision variables representing how many (and which) parti-
cipants will serve as drivers. Each instance will then include 
a ridesharing plan with riders and routing. The best instance is 
the solution to the proposed generalized ridesharing problem. Time 
compatibility between riders indicates that ride times are similar 
and that potential time windows are large enough to be redundant 
constraints. We consider these assumptions realistic and acceptable 
when there is a large set of potential riders, a subset of which is 
preselected to be compatible with these assumptions. Practically 
speaking, in this paper, we are assuming that this preselection has 
already been performed. Furthermore, the proposed formulation 
has a robust structure that can be easily divided into clusters 
including riders sharing similar time schedules and solved in 
a parallel algorithm fashion.

Ridesharing system objectives

The objective of the ridesharing centralized system’s decision- 
maker is to minimize the system-wide cost, which is mainly com-
posed of and directly proportional to the total mileage traveled by 
all users. This objective is meaningful from a social perspective 
because total vehicle mileage is critically related to emissions of 
air pollutants and road congestion. Note that this objective is also 
closely related to minimizing total travel costs, or alternatively 
speaking, maximizing total travel cost savings, which is the direct 
motivation of ridesharing participants. We will later show that this 
system-wide objective has an alignment with individual partici-
pants’ interests – minimizing personal travel costs.

Problem definition

Let P be the set of participants in a ridesharing system. Each 
participant i 2 P wants to travel from his/her origin si to his/her 
destination ti. The set of origins and destinations are defined as 
Vs ¼ si j i 2 Pf g and Vt ¼ ti j i 2 Pf g, respectively, and the entire 
location set is V ¼ Vs [Vt . Let A ¼ V � V denote the edge set 
connecting all the vertices in V and C 2 R Vj j� Vj j denote the cost 
matrix with cij representing traveling cost from location i to j. Then, 
we have a complete graph G ¼ V;Að Þ and its edge cost matrix C as 
input. To formally introduce the ridesharing optimization problem, 
we first present some definitions. 

Definition 1 (ridesharing tour). Let S � P be a ridesharing group 
and let V Sð Þ denote the location set of participants in S, therefore, 
V Sð Þ ¼ [i2Sðsi [ tiÞ. A ridesharing tour for ridesharing group S, 
R Sð Þ is a directed Hamiltonian path on the graph G Sð Þ ¼
V Sð Þ;A Sð Þð Þ where A Sð Þ ¼ V Sð Þ � V Sð Þ such that

1. R Sð Þ starts from rider d’s origin sd and ends at d’s destina-
tion td.

2. Let S� d ¼ S n df g. For every rider i in S� d, si precedes ti.
Note that the above definition implies that rider d is assigned as 

the driver in the ridesharing group S. 

Definition 2 (ridesharing partition). A ridesharing partition SP ¼
S1; . . . ; Smf g is a set of ridesharing groups such that

1. [ Sj2SPSj ¼ P
2. Sj \ Sk ¼ ; 1 � j�k 

Definition 3 (ridesharing plan). A ridesharing plan for a ridesharing 
partition SP is a set of ridesharing tours RP ¼ R Sj

� �
j Sj 2 SP

� �

Define f RPð Þ as the value of ridesharing plan RP that corre-
sponds to a function f . Define the objective function of the ride-
sharing optimization problem as: 

max f RPð Þf g

In this paper, f is the accumulated values of all the ridesharing 
tours, which is defined by: 

f RP SPð Þð Þ ¼
X

Sj2SP
V R Sj

� �� �
(1) 

Definition 4 (ridesharing optimization problem (RSP)). An opti-
mization problem of ridesharing is a 4-tuple hIQ; SQ; fQ; optQi, where:

● IQ: the set of the participants P and the corresponding graph 
G ¼ V;Að Þ

● SQ: the set of all ridesharing plans for all the ridesharing parti-
tions of P

● fQ: f RPð Þ the value of ridesharing plan RP
● optQ: max.

Cost and value of a shared-ride

Denote by R Sð Þ the set of all the feasible ridesharing tours for S. Let 
C ið Þ be the cost associated with each rider’s trip. Let C i; 0ð Þ be rider 
i’s cost for an individual trip without ridesharing. Let C i;Rð Þ be the 
cost of i for participating in a ridesharing tour R. The value of 
a shared-ride for a rider i 2 S, vi Rð Þ, is defined as the cost associated 
with switching from driving a vehicle from origin to destination to 
participating in a ridesharing tour: 

vi Rð Þ ¼ C i; 0ð Þ � C i;Rð Þ

Naturally, C i;Rð Þ ¼ C i; 0ð Þ and vi Rð Þ = 0 if no participation occurs 
for i.

In a formed ridesharing tour R 2 R Sð Þ, a rider i that participates 
in R will be assigned to be the designated driver i ¼ d and given the 
pick-up and drop-off sequence for all the other riders. Under the 
assumption that the major components of the cost are proportional 
to the driven mileage, including fuel cost and vehicle usage, and that 
potential time-related components are negligible or deemed by 
participating riders, we can approximate the cost C as the driven 
miles. We assume C i; 0ð Þ ¼ dist ið Þ, which indicates the direct dis-
tance traveled from i’s origin to destination without any detour, and 
C i;Rð Þ = dist Rð Þ, which indicates the tour length of R for the 
designated driver d. Hence, C i;Rð Þ = 0 for any non-driving parti-
cipant in ridesharing group R. Each rider’s value is defined as 
follows: 

vi Rð Þ ¼ f dist ið Þ;"i 2 S n df g;
dist ið Þ � dist Rð Þ; i ¼ d 

The cumulative value of a ridesharing tour R is the summation of 
the values of all the riders for participating in the ridesharing. 

W Rð Þ ¼
P

i2S
vi Rð Þ ¼

P

i2S
dist ið Þ � dist Rð Þ

Given a set of ridesharing group S � P, the ridesharing system 
decision-maker wants to maximize the cumulative value of W Rð Þ. 
Since dist ið Þ is a constant for every i 2 S, this objective is equivalent 
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to minimizing dist Rð Þ, that is finding the optimal solution for the 
corresponding Hamiltonian path as for Definition 1. We call the 
optimal solution for this problem the optimal ridesharing tour of S 
and denote it as C� Sð Þ. The associated value of C� Sð Þ is called the 
optimal value of S and is denoted by W� Sð Þ.

Now, suppose the given set of ridesharing participants P has 
formed m ridesharing groups. Let SP ¼ S1; . . . ; Smf g denote the set 
of these groups. Then we must have [Sj2SPSj ¼ P and Sj \ Sk ¼ ;

for every 1 � j�k. Note that SP is also known as a partition of P. 
We define the cumulative value of the participant set P under 
a partition SP as the sum of the optimal values of sets in SP, that is 

WSP Pð Þ ¼
X

Sj2SP
W� Sj
� �

A more ambitious objective aims to maximize the cumulative value 
of P, equivalent to find the optimal set partition SP� such that 

SP� ¼ arg max
SPi2SP Pð Þ

WSPi Pð Þ

We would like to emphasize that we are tackling the problem from 
a system’s perspective, assuming individual ridesharing participants 
will accept whatever system’s optimal solution offers, as long as it is 
compatible with their initial provided time and location constraints. 
A significant part of the ridesharing ‘game’ also includes the deter-
mination of an acceptable price and cost allocation associated with 
a given solution. In particular, the value gained by the system 
operating in a ridesharing mode must be shared fairly among 
participants. Riders will pay a ‘fee’, compatible with and propor-
tional to the individual value gain. Drivers will instead receive a ‘fee’ 
compatible with and proportional to the individual value loss, 
which is their driven mileage. This is a non-trivial game-theoretic 
problem to be solved and is not dealt with in this paper, but 
a solution approach, based on the identification of the ‘nucleolus’, 
can be seen in Lu and Quadrifoglio (2019).

Modeling

Setting

Suppose we have n ridesharing participants P ¼ 1; 2; . . . ; nf g. Each 
of them has an origin location and a destination location. Denote 
the node set of origin and destination locations as VO and VD, 
respectively. Let node i be customer i’s origin node (1 � i � n) 
and iþ n be his destination node, then we have 
VO ¼ 1; 2; . . . ; nf g and VD ¼ nþ 1; nþ 2; . . . ; 2nf g.

We have a complete digraph GR ¼ VR;ARð Þ, where 
VR ¼ VO [ VD is the set of all nodes and AR ¼ VR � VR is the 
set of all edges. Let CR 2 R

2n�2n be the cost matrix with c0
ij 

representing the travel cost from node i to node j.
Figure 1 provides an illustration showing two feasible solutions 

to the RSP on GR. Note that the number in a node indicates its 
associated customer index. Nodes with a rectangular shape with 
a ‘+’ label represent the destinations. Figure 1(a) is a solution that 
consists of purely individual trips. In Figure 1(b), customers 1 and 2 
and customers 4; 5 and 6 form a ridesharing groups. The nodes in 
red belong to assigned drivers.

Transformation

For the formulation purpose, the RSP is transformed to the single- 
depot multiple traveling salesman problem with pickup and deliv-
ery constraints (SDMTSP-PD) in the following manner. Let 
V0 ¼ 0f g be a ‘dummy’ depot. The transformed graph is repre-
sented by G ¼ V;Að Þ where V ¼ VR [ V0 and A is the set of all the 
directed edges connecting any two vertices in V. The cost of the arcs 
in A is defined as 

cij ¼
0; ifi ¼ 0orj ¼ 0;
c0

ij; otherwise:

�

Here, the cost of the arcs is determined based on the distance, which 
is driven mileage. c0

ij, which denotes the geometric distance between 
node i and node j, is introduced to differentiate from the formula-
tion after the transformation using cij. c0

ij does not include any extra 
costs associated with being a driver. The solution in Figure 1(b) is 
equivalent to the solution in Figure 2, where dash lines indicate 
zero-cost arcs.

Integer program

The corresponding integer program for the transformed SDMTSP- 
PD problem is defined as follows. For each edge (i, j) ∈ A, we 
define a binary variable xij such that 

xij ¼
1; if i; jð Þ 2 A is in the solution;

0; otherwise:

�

Additionally, we define a binary variable yik as follows 

Figure 1. (a) Individual trips vs. (b) organized ridesharing trips.
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yik ¼
1; if node i is visited by driver k; i 2 Vn 0f g; k 2 Vo
0; otherwise:

�

Note that here yik = 1 implies customer k is a driver. ui are 
continuous variables called node potentials that indicate the visit 
order of node i in the tour. p denotes the maximal number of nodes 
a driver can visit in a tour, which can be used to specify the seat 
capacity of participants’ vehicles. In a typical dynamic ridesharing 
setting, most participants use private vehicles with a 5-seat capacity, 
which would need p to be set equal to 10. 

minZ ¼
X

i;jð Þ2A

cijxij (2) 

X2n

i¼0
xij ¼ 1; j ¼ 1; 2; . . . ; n (3) 

X2n

j¼0
xij ¼ 1; i ¼ 1; 2; . . . ; n (4) 

x0i � x iþnð Þ0 ¼ 0; i ¼ 1; 2; . . . ; n (5) 

ui � uj þ pxij � p � 1; 1 � i�j � 2n (6) 

ui � uiþn; 1 ¼ 1; 2; . . . ; n (7) 

X

k
yik ¼ 1; i ¼ 1; . . . ; 2n; k ¼ 1; . . . ; n (8) 

yik ¼ y iþnð Þk; i ¼ 1; . . . ; n; k ¼ 1; . . . ; n (9) 

x0i ¼ yii; i ¼ 1; . . . ; n (10) 

� 1 � xij
� �

� yik � yjk � 1 � xij
� �

; 1 � i�j � 2n; k ¼ 1; . . . ; n
(11) 

xij 2 0; 1f g; 0 � i�j � 2n (12) 

yjk 2 0; 1f g; i ¼ 1; . . . ; 2n; k ¼ 1; . . . ; n (13) 

Constraints (3) and (4) are the continuity constraints. Constraints 
(5) make sure that a tour starts at its driver’s origin and ends at his 
destination. Constraints (6) are a group of subtour-elimination 
constraints (SECs) first proposed by Miller, Tucker, and Zemlin 
(1960). Constraints (7) ensure that a customer’s origin precedes his 
destination. Constraints (8) ensure that each node is visited by 
exactly one driver. Constraints (9) make sure that a customer’s 
origin and destination are visited by the same driver. Constraints 
(10) mean that customer i is selected as a driver if and only if his 
origin is visited by himself. The intuitive meaning of constraints 
(11) is that if edge (i, j) is selected in the solution then nodes i, 
j must be served by the same driver. This set of constraints serve as 
a bridge between x variables and y variables. To improve computa-
tional efficiency, the following constraints that are entangled with 
the binary variable xij can be added to the program. 

x0j ¼ 0; "j 2 VD (14) 

xi0 ¼ 0; "i 2 VO (15) 

xiþn;i ¼ 0; "i 2 VO (16) 

xij ¼ 0; "i ¼ j 2 V (17) 

The problem is a generalization of the classic traveling salesman 
problem whose decision version belongs to the class of NP- 
complete (Karp 1972). The above formulation is not solvable in 
a reasonable time for large enough instances, such as those arising 
in a metropolitan area system-wide ridesharing service. Note that 
the above model, for a given pool of n participants, has a larger 
feasible region with more binary variables (namely 2n2 additional 
yik binary variable needed to select the drivers) making it much 
more challenging to solve compared to the more constrained ver-
sion with predetermined drivers (in which all the yik are already 
set), even for relatively small sized instances. We also observe that 
the model could handle hybrid settings, with some participants 
preassigned as drivers/riders (just fix their corresponding yik) and 
the rest willing to be both as needed.

Solution methods

Profitability of ridesharing

Since the ridesharing problem aims to combine trips with similar 
itineraries together to save total travel cost, a natural question to ask 
is, when does ridesharing make the greatest economic sense, and thus 
should be encouraged, and in what case should inefficient ridesharing 
be discouraged. The following example illustrates this thought.

In Figure 3(a), the total travel cost, assuming no ridesharing 
happens, is dSDtD þ dSPtP ¼ 10. When P and D decide to share a ride, 
the optimal route yields a travel cost of 9 (e.g. SD � SP � tP � tD), 
resulting a cost saving equal to 1. In Figure 3(b) however, the 
optimal route has a travel cost of 11, resulting a cost loss equal to 
1 instead of cost saving. Assuming again that the main components 
of the cost are proportional to the distance traveled, the profitability 
of ridesharing primarily depends on the relative geographical 

Figure 2. Corresponding feasible solution for SDMTSP-PD on the transformed 
graph.
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location of the participants. For a two-player ridesharing to be 
profitable, the combined route cost must be less than the sum of 
the two solo trip costs. That is, dSDSP þ dtDtP þ dSPtP < dSDtD þ dSPtP , 
i.e. dSDSP þ dtDtP < dSDtD . This is equivalent to say, the cost saving of 
ridesharing, dSDtD � dSDSP þ dtDtPð Þ, has to be greater than 0. Of 
course, a more accurate analysis can be carried out considering 
a more granular definition of the cost; however, it would still 
possible to define a profitability associated with any match.

One-to-one match

Recall that the objective of minimizing total travel cost is equivalent 
to maximizing total cost saving. The above observation and the 
concept of profitability defined in Section 4.1 motivates Wang 
(2013) to solve an alternate version of ridesharing optimization 
problem: the optimal rideshare matching problem. The model 
also considers a single-rider single-driver rideshare matching with 
participants’ flexible roles. In the optimal rideshare matching pro-
blem, each customer can be matched with at most another custo-
mer to form a shared-ride. Obviously, the solution to this problem 
is an upper bound of the solution to the ridesharing optimization 
problem. Nevertheless, the solution to this problem can provide 
insight in solving the ridesharing optimization problem and can 
serve as a benchmark to our proposed heuristic solution methods. It 
is important to emphasize that this matching approach is suitable 
specifically for our RSP without predetermined driver.

The optimal ridesharing matching problem can be modeled on 
a graph. Let G ¼ V;Að Þ be a digraph with V ¼ 1; . . . ; nf g standing 
for the set of customers and A ¼ i; jð Þ j i; j 2 Vf g representing the 
possible rideshare match between agent i and j. A directed arc 
i; jð Þ;"i; j 2 V is associated with an edge cost cij equal to the cost 

saving when i serves as the driver and j as the rider in the i � j 
rideshare match. The objective function of this problem aims to 
maximize the cost savings of rideshare matches over all possibilities: P

i;jð Þ2A cijxij. Here xij is a binary decision variable that is defined as  

xij ¼
1; ifrideshare matchði; jÞ 2 Aisselected;

0; otherwise:

�

The constraints of this optimization model can be represented as 
follows: 

P

j2Vn if g
xij þ

P

j2Vn if g
xji � 1 "i 2 V 

The problem is an instance of the Maximum Weight Match 
Problem, which has been first solved optimally in polynomial 
time (O(n3)) by Edmonds (1965), later improved by an approxi-
mated linear time heuristic Duan and Pettie (2014). This is crucial 
as we can build on the optimal solutions of this Matching Problem, 
obtained in polynomial time also for larger instances, to improve 
our solution to the general RSP.

An insertion heuristic

The optimal solution to the Matching Problem found in the 
previous Section 4.2 will potentially include unmatched customers 
(those not able to find a feasible pairing match), still driving 
independently. However, the RSP allows 2+ ridesharing passen-
gers. So, as long as the vehicle capacity is not reached, the route 
plan for the RSP could be further improved by adding unmatched 
customers to the existing plan, wherever convenient for the parti-
cipants. Basically, the optimal Matching Problem solution is 
a feasible, good, but still very likely sub-optimal solution to the 
RSP. This section will describe a proposed methodology to find an 
improvement to the RSP starting from the optimal Matching 
Solution.

As an illustrative example of the concept, Figure 4(a) repre-
sents an optimal Matching Problem solution obtained by sol-
ving the optimization model in Section 4.2. This solution can be 
potentially further improved. As shown in Figure 4(b), when an 
unmatched customer 3 is available to participate, the total travel 
cost can be saved by including 3 into the existing route of 1 and 
2. The saved cost by including traveler 3 is d22+ −d23−d2+3+=3. 
Note that this addition would not be allowed in the Matching 
solution, as ridesharing passengers can be at most 2, but cer-
tainly appropriate for the RSP, when not violating the vehicle 
capacity.

The observation from Figure 4 motivates the authors to develop 
an insertion-based heuristic to improve the solution to the rideshar-
ing optimization problem RSP. These routines are intuitive and 
effective in reaching near-optimal solutions in very short computa-
tional time (Quadrifoglio, Dessouky, and Palmer 2007), in particular, 
when starting from an already optimal Matching solution. However, 
many possible alternative construction heuristics can be applied to 
our base solution and potentially perform more efficiently.

The insertion-based heuristic algorithm is described in 
Algorithm 1 and it starts from the optimal matching solution 
(Section 4.2). For each unmatched participant, for which we are 

Figure 3. A two-player example.
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given the location, the algorithm loop through all the existing 
routes to find a feasible insertion position that has the greatest 
cost saving. Note that a feasible insertion may also modify the 
driver’s role for an existing match, as an unmatched participant 
can be inserted prior to the original driver and drive to pick-up and 
drop-off both originally matched participants. This process repeats 
until either no unmatched participant is left or an insertion position 
with positive cost saving cannot be found. The output of the algo-
rithm is the improved ridesharing solution, which is a route plan for 
the RSP. As the insertion heuristics are known to have a quadratic 
complexity, the overall complexity of the procedure is dominated 
by the Matching portion (O(n3)).

Experiments

We implemented the algorithms in Java with CPLEX 20.1 and 
the Concert library. We ran experiments for up to 1 day 
(86,400 sec) using an i7-8750H CPU @2.2GHz with 6 Cores. 
The data set1 we used in the experiments were selected from 
Dumitrescu et al. (2010), in which the origins and destinations 
of participants were randomly generated in the square [0, 
1000] × [0, 1000]. The Euclidean distances were used. 
Vehicles’ maximum capacity is set to 5 (p = 10). The instances 
are named probnX, where n is the participant size, and 
X stands for different instances with the same size. The experi-
mental results are summarized in Table 1, where costs are 
shown. ‘Solo’ is the solution without any ridesharing (all pas-
sengers driving individually). ‘Match’ is the optimal matching 
solution found in Section 4.2. ‘Ins’ stands for insertion and is 
the solution to the RSP found with the proposed insertion 
heuristic procedure of Algorithm 1. ‘MIP’ is the optimal solu-
tion to the RSP found with the CPLEX solver and its solving 
time (* means optimal RSP). Then the ‘Gap’ is shown between 
Ins and MIP solutions. The last column ‘P-RSP’ shows optimal 
(*) costs (for each instance with at least 10 participants) for 
the typical ridesharing service with arbitrarily predetermined 
drivers. Roughly half of the participants are assigned as drivers 
(simply the first rounded half based on their order shown in 
each data set), as we observed that most general RSP solutions 
eventually select approximately half participants as drivers. 
Note that, by definition, any optimal P-RSP is bounded by 
its corresponding general optimal RSP. 

Algorithm 1: An insertion algorithm based on the optimal matching solution

input: Geolocations of customers and the optimal match solution 
output: An improved ridesharing solution  

SAVING=0 ; 
while true do 

if UNMATHCED = ϕ then 
break ; 

end if 
SOLUTION = ϕ ; 
SAVING = 0 ; 
for a 2 UNMATCHED do 

for r 2 all routes do 
for each feasible insertion position do 

Δ ¼ costsavingafterinsertion ;

if Δ < SAVING then 
SAVING ¼ Δ ; 
record the incumbent solution ; 

end if 
end for 

end for 
end for 
if SAVING < 0 then 

Update UNMATCHED ; 
Update all_routes ; 
Update SOLUTION ; 

end if 
else 

break ; 
end if 

end while

In all instances, both the optimal matching and the insertion 
heuristic are able to find the solutions instantly (in less than 
1 second). Recall that the RSP is not only NP-hard, but greatly 
more complex than its special case with predetermined drivers 
(P-RSP), as it is required to optimally find values for 2n2 additional 
yik binary variables needed to select the drivers. Therefore, even 
a relatively small instance will require significantly more time to be 
optimally solved compared to any P-RSP. Instances up to 10 parti-
cipants are solved to optimality (even though some with significant 
CPU time).

As an illustrative example, Prob10e has the following solutions 
(’+’ means drop-off):

• Solo (cost = 5303): all solo drivers
• Match (4965): 2/4/6/7/9/10 unmatched solo drivers

Figure 4. A profitable insertion.
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– driver 3 → (3)-(1)-(1+)-(3+)
– driver 8 → (8)-(5)-(5+)-(8+)
• Ins (4810): 2/6/10 unmatched solo drivers
– driver 7 → (7)-(3)-(1)-(1+)-(3+)-(7+)
– driver 8 → (8)-(4)-(9)-(4+)-(5)-(5+)-(9+)-(8+)
• MIP (4545*, optimal): 2/4/6/7 unmatched solo drivers
– driver 8 → (8)-(5)-(5+)-(8+)
– driver 9 → (9)-(3)-(1)-(3+)-(1+)-(10)-(10+)-(9+)
Larger instances are solved starting from the Ins feasible solution 

to look for any potential improvement for up to 86400 sec (1 day). It 
is noteworthy to point out that the solution obtained from the 
insertion heuristic is close to the solutions obtained via solving 
MIP: when not optimal, the gap between ‘Ins’ and ‘MIP’ ranged 
from 1.6% to 10.2%. The optimal costs for the sampled P-RSP are all 
reached within the 86400 sec and are better than Solo costs, as 
expected, but worse than RSP costs, solved optimally (MIP) or 
heuristically (Ins). This confirms that the RSP provides a better 
system-wide solution than P-RSP, even if the larger instances are 
not yet guaranteeing RSP optimality, but are well approximated by 
our heuristic, whose values are also better than the optimally solved 
selected P-RSP instance.

To further compare the solution qualities of insertion heuristic 
(Ins) and optimal matching (Match) in terms of cost-saving, the 
solution values (average of five instances for each size) are summar-
ized in Table 2. The percentage in parenthesis for each solution 
method indicates the cost-saving percentage compared to the non- 
ridesharing route plan (Solo). It can be seen that Insertion can 
further save about 5% of the total travel cost compared to the 
Match starting solution.

Figure 5 presents 95% confidence intervals for the values shown 
in Table 2. We note that variability is quite limited, even if only 5 
instances per case were included in the calculation. The figure also 
shows that the difference between Solo and the other two becomes 
more significant as the problem size increases.

Note that average detour factor for the passengers participating 
into the ridesharing game is 1.3 (30% over their original direct Solo 

Table 2. Performance of algorithms – saving cost.

Problem Total cost (saving%)

size Solo Match Insertion

5 2509.5 2264.5 (9.8%) 2225.9 (11.3%)
10 5325.9 4476.5 (15.9%) 4272.7 (19.8%)
15 7929.6 6654.7 (16.1%) 6499.7 (18.0%)
20 10561.8 8454.6 (19.9%) 8201.7 (22.4%)
25 12695.5 10430.8 (17.8%) 9826.4 (22.6%)
30 16490.1 12975.2 (21.3%) 12190.0 (26.1%)
35 18367.0 14327.1 (22.0%) 13576.6 (26.1%)

Figure 5. Total costs with 95% C.I.

Table 1. Experiment results.

prob 
n X

Total cost Gap% 
Ins-MIP P-RSPSolo Match Ins MIP [Time(s)]

5a 2722 2338 2338 2338* [ < 1] 0.0%
5b 2378 2115 2115 2115* [ < 1] 0.0%
5c 3189 2856 2663 2663* [ < 1] 0.0%
5d 2086 1842 1842 1842* [ < 1] 0.0%
5e 2171 2171 2171 2171* [ < 1] 0.0%
10a 6110 4681 4681 4267* [3997] 9.7% 5102*
10b 5577 4966 4618 4487* [24928] 2.9% 4986*
10c 5514 4109 3592 3592* [502] 0.0% 4308*
10d 4126 3662 3662 3604* [239] 1.6% 3691*
10e 5303 4965 4810 4545* [1979] 5.8% 5108*
15a 6494 5633 5569 5112 [86400] 8.9% 5755*
20b 10131 8233 8048 7305 [86400] 10.2% 8861*
25a 11781 10053 9790 8982 [86400] 9.0% 10480*
30a 17112 13366 11849 11469 [86400] 3.3% 14877*
35b 16051 13136 11799 11484 [86400] 2.7% 14677*

Table 3. Performance of algorithms – saving vehicles.

Problem Vehicle trips (saving%)

size Solo Match Insertion

5 5 4.0 (20.0%) 3.8 (24.0%)
10 10 7.2 (28.0%) 5.8 (42.0%)
15 15 9.8 (34.7%) 8.2 (45.3%)
20 20 12.2 (39.0%) 9.8 (51.0%)
25 25 16.2 (35.2%) 11.6 (53.6%)
30 30 18.2 (39.3%) 13.8 (54.0%)
35 35 21.8 (37.7%) 15.8 (54.9%)
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ride). A minor portion (about 3%) is experiencing detours factors 
higher than 2, which might be deemed an inappropriate service 
level in a practical implementation (even though participants are 
made aware of the rules beforehand). This may be prevented by 
simply adding proper constraints in the MIP model and the heur-
istic without significantly altering our current results.

Table 3 summarizes the saved vehicle trips by adopting rideshar-
ing. As can be seen, Match and Insertion can save 20–38% and 24– 
55% vehicle trips on road, respectively, depending on the problem 
size. Once again, Insertion improves Match significantly (as high as 
18%). Also, note that the vehicle trip indicates average number of 
trips saved and the percentage of vehicle trips saving increases as 

Figure 6. Cost saving vs. Problem size.

Figure 7. Cost sensitivity vs. Capacity.
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the problem size increases, which confirms the scale effect of ride-
sharing. Figure 6 depicts the percentage of vehicle trips saved by 
Insertion as shown in the last column of Table 3 with the logarith-
mic trendline with R2 of 0.9427, which explains the scale effect. The 
trendline shows the increment of the percentage of vehicle trips 
saving with increasing the problem sizes. Also, once the problem 
size gets bigger than 20, the level of vehicle trip saving would be 
greater than 50% compared to the non-ridesharing plan.

Figure 7 shows a sensitivity analysis over the most significant 
parameter of our problem, which is the vehicle capacity C. As the 
base case has been considered C=5 (to match most actual private 
vehicles), the average percentage difference in total costs is shown 
for 20, 25, 30 and 35 participants (20avg, 25avg, 30avg, 35avg). The 
total costs increase as capacity becomes lower and vice-versa. 
However, the sensitivity appears low and is even less significant 
for C > 5. This is an indication that vehicles are rarely filled up to 
capacity. In addition to the average values, we also show our most 
sensitive case (prob30b), showing instead a more evident depen-
dency on capacity changes.

Conclusions

This paper considers the most generalized ridesharing problem, 
identified by a set of time-compatible participants, among which 
the driver/rider roles are not predetermined, but left to decide by 
the system to further reduce costs compared to the typical version 
with predetermined drivers. Although large-scale ridesharing ser-
vice providers may find themselves in need to face this challenging 
problem increasingly often, it has not been studied in the literature 
from this specific perspective. Notably, given the origin and desti-
nation of participants, how should the service provider organize the 
service by assigning the driver/rider roles and suggesting a route to 
minimize system-wide travel cost? We provide a formal definition 
of this problem as the generalized ridesharing optimization pro-
blem (RSP) and showed how to transform it to the single-depot 
multiple traveling salesman problem with pickup and delivery 
constraints (SDMTSP-PD) and with capacity constraint, for 
which a mixed-integer problem (MIP) model was then developed.

The problem is NP-hard and much more challenging than, for 
example, the typical TSP problem with the same number of parti-
cipants, as driver’s role binary decision variables are left to decide 
by the system. Thus, we resort to an approximation procedure to 
solve larger instances. In particular, optimal matching is suitable for 
the problem’s general structure without predetermined drivers. It is 
pivotal as it is solved in polynomial time and used as a good base 
solution to be improved with an insertion-based heuristic. The 
approximated solution was then compared to the optimal solution 
of RSP for optimally solvable instances. We note that the experi-
ments conducted in this paper were using randomly generated 
geographical locations. But in a real-world scenario, travelers’ ori-
gins and destinations are more likely to be clustered. In these 
situations, heuristics can potentially perform even better, as the 
proposed formulation has a robust structure allowing clusters to 
be solved in a parallel algorithm fashion.

Our results suggest the following managerial consideration for 
such systems: (1) Significant additional cost savings are achieved by 
relaxing the predetermined drivers’ role

among willing participants. Incentives should be considered to 
foster such configuration. (2) Near optimal solutions of the very 
complex system can be achieved by a heuristic approach, such as the 
one proposed. (3) A progressive scale effect is evident, the percen-
tage of vehicle trip-saving increases as more customers join the 
ridesharing service; so larger systems are more efficient. (4) 

Capacity is important but not critical, so smaller vehicles would 
suffice and also be more efficient and flexible.

While our results are deemed good for practical purposes, other 
and better solutions approaches are certainly possible. In particular, the 
special structure of the RSP MIP model is still to be investigated and 
exploited, thus developing valid inequalities and logic cuts is 
a promising direction. Lastly, the formulated framework with a few 
adjustments potentially matches a fleet of automatic vehicles serving 
passengers, likely the future transportation solution for ridesharing 
services.

Note

1. The data sets can be downloaded from http://www.diku.dk/~sropke/

Acknowledgments

The research reported in this paper was partially supported by a Dissertation 
Fellowship of Texas A&M University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in 
this article.

ORCID

Luca Quadrifoglio http://orcid.org/0000-0002-2596-7504

References

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. 2010. “Sustainable Passenger 
Transportation: Dynamic ride-sharing.” ERIM Report Series Reference No. 
ERS-2010-010-LIS.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. 2011. “Dynamic ride-sharing: 
A Simulation Study in Metro Atlanta.” Procedia - Social and Behavioral 
Sciences 17: 532–550. doi:10.1016/j.sbspro.2011.04.530.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. 2012. “Optimization for 
Dynamic ride-sharing: A Review.” European Journal of Operational 
Research 223 (2): 295–303. doi:10.1016/j.ejor.2012.05.028.

Baldacci, R., E. Bartolini, and A. Mingozzi. 2011. “An Exact Algorithm for the 
Pickup and Delivery Problem with Time Windows.” Operations Research 
59 (2): 414–426. doi:10.1287/opre.1100.0881.

Baldacci, R., V. Maniezzo, and A. Mingozzi. 2004. “An Exact Method for the Car 
Pooling Problem Based on Lagrangean Column Generation.” Operations 
Research 52 (3): 422–439. doi:10.1287/opre.1030.0106.

Bei, X., and S. Zhang. 2018. “Algorithms for trip-vehicle Assignment in 
ride-sharing.” In AAAI Conference on Artificial Intelligence. New Orleans, 
LA, USA.

Berbeglia, G., J.-F. Cordeau, and G. Laporte. 2010. “Dynamic Pickup and 
Delivery Problems.” European Journal of Operational Research 202 (1): 
8–15. doi:10.1016/j.ejor.2009.04.024.

Bian, Z., and X. Liu. 2019. “Mechanism Design for first-mile Ridesharing Based 
on Personalized Requirements Part I: Theoretical Analysis in Generalized 
Scenarios.” Transportation Research Part B: Methodological 120: 147–171. 
doi:10.1016/j.trb.2018.12.009.

Calvo, R. W., F. de Luigi, P. Haastrup, and V. Maniezzo. 2004. “A Distributed 
Geographic Information System for the Daily Car Pooling Problem.” 
Computers & Operations Research 31 (13): 2263–2278. doi:10.1016/S0305- 
0548(03)00186-2.

Chan, N. D., and S. A. Shaheen. 2012. “Ridesharing in North America: Past, 
Present, and Future.” Transport Reviews 32 (1): 93–112. doi:10.1080/ 
01441647.2011.621557.

Cortes, C. E., M. Matamala, and C. Contardo. 2010. “The Pickup and Delivery 
Problem with Transfers: Formulation and a branch-and-cut Solution 

10 W. LU ET AL.

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

http://www.diku.dk/~sropke/
https://doi.org/10.1016/j.sbspro.2011.04.530
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1287/opre.1100.0881
https://doi.org/10.1287/opre.1030.0106
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1016/j.trb.2018.12.009
https://doi.org/10.1016/S0305-0548(03)00186-2
https://doi.org/10.1016/S0305-0548(03)00186-2
https://doi.org/10.1080/01441647.2011.621557
https://doi.org/10.1080/01441647.2011.621557


Method.” European Journal of Operational Research 200 (3): 711–724. doi:10. 
1016/j.ejor.2009.01.022.

Dailey, D. J., D. Loseff, and D. Meyers. 1999. “Seattle Smart Traveler: Dynamic 
Ride Matching on the World Wide Web.” Transportation Research Part C: 
Emerging Technologies 7 (1): 17–32. doi:10.1016/S0968-090X(99)00007-8.

Department for Transport Statistics. 2020. “Data on Vehicle Mileage and 
Occupancy.” Technical Report, Government of the United Kingdom.

Di Febbraro, A., E. Gattorna, and N. Sacco. 2013. “Optimization of Dynamic 
Ridesharing Systems.” Transportation Research Record: Journal of the 
Transportation Research Board 2359 (1): 44–50. doi:10.3141/2359-06.

Duan, R., and S. Pettie. 2014. “Linear-time Approximation for Maximum Weight 
Matching.” Journal of the ACM (JACM) 61 (1): 1–23. doi:10.1145/2529989.

Dumitrescu, I., S. Ropke, J.-F. Cordeau, and G. Laporte. 2010. “The Traveling 
Salesman Problem with Pickup and Delivery: Polyhedral Results and a 
branch-and-cut Algorithm.” Mathematical Programming 121 (2): 269–305. 
doi:10.1007/s10107-008-0234-9.

Edmonds, J. 1965. “Maximum Matching and a Polyhedron with 0, 1-vertices.” 
Journal of Research of the National Bureau of Standards B 69 (125–130): 
55–56.

Federal Highway Administration. 2017. “National Household Travel Survey.” 
Technical Report, U.S. Department of Transportation.

Furuhata, M., M. Dessouky, F. Ordo´n˜ez, M.-E. Brunet, X. Wang, and 
S. Koenig. 2013. Ridesharing: The state-of-the-art and Future Directions. 
Transportation Research Part B: Methodological, 57(C), 28-46.

Herbawi, W. M., and M. Weber. 2012. “A Genetic and Insertion Heuristic 
Algorithm for Solving the Dynamic Ridematching Problem with Time 
Windows.” In Proceedings of the 14th Annual Conference on Genetic and 
Evolutionary Computation, GECCO ’12, 385–392, New York, NY, USA. ACM.

Hou, L., D. Li, and D. Zhang. 2018. “Ride-matching and Routing Optimisation: 
Models and a Large Neighbourhood Search Heuristic.” Transportation 
Research Part E: Logistics and Transportation Review 118: 143–162. doi:10. 
1016/j.tre.2018.07.003.

Jaw, -J.-J., A. R. Odoni, H. N. Psaraftis, and N. H. Wilson. 1986. “A Heuristic 
Algorithm for the multi-vehicle Advance Request dial-A-ride Problem with 
Time Windows.” Transportation Research Part B: Methodological 20 (3): 
243–257. doi:10.1016/0191-2615(86)90020-2.

Karp, R. M. 1972. “Reducibility among Combinatorial Problems.” In 
Complexity of Computer Computations, The IBM Research Symposia 
Series, 85–103. Yorktown Heights, NY, USA: Springer US.

Lee, A., and M. Savelsbergh. 2015. “Dynamic Ridesharing: Is There a Role for 
Dedicated Drivers?.” Transportation Research Part B: Methodological 81: 
483–497. doi:10.1016/j.trb.2015.02.013.

Lenstra, J. K., and A. H. G. R. Kan. 1981. “Complexity of Vehicle Routing and 
Scheduling Problems.” Networks 11 (2): 221–227. doi:10.1002/net.3230110211.

Li, Y., and S. H. Chung. 2020. “Ride-sharing under Travel Time Uncertainty: 
Robust Optimization and Clustering Approaches.” Computers & Industrial 
Engineering 149: 106601. doi:10.1016/j.cie.2020.106601.

Lloret-Batlle, R., N. Masoud, and D. Nam. 2017. “Peer-to-peer Ridesharing with 
ride-back on high-occupancy-vehicle Lanes: Toward a Practical Alternative 
Mode for Daily Commuting.” Transportation Research Record 2668 (1): 
21–28. doi:10.3141/2668-03.

Lu, Q., and M. M. Dessouky. 2004. “An Exact Algorithm for the Multiple Vehicle 
Pickup and Delivery Problem.” Transportation Science 38 (4): 503–514. 
doi:10.1287/trsc.1030.0040.

Lu, Q., and M. M. Dessouky. 2006. “A New insertion-based Construction 
Heuristic for Solving the Pickup and Delivery Problem with Time 
Windows.” European Journal of Operational Research 175 (2): 672–687. 
doi:10.1016/j.ejor.2005.05.012.

Lu, W., L. Lu, and L. Quadrifoglio. 2011. “Scheduling Multiple Vehicle Mobility 
Allowance Shuttle Transit (m-mast) Services.” In Intelligent Transportation 
Systems (ITSC), 2011 14th International IEEE Conference on, Washington, 
DC, USA, 125–132.

Lu, W., and L. Quadrifoglio. 2019. “Fair Cost Allocation for Ridesharing ser-
vices–modeling, Mathematical Programming and an Algorithm to Find the 
Nucleolus.” Transportation Research Part B: Methodological 121: 41–55. 
doi:10.1016/j.trb.2019.01.001.

Martins, L. D. C., R. de la Torre, C. G. Corlu, A. A. Juan, and M. A. Masmoudi. 
2021. “Optimizing ride-sharing Operations in Smart Sustainable Cities: 
Challenges and the Need for Agile Algorithms.” Computers & Industrial 
Engineering 153: 107080. doi:10.1016/j.cie.2020.107080.

Masoud, N., and R. Jayakrishnan. 2017a. “A Decomposition Algorithm to 
Solve the multi-hop peer-to-peer ride-matching Problem.” 
Transportation Research Part B: Methodological 99: 1–29. doi:10.1016/j. 
trb.2017.01.004.

Masoud, N., and R. Jayakrishnan. 2017b. “A real-time Algorithm to Solve the 
peer-to-peer ride-matching Problem in A Flexible Ridesharing System.” 
Transportation Research Part B: Methodological 106: 218–236. doi:10.1016/j. 
trb.2017.10.006.

Miller, C. E., A. W. Tucker, and R. A. Zemlin. 1960. “Integer Programming 
Formulation of Traveling Salesman Problems.” Journal of the ACM (JACM) 
7 (4): 326–329. doi:10.1145/321043.321046.

Morency, C. 2007. “The Ambivalence of Ridesharing.” Transportation 34 (2): 
239–253. doi:10.1007/s11116-006-9101-9.

Psaraftis, H. N. 1980. “A Dynamic Programming Solution to the Single Vehicle 
many-to- Many Immediate Request dial-A-ride Problem.” Transportation 
Science 14 (2): 130–154. doi:10.1287/trsc.14.2.130.

Psaraftis, H. N. 1983. “An Exact Algorithm for the Single Vehicle many-to-many 
dial-a-ride Problem with Time Windows.” Transportaiton Science 17 (3): 
351–357. doi:10.1287/trsc.17.3.351.

Quadrifoglio, L., M. M. Dessouky, and F. Ord´on˜ez. 2008. “Mobility Allowance 
Shuttle Transit (Mast) Services: Mip Formulation and Strengthening with 
Logic Constraints.” European Journal of Operational Research 185 (2): 
481–494. doi:10.1016/j.ejor.2006.12.030.

Quadrifoglio, L., M. Dessouky, and K. Palmer. 2007. “An Insertion Heuristic for 
Scheduling Mobility Allowance Shuttle Transit (Mast) Services.” Journal of 
Scheduling 10 (1): 25–40. doi:10.1007/s10951-006-0324-6.

Savelsbergh, M. W. P., and M. Sol. 1995. “The General Pickup and Delivery 
Problem.” Transportation Science 29 (1): 17–29. doi:10.1287/trsc.29.1.17.

Schrank, D., B. Eisele, and T. Lomax. 2019. “2019 Urban Mobility Report.” 
Technical report, Texas A&M Transportation Institute.

Schwieterman, J., and C. S. Smith. 2018. “Sharing the Ride: A paired-trip 
Analysis of Uberpool and Chicago Transit Authority Services in Chicago, 
Illinois.” Research in Transportation Economics 71: 9–16. doi:10.1016/j.retrec. 
2018.10.003.

Sexton, T. R., and L. D. Bodin. 1985. “Optimizing Single Vehicle many-to-many 
Operations with Desired Delivery Times: I. Scheduling.” Transportation 
Science 19 (4): 378–410. doi:10.1287/trsc.19.4.378.

Stiglic, M., N. Agatz, M. Savelsbergh, and M. Gradisar. 2015. “The Benefits of 
Meeting Points in ride-sharing Systems.” Transportation Research Part B: 
Methodological 82: 36–53. doi:10.1016/j.trb.2015.07.025.

Stiglic, M., N. Agatz, M. Savelsbergh, and M. Gradisar. 2016. “Making Dynamic 
Ride Sharing Work: The Impact of Driver and Rider Flexibility.” 
Transportation Research Part E: Logistics and Transportation Review 91: 
190–207. doi:10.1016/j.tre.2016.04.010.

Tafreshian, A., and N. Masoud. 2020. “Trip-based Graph Partitioning in 
Dynamic Ridesharing.” Transportation Research Part C: Emerging 
Technologies 114: 532–553. doi:10.1016/j.trc.2020.02.008.

Tafreshian, A., N. Masoud, and Y. Yin. 2020. “Frontiers in Service Science: Ride 
Matching for peer-to-peer Ride Sharing: A Review and Future Directions.” 
Service Science 12 (2–3): 44–60. doi:10.1287/serv.2020.0258.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins. 2013. “Heuristics for 
Multi Attribute Vehicle Routing Problems: A Survey and Synthesis.” 
European Journal of Operational Research 231 (1): 1–21. doi:10.1016/j. 
ejor.2013.02.053.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins. 2014. “A Unified Solution 
Framework for multi-attribute Vehicle Routing Problems.” European Journal 
of Operational Research 234 (3): 658–673. doi:10.1016/j.ejor.2013.09.045.

Vidal, T., G. Laporte, and P. Matl. 2020. “A Concise Guide to Existing and 
Emerging Vehicle Routing Problem Variants.” European Journal of 
Operational Research 286 (2): 401–416.

Wang, X. (2013). Optimizing ride matches for dynamic ride-sharing systems. 
PhD thesis, Georgia Institute of Technology.

TRANSPORTATION LETTERS 11

Auth
or'

s P
ers

on
al 

Cop
y 

DO N
OT D

ist
rib

ute
 or

 R
ep

rod
uc

e

https://doi.org/10.1016/j.ejor.2009.01.022
https://doi.org/10.1016/j.ejor.2009.01.022
https://doi.org/10.1016/S0968-090X(99)00007-8
https://doi.org/10.3141/2359-06
https://doi.org/10.1145/2529989
https://doi.org/10.1007/s10107-008-0234-9
https://doi.org/10.1016/j.tre.2018.07.003
https://doi.org/10.1016/j.tre.2018.07.003
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/j.trb.2015.02.013
https://doi.org/10.1002/net.3230110211
https://doi.org/10.1016/j.cie.2020.106601
https://doi.org/10.3141/2668-03
https://doi.org/10.1287/trsc.1030.0040
https://doi.org/10.1016/j.ejor.2005.05.012
https://doi.org/10.1016/j.trb.2019.01.001
https://doi.org/10.1016/j.cie.2020.107080
https://doi.org/10.1016/j.trb.2017.01.004
https://doi.org/10.1016/j.trb.2017.01.004
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1145/321043.321046
https://doi.org/10.1007/s11116-006-9101-9
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1016/j.ejor.2006.12.030
https://doi.org/10.1007/s10951-006-0324-6
https://doi.org/10.1287/trsc.29.1.17
https://doi.org/10.1016/j.retrec.2018.10.003
https://doi.org/10.1016/j.retrec.2018.10.003
https://doi.org/10.1287/trsc.19.4.378
https://doi.org/10.1016/j.trb.2015.07.025
https://doi.org/10.1016/j.tre.2016.04.010
https://doi.org/10.1016/j.trc.2020.02.008
https://doi.org/10.1287/serv.2020.0258
https://doi.org/10.1016/j.ejor.2013.02.053
https://doi.org/10.1016/j.ejor.2013.02.053
https://doi.org/10.1016/j.ejor.2013.09.045

	Abstract
	Introduction and literature review
	The ridesharing optimization problem
	Ridesharing system objectives
	Problem definition
	Cost and value of a shared-ride

	Modeling
	Setting
	Transformation
	Integer program

	Solution methods
	Profitability of ridesharing
	One-to-one match
	An insertion heuristic

	Experiments
	Conclusions
	Note
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References



